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Abstract 

The known time variation of the absolute gravity and that of the height above sea level 
enables us to compute the vertical shift of the equipotential surfaces i.e. that of the mean sea 
level and by this way to determine the true vertical displacement of the earth's surface (i.e the 
true recent crustal movement). By a further development of Barta's ideas and numeric results, 
a model has been computed for the time variation of gravity which served to compute the ver
tical shift of the geoid. Model computations with different density of known gravity variations 
(i.e. absolute gravity stations) have shown that a world network of 36 stations seems to be 
sufficient to represent the characteristic features of the global distribution of the variation of 
reoidal undulations, but determining the magnitude of the variations needs 62 stations at least 
(30 0 X 30 0 density) in the case of the model used by the authors. Also the numeric value of the 
gatio c = og/oN between gravity variation and change in the geoidal undulation has been in
vestigated and a rather varied global distribution between - 00 and + 00 has been stated. 
All these experiences are valid even if the numeric values (i.e. the magnitudes) of the variations 
computed by the model were overestimated. 

1. Introduction 

One of the main goals of the geodynamic researches is the investigation 
on the recent crustal (or plate) movements of the earth. The determination of 
these is based - according to the recommendation No 11 of the International 
Association of Geodesy, Hamburg 1983 - on the observed time variation of the 
absolute gray-ity and that of the height above sea level in stations favourably 
distributed around the globe. 

The Special Study Group 3.87 IAG has received the task to develop such 
a new world absolute gray-ity network. 

Until the repeated observations of this, are available it may be useful to 
have an appropriate model of the time variation of the earth grav-ity field which 
could serve for further model computations leading to estimations on the geo
detic effects of the secular variation in grav-ity and on the needed number (or 
density) and distribution of the absolute gray-ity stations. 
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2. The true vertical surface displa-eement 

The usual observation technique to determine recent vertical crustal 
movements is the repeated geodetic levelling which leads to observed variation 
oH in height above see level. However, in the earth gravity field, varying with 
time, also its equipotential surfaces such as the geoid (or the vertical datum) is 
subject to time variation. If the study of the true vertical displacement or of the 
earth surface is the aim, changes oN in geoidal undulations (i.e. in the vertical 
datum) must be taken in account as 

or = oH + oN (1) 

Bruns' formula generalised for time variation [3. Bir6 1983, (244.14)] 

oN=oW 
g 

(2) 

connects changes in the equipotential surfaces ,,,ith the time variation OW of 
the gravity potential. 

Latter can be connected with the gravity variation og and change oH in 
height at the earth surface by the differential equation 

o 1 og (Og) -oW---oW= - ofT--oH oh g oh 0 oh (3) 

wherein the derivatives are the vertical gradient of the gravity and that of the 
variation in gravity potential [Bir6 1983, (245.6)]. 

If the terms on the right of (3) are considered to be numerical values 
known from observations, this linear differential equation is suitable to serve 
as a boundary condition for the determination of the harmonic function 0 W. 

As a zero order solution of the third boundary value problem for the time 
variation (with spherical approximation) we receive 

oW= ~ fflOg+ ~ oH} S(1p) dl1 (4) 

(J 

where R is the earth radius, a the surface of the unit sphere and Selp) Stokes' 
function. 

Substituting (2) and (4) into (1) the true vertical displacement of the earth 
surface can be eA "pressed as 

or = oH + 4:g Sf (og ~ OH) S(7p) da (5) 

a 
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Until repeated observations for og and oH 'will be available, it may be 
useful to construct appropriate models so as to investigate the main character
istics of the assumed variation of the equipotential surfaces. 

