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Summary

The investigation of the movement taking place on the railway track, the kine-
matic geovmetry of this phenomenon as well as the determination of the track geometry
adequate to the movement of the rail vehicles are dealt with.

In the field of the fixed guideway system it is the rail track which primarily deter-
mines the movement, therefore, both from the poaint of view of theory and practice it is
the movement which should be taken for basis as the most important determining factor
in developing the track geometry.

1. Function and method of the kinematic geometry

The task of the railway kinematic geometry is, in knowledge of the state
and characteristics of the motion, to investigate and determine the geometric
strueture of the track by which the geometric form of the track is meant and
this will be referred to in the following with the simple term geometry.

In the course of the kinematic or movement-geometric examination the
movement is treated separately and independently from the factors generating
it. The problems belonging to the subject matter of the dynamiecs (or kinetics)
of the transport, that is, determining the state of motion (i.e. the uniform.
accelerated or decelerated phases of motion) induced by active or passive forces
are not dealt with here.

In this study the concepts and aspects of the classic mechanics are used.
Thus,

movement is examined in

space and in

time,

the characteristics of the movement being defined as the functions of time.
The basis of the movement-geometric aspect is the knowledge of the kine-

matic law of movement. The motion of the point, or the system of points (i.e.

the solid body) is unequivocally determined in case where the position of the
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point is known at any moment in short, the law of motien of the system of
points is familiar,

Considering the state of motion, the theory of the geometry of movement
in accordance with reality permits the examination of the state not only of the
steady motion of constant value but, also of that of an optional kind of motion
of a general character.

The geometrical elements of a rail track of spatial alignement are defined
by the curvature (G), or by the change in curvature (dG/dl). According to their
hierarchy of order in the geemetry of motion, track elements of

a) constant curvature, Le.

b) changing curvature
might be distinguished (Fig. 1).

The track element of constant curvature is the rangeni section (the cur-
vature of which is, acecording to definition, zero}, and the circular arc section
with a constant curvature of the inverse value of the radius of the cirele):
a track element of a higher order is the fransition curve the curvature of which
varies with the length of the curve.

In the course of the study, at tangent sections, in general, no problems
arise, they deserve some special attention only in drawing up the trace, namely
in determing their length between curves in plane, and their slopes in profile.

A careful investigation is needed for a suitable formation of the curvi-
linear section, and within this, especially that of the transition curves where the
geometry of the track is defined by the task to be fulfilled. In this paper special

attention is given to the movements of higher speed with a view to adequate by
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Fig. 1.

developing the rail track, and, in the first line the curvilinear sections. To ex-
press the interdependence between the movement and the geometry of the
track and for the kinematic characterization of the motion. the vectors which
describe the time-dependent change of the movement (i.e. the speed vector v,
the acceleration vector a, the h vector and the m vector) are used.

During investigating, while making use of the movement geometry, the
general engineering way of looking is taken as a basis. Correspondingly, knowing
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the permissible kinematie load (acceleration, h vector) partly the structure of
the track geometry will be determined, and partly stresses will be calculated
and compared to the permissible (i.e. the limiting) stresses. Taking all the

Fundamentcl cases of movement-geometric examinations

fundamental cases Given Desired
Gaometric dimensioning 1. Movement stats Geometrical
{v: ct) structure
A .
2. Limiting stresses
iG |Ehi
Geometric checking 1 Geometrical L ELlasE)
[ o structure ’
i (Examination aof the - -
8 . consistercy of a given 2. Limiting stresses 2. IhbUhisTRD)
| trock geometry) @l IRy
|
i Volucting comparison cf i Geometrical L 1Gmid
c | ditferent geometries structures
j imizing problem . .
: (Opt g prob ) 2Limiting stresses 2. Nmind
; -
| I
!
!
Fig. 2.

(=

mentioned into account, according to the examination of the movement geo-
metry, the following basic cases are to be distinguished (Fig. 2):

A) geometric dimensioning:
knowing the state of given motion and the limiting stresses, the selection of
the geometric structure and the determination of its dimensions,

B) checking the track geometry in a given case:
determining the adequacy of an existing track length of given geometry and
dimensions in case of a given motion state and limiting stresses,

C) comparison and estimation of the different geometries:
determination of the order of sequence and optimization of the geometric strue-
tures available for selection.

The movement-geometric examinations always have double objectives,
namely the determination of the

acceleration (a) vector, and

the characteristic of 3rd order motion (h vector),
and knowing these, to establish the design state and thereafter to solve the move-
ment-geometric problem.
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2. Vector equation of the rail track as a spatial curve

In the following, if no distinctive remark is made, by the term “track”,
in accordance with the designing practices, in general, the centre line of the track
including the two rails is meant. (The centre line of the track fits in general
the midpoints of the gauge, however, in case of a gauge-widening in the curves
it lies at a distance of half the value of the normal gauge to the outer rail.)