3. llriodels for gravity and height variation 

The Hungarian geophysicist, Professor Barta, developed and published a 
model for the mass distribution of the earth, on the surface and at depth, that is 
suitable for our purposes [2. Barta 1979]. He used the filtering effect ofincreas
ing distances to eliminate effect of the disturbing mass irregularities near the 
earth surface. He recognised that the undulations of the equipotential surface 
of the earth grav-ity field at a height of 6000 km above sea level can be approxi
mated very well by 

8 

N(r, cp, I.) = ~ [AnPn(cos Pl) + BnPn(cos P2)] (6) 
n=2 

the sum of two series of simple zonal spherical harmonics with poles PI and P 2' 

where Pl and P2 are polar angles of an arbitrary point P of the earth surface 
from poles Pl and P 2, respectively. 

By least squares approximation, Barta received the follo-w-ing figures for 
the spherical harmonic coefficients An and Bn (in meters) and for the spherical 
latitude cp and longitude I. of the poles PI and P 2 [1. Barta 1985]: 

n 

-0.62 

24.36 

3 

-11.09 

12.28 

4 

-0.56 

-0.81 

rp 

16° 
0° 

5 7 

-0.75 0.05 -0.07 0.05 

-0.93 0.18 0.04 0.01 

i. 

59.5' 
163.5° 

By reducing (6) from r = R + 6000 km to the sea level (r = R), we 
obtain 

(7) 

where N( cp, I.) is the sea level undulation of the equipotential surface of the 
disturbing grav-ity field of deep-seated mass inhomogeneities. The global distri
bution of (7) [2. Barta 1979, Fig. 2] shows the main characteristics of the geoidal 
undulations and their magnitudes amount to about 2/3 of the latter. 
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Authors have transformed the undulations (7) into gravity anomalies 
by the potential theory. 

Using Bruns' formula 

and 

T 
N::!::-~ 

Y 

• kM 
y::!::

R2 

for the spherical approximation of the normal gravity at sea level, (7) can be 
transformed into 

(8) 

the spherical harmonic expansion of the disturbing potential T, where kllf is 
the geocentric gravitational constant. 

The harmonic function T of the disturbing potential can be expressed 
in the outer space of the sphere (replacing the geoid) with radius R, as 

= f R)n+l 
T(r, cp, I.) = ~ l- Tn(cp, A) 

n=ll r 
(9) 

with r being the magnitude of the geocentric radius vector of the arbitrary point 
of the outer space. 

The disturbing potential T can be related to the gravity anomaly Llg at 
the same point by the linear differential equation of first order 

(10) 

[6. Heiskanen and Moritz 1967, (2-148)]. 
Expanding the gravity anomaly Llg into a series of spherical harmonics 

on the left of (10), substituting T from (9) and using the spherical approxima
tion 

1 oy. 2 
--=--
y or r 

on the right of (10), 'we receive 

= 1 co (R)n+l Llg(r, cp, A) = ~ Llg(r, cp, A) = - ~(n - 1) - Tn(cp, I.) 
n=ll r n=O r 

(ll) 
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for the outer space of the earth or with r = R 

(12) 

for the geoid. 
Comparing the terms of degree n in the series (8) and (9) we get 

(13) 

the surface spherical harmonics of the disturbing potential for n = 2, 3, ... 8. 
Substituting this into (12) and considering the usual assumptions, that 

the origin of our system of coordinates coincides with the earth centre of mass 
(Tl === 0) and kM = k1V1earth (To = 0) we obtain 

(14) 

as the spherical harmonic expansion of the gravity anomaly at the geoid caused 
by the deep-seated mass irregularities wherein the zonal harmonic coefficients 
An and Bn (n = 2, 3 ... 8) are numerically given by Barta, as above. 

According to Barta's ideas, assuming the angular velocity of the displace
ment of the deep seated mass inhomogeneities to be identical with the westward 
drift of the earth's magnetic field (i.e. 0.2°ja), a model of the time variation og 
of the gravity at sea level can be constructed as 

(15) 

where f31' f32 and f3{, f3~ are the polar angles of the arbitrary point P, referring 
to the actual location of the poles P 1 and P 2 at the epochs t and t + ot [7. 
ThOng 1985]. 

The global distribution of the gravity variation per year as estimated by 
the accepted model are demonstrated in Fig. I. Contour intervals are 50 X 10-8 

ms-2ja (i.e. 50 fhgalsja). Figure 1 differs (even in sign) from Fig. 4 in [2. BartaI979], 
because Barta used an arbitrary approximation in his computation instead of 
the exact way of the theory of potential, used by us. 

Even if the figures were overestimated, a tenth or a hundredth part of 
the computed gravity variations would suffice to be significant and the study 
of their global distribution could certainly help us to a favourable choice of the 
locations of the stations of an international absolute gravity base network. 
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Fig. 1. The global distribution of the gravity variation og in 10-8 ms-2ja (i.e. flgalla) as esti
mated by the accepted model 

The gravity variation bg defined by (15) is the change in gravity at the 
displacing equipotential smface at sea level (i.e. at the geoid). Assuming that 
the earth body reacts against secular or long periodic variation of the earth's 
gravity field as an ideal liquid, the same gravity variation og ,-"ill be induced 
at the displacing earth's surface, too. In any other cases og should be reduced 
to the topographic surface. 

Gravity variations (per year) computed by (15) (as simulated observations) 
in a 100X 10° grid net (in 614 stations) served as one kind of input data for 
om further model computations. 

As the other kind of input data, a model of the variation oH in height was 
needed. As a simple model oH = 0 for the oceans (a fluid-like earth body) and 
oH = const = +10 mmJa for all continents (as an extreme value of the Fenno
scandinavian land uplift) has been accepted. 

4. Variation in the equipotential surfaces 

The aim of om fmther model computation was to gather numeric experi
ences in computing the true vertical displacement of the earth's surface as 
given by (5) and to investigate the needed number (or density) of stations to be 
observed to be able to determine the vertical displacement oN of the equi
potential surfaces with a reliability sufficient for practical purposes. 
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This latter can be determined by the appropriate use of Stokes' integral 
ormula for time variations: 

R J 8 . iJN = - S. liJg - ~ iJH) S( 7p) da 
4ng 8H 

(16) 

as showen in Section 2. 
For numeric computations the integral in (16) will be replaced by a sum

mation (numeric integration) over m X n surface elements and polar coordinates 
7p, oc at the surface of the unit sphere will be introduced. Further, the vertical 
gravity gradient will be approximated by its spherical value. This way we ob
tain 

R n m ( 2a ) iJN = - ~ F-(?fl) ~ iJg.·...L.....!2- iJH·· L1o:· 
4 ~ I.. ~ I,J I R"] J 

ng i=l j=l 

(17) 

with 
'PI+1 

Fi(7p) = S S(7p) sin 7p d7p 
'Pi 

the weight function, 7pj the angular distance of the surface element i,j of a 
10° X 10° grid net from the arbitrary point in which iJN will be computed, Lloc

j 

the dimension in azimuth of this surface element, iJgi,j and oHi,j the mean 
gravity and height variation of the surface element i, j. 

A decomposition of (17) into two parts brings to 

(17a) 

and 

(17b) 

enabling us to investigate the effect of the gravity variation on the one hand 
and that of the variation in height on the other, separately from each other. 

For the numeric evaluation of (17a) and (17b) a simplified computer 
program has been developed in FORTRAN. The mean variations ogi,j and oHi,j 
of the surface element have been computed by linear approximation as inter
polated values in the centre of the surface element using the analogy of digital 
terrain models, while the numeric value of the weight function Fi(7p) has been 
computed by a numeric integration over 1 ° elements of the circular ring i. 

By using our computer program the vertical displacements oNl and oN2 

of the equipotential surface at sea level (i.e. the time variations of the geoid 
undulation) have been computed for all grid points of a 10° X 10° grid. 
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The first experience of our model computations was that oN2 < 1 cm/a 
and o1VI < 1 m/a. This means that the effect of the height variation in oN is 
probably of about the same magnitude as the observed variation in the height 
itself. HO'wever, in the case of our model of gravity variations oN2 ~ b1'l1' oN2 
",ill thus be neglected in our further investigations. 