The centre line of the irack is,inreality, of spatial trace, the geometric
elements of which are the tangents, the circular arcs and the transition curves.

In examining the track as a curve in space, one makes use of the knowledge
of the differential geometry which applies the analytic method in geometry.
Sinece the calculations are carried out in the first line by applving the differen-
tial caleulus, one assumes that the functions entering in the equations are con-
tinuous and, in accordance with the character of the problem, can be derived
continuously,

In examining the track as a space curve and the motion on the track as
a phenomenon proceeding in time #, the position of the points of the track is
described by the vector-scalar function

r = r(t) 2.1

where the position vector ris directed from the starting point Q (from the origin
of the system of coordinates x. 3, z involved in our investigation) to the inves-
tigated point P(x, y. z) (Fig. 3).

[N

Centre-tine of raiiway
trock~

During the change of the scalar parameter ¢ the end point of the position
vector moves along the space curve describing the track.

Since the parameter t is a scalar variable, to each possible value of which
a vector is coordinated, the motion of the point taking place on the rail track,
is described by the wector-scalar characterized in this way.
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Be the orthogonal coordinates of position vector r, x, ¥ and » functions
of time parameter t. In this case, the vector equation of the track as a space curve
is as follows

v = 2(0) i+ () j+ () b (22)

which is the expression by coordinates of the vector function (2.1). In the vector
equation, i, j, k designate the x, ¥ and z unit vectors (Fig. 3).
The equations determining the track described in the form

x=x(t), y=y() and = z(t) (2.3)

represent the scalar sysiem of equations of the space curve of the track, the three
scalar equations of which are equivalent with the vector equation (2.2).

8. Vector-kinematics of the point

In the course of the kinematic study of the movement on the track the
way to determine the law of motion, the vectors characterizing the motion
(the speed and acceleration vectors, vector-h, vector-m) and the attending
trihedron is dealt with. Since in the course of the motion-geometric investiga-
tion the motives generating the movement are not discussed, in the following
the concepts of the geometric point and the material point are considered as
identic.

3.1 Law of motion of the movement of a point on the track

The law of motion of a point moving along the space line of a track is
determined by the vector-scalar function

r=rx(t).

In the form of coordinates

r = x(t) i+ () j+ )k

wherein:
%, ¥,z — coordinates of position vector r
iyj,k  — unit vectors of directions x, y, and z, respectively (Fig. 3).

The point can be displaced in three optional directions in space, and so
the number of scalar equations determining the coordinates, identical with the
degree of freedom of the motion of the point, is also three: x(t), y(¢), 2(t).
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3.2 The attending trihedron

In the course of movement geometric investigations, when defining the
characteristic vectors of the movement, the role of the attending trihedron is
of special significance.

The attending trihedron is defined by three preferred orientation unit
vectors couple by couple perpendicular to each other. These unit veetors are:
the tangent oriented unit vector t, the principal-normal oriented unit vector n
and the binormal oriented unit vector b.

In the system of coordinates x, v, z the position of the attending trihedron
changes with the motion of the point on the space curve (Fig. 3).

1 The tangent oriented unit vector

The tangent vecior of the space curve, i.e. the velocity of the motion is
determined by the first derivative of the position vector with respect to time.

dr

_:l;_

F.
The tangent directed unit vector is

I . 3.1)
|z |
The tangent oriented unit vector can also be determined directly by sub-
stituting the arc-length-function ¢ = i(a) into equation (2.1) of the space curve,
as the tangent oriented unit vector t is given by the derivative with respect
to the arc length of the position vector

dr

£ (3.2)

The tangent vector of the curve related to the arc-length parameter is always
a unit vector, namely

ds  dt ds ds ]
dt

2 The principal-normal directed unit vector

Unit vector n of the direction of the principal normal is perpendicular to
the tangent oriented unit vector t and lies on the osculatory plane associated
with point P of the space curve (Fig. 4).

The osculatory plane can be interpreted accordingto Fig. 4 as follows:
consider three different points P;, P,, P, not fitting to the very same line.
which determine a plane in all positions. If points P,, P,, P; tend towards point
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Normal plane

Rectifying plane

sculatory plene

~,
™~
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P of the space curve then, the limiting position of the plane determined by

points P, P,, P, is called the osculatory plane of the space curve at point P.
Therefore, the vector

dt  dr

ds  ds?

(3.3)

falls on the line of the principal normal, i.e. perpendicularly to the line of the
tangent, and is the first derivative with respect to the length of arc of the
tangent unit veetor, i.e. the second derivative vector with respect to the length
of are of the position veector. The absolute value of this vector is

LA (3.4)
ds 0
with G = curvature of track {m~1);

g = radius of curvature (m).

The formula of the unit vector n which fits to the principal normal diree-
tion directed towards the centre of curvature is as follows:

dt
ds 1 dt dt

T e T e T _ 3-5
dt|” G ds  Cds (3:5)
ds

3 Unit vector of binormal direction

The unit vector of binormal direction is perpendicular to unit vectors t
and n of tangential and principal normal directions, respectively, constituting
with them a right-spin system (i.e. looking from the end point of b, the sense

6
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of the shorter rotation transmitting t into n is a counterclockwise rotation)
(Fig. 4.)

The unit vector of binormal direction is:
b=txn (3.6)

4 The three unit vectors of the attending trihedron determine three
planes (Fig. 4), namely

unit vectors t and n determine the osculatory plane,
unit vectors n and b determine the normal plane and
unit vectors t and b determine the rectifying plane.

3.3 Kinematic moiton characterizing vectors.

For a kinematic representation of the motion taking place on the track,
the motion characteristics describing the variation of motion in time, i.e.
representing the interconnection of the motion and the geometry are used.

At an early stage of the development of railway transport — due to low
speed — to describe the motion, a knowledge of the pairs of values of distance-
time, i.e., the speed were sufficient.

However, later on, in the course of further railway transport development,
due to a continuous increase in speed a characterization of the motion on the
rail track, an adequate development of the track became inevitably more and
more sophisticated, and besides veloeity, as critical designing factor, also ac-
celeration presented itself as a critical concept in defining the motion on the
track.

Nowadays, however, on tracks suitable for high (120...200 km/h) or
very high speed (over 200 km/h) in consequence of a speed surpassing all ever
applied the characterization of the motion, i.e. the convenient determination
of the geometry of the track inevitably requires the establishment of kinematic
characteristics of motion of a higher order expressing and suggesting a sophisticat-
ed consideration of the variation of motion in time.

The position of a point carrying out a motion on the rail track of curvi-
linear space is determined by the position veetor r=r(t) in the knowledge
of which it can be established that the most significant kinematic characteris-
ties of the motion are in the following sequence:

speed vector designated with the symbol v; (m/s);

acceleration vector, designated with a; (m/s?);

third order or h vector, h (m/s%).
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3.4 The speed vector

A significant characteristic of the movement taking place on the track
is the speed which is a vectorial quantity. Its symboel is v, the unit value m/fs or
in practical railway use: V km/h.

v

A
z |
F(1) \
k
Flt-A4) Centre-line of
Qi) - raibway track
z ) Y
#
Fig. 5

By applying the displacement vector (Fig. 5)
dr = et 4 Aty —x(t)
its mathematical formula becomes as follows:

. dr dr
vV = hm—

= = 3.1
at—o0 dt : (3.7)

i.e. the speed vector is the first vector derived with respect to time of the vecior-
scalar function describing the track curve which is defined as the limiting value
of the derivative.

Substituting the length of the curvilinear section of the track s and apply-
ing formula (3.2) results in:

:ﬂz_di.ézt-]"]:t]f[ . (3.8)
dt ds dt '

From this expression it follows that the speed vector is tangent-directed
and its magnitude, as a scalar quantity, is given by the first derivative of the
travel with respect to time, in the knowledge of the route-time function.

Knowing the form of the position vector expressed by coordinates (2.2)
the formula given in a system of orthogonal coordinates is as follows

with the speed components

vy = &(t), v, = y(t) és v, = (t).

6%
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The magnitude of the speed vector is given by the formula

v=|v| = Vel + o]+ o (3.10)
and the angles formed with the coordinate-axe (i.e. the direction cosines) by
formulae

cos ez, = cos(v, z) = x
I¥]
cos 8, = cos(v =9
v = YY) = ©8
[¥1
cos y, = cos(v, z) = ]—:-— (3.11)
v

3.5 The acceleration vector

The significant characteristic of movement, more significant from the
point of the geometric design of the track than that of speed, is the acceleraiion
vector. While speed characterizes the displacement, acceleration is the charac-
teristic parameter of the variation of speed. Its symbol is a, and the measuring
unit m/s>

The acceleration vector of the moving point may be determined on the
basis of Fig. 6 and formuia (3.8), by using the following equation

. dv dt
a = —— = F = — i :——t—{—v———
r (Irie) o

(3.12)

As is seen, the acceleration vector is the first derived vector of the speed
vector with respect to time and the second derived vector of the position vector

P~ Centre-line nf

i Y ralway track

Fig. 6.

with respect to time. The components of the acceleration vector entering in the
formula (3.12) are perpendicular to each other, namely the derivation of equa-
tion