The global distribution of the effect oNI of the gravity variation has been 
demonstrated in Fig. 2. Contour intervals are 20 cm/a. Concerning the magni
tude of the computed values of oNI let us remember to the remark in con
nexion with the magnitude of the gravity variations, i.e. even if they were 
10 or 100 times overestimated, the magnitude of oNI would be significant 
and could not be neglected when studying the recent vertical crustal move
ments. 

The computed values of b1VI == oN have been checked by a comparison 
with oN values, computed by the appropriate use of formula (7) for time variation. 
A root mean square deviation of l..3 cm/a has been obtained. This means that 
formulae (7), (15), (17 a, 17b) represent a consistent system and most probably 
no significant errors occurred in the computation. 

It is clear that several hundred absolute gravity stations ,vill not be ob
served in the near future. Therefore our computations have been repeated in 
several variants with less stations to prove how the l"/~liability of the results 
will thus decrease. 

The vertical displacement b1'o.l1 of the equipotential surface has been com
puted from 146, 72, 62, 45 and 32 simulated gravity variations, too. Fictitious 
gravity stations have been chosen in grid nets of 20 0 X 20 0, 30 0 X 30 0 (in three 
variants), 40 0 X 40 0 and 30 0 X 60 0

• Finally, an attempt has been made ,dth 36 

j '~ f'o 
~ 
J 

I 

. i50 -;so -1.1.0 -12.0 -;00 -so -50 -40 -20 

. -;: 

·,c 

I I 
:0; 40 50 eo 100 12.0 140 ~eo 1eO 

Fig. 2. The global distribution of the variation oN ..:... aNI of the geoidal undulation in cm/a as 
induced by the gravity variation represented in Fig. 1 (Variant 1, 100X 100 grid net) 



Variant 
No 

1 
2 
3.a 
3.b 
3.c 
4 
5.a 
5.b 
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Table I 

Number or Surface 
"stations'" Grid net element 

614 100x 10° 100x 10° 
146 200x 20° 200x 20° 

62 300x 30° 300x 30° 
72 300X 30° 300x 30° 
72 300x 30° 300X 30° 
45 400x 40° 100X 10° 
32 300x 60° 300x 30° 
36 characteristic points 100x 10° 

31 

R.m.s. 
de'\iation Demonstration 

cmla 

±3 Fig. 2 
±7 Fig. 3 

±10 Fig. 4 
±12 Fig. 5 
±11 Fig. 6 
±15 
±28 Fig. 7 
±19 Fig. 8 

"stations" selected at the characteristic places of the global distribution of ag, 
as sho·wn in Fig. 1. Each of the variants has been checked similarly to the first 
computation and root mean square deviations have been determined. The results 
are demonstrated in Table I and in Figs 3-8. In variant 4, a special supplement 
program (subroutine) has been used to derive an interpolated 10° X 10° net 
between the given "stations". Contour intervals are 20 cm/a. 

By analysing our results the following conclusions can be drawn. The char
acteristic features of the global distribution and, generally the order of magnitude 
of the vertical displacement of the equipotential surface at sea level, can be 
determined by repeated observation of a world-'wide net consisting of about 
36 - 45 absolute gravity stations. In the first case the location of the stations 
should be selected near to the characteristic points (or lines) of the assumed 
gravity variation model 'vith a constant density, as far as possible. In the second 

'I -,--'---'----'---'--- .• ----•. -- ---. 
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Fig. 3. The global distribution of oN in cm/a computed as Variant 2 (20° X 20° grid net) 
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Fig. 4. The global distribution of oN in cm/a computed as Variant 3.a (30 0 x 30° grid net) 

-----
50 

,,-.---
- 20 50 

/ 
~~ 

40 

cj 
20 

, 
Il :--20 

C 
j' 

" \ 

( "c) 

1 \ 
i, , 

)' 
-, -. ,- s: 1:: -- :::0 ;30 

Fig. 5. The global distribution of oN in cm/a computed as Variant 3.b (30° X 30° grid net) 

case, stations should be located at a near constant, 40° X 40°, distribution. Com
puted single f>N values can be charged by an error of 50 - 100% of the true 
magnitude. 

1Vlore reliable numeric results can be achieved by an absolute gravity net 
consisting of about 62 stations at a constant 30 ° X 30 ° distribution around the 
globe. The error in computed single f>N values can be estimated to be less than 
30-50% of the true magnitude [8. Weisz 1985]. 
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Fig. 6. The global distribution of 6N in cm/a computed as Variant 3.c (30° X 30° grid net) 
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Fig. 7. The global distribution of 6N in cm/a computed as Variant 5.a (30° X 60° grid net) 

5. The ratio between the variations in gravity and in geoidal undulation 

As reported in Sections 3 and 4 the time variation og in gravity at sea level 
and the variation oN == oNl in the geoidal undulation has been computed by 
using formulae (15) and (17a) in a 10° X 10° grid net. These sets of data have 
enabled us to investigate numerically the ratio c = ogj oN. 

The global distribution of the computed values of ratio c has been repre
sented in Fig. 9. The contour lines c = 0 are identical ·with those for og = 0 

3 
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Fig. 8. The global distribution of oNin cmja computed as Variant 5.b (characteristic points) 
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Fig. 9. The global distribution of the ratio c = ogjoN in 10-5 8-2 (i.e. in mgal/m) with 0 and 
oN represented in Figures 1 and 2 

in Fig. 1. The contour lines oN = ° in Fig. 2 represent the locations of the ex
treme values c~ ±= in Fig. 9. Between these two special contours one finds 
narrow strips with the values - = < C < 0, but the most extent part of the 
earth's surface is covered by values ° < C < +0.5xlO-5 S-2 (i.e. +0.5 
mgal/m). The mean value of ratio c can be estimated tobe about +0.3xI0- 5 

S-2 (i.e. +0.3 mgal/m). In the intersections of the contour lines c = ° and 
C->- 00 (i.e. og = ° and oN = 0) the ratio c = og/ oN becomes indefinite. 
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Fig. 10. The global distribution of the ratio c = og/oN in 10-5 S-2 (i.e. in mgal/m) with og and 
oN computed for the simple gravity field represented by the zonal spherical harmonics with 

pole PI 
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Fig. 11. The global distribution of the ratio c = og/oN in 10-5 5-2 (i.e. in mgal/m) with og and 
aN computed for the simple gravity field represented by the zonal spherical harmonics ,vith 

pole P 2 

As shov..-n in Section 3, the model of the time variation of the earth's 
gravity field has been composed by the time yariations of tV{O simple gravity 
fields represented by a series of zonal harmonics each with the poles PI and P 2' 

respectively. 
The numeric values for c = og/ bN haye been computed separately also 

for each simple gravity field. Figs 10 and II represent the global distribution of 

3* 
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the ratio c in the simple gravity fields ",ith poles PI and P 2' respectively. The 
main characteristics are the same as before, the surroundings of the poles (or 
the antipoles) are much more dominant. 

Our investigations have led to the conclusion that the ratio between grav
ity variation and the changes in the geoidal undulation show-s a rather varied 
distribution between - = and +::-0 around the globe even in the case of a very 
simple gravity field. 

This numeric experience is in agreement with the consideration that the 
variation in the geoidal undulation is proportional with the change in gravity 
potential as shown by (2) but latter can be related to the gravity variation 
generally hy the differential equation (3) of first order only. Therefore a simple 
proportionality in bg and bN can only he an exceptional case. 
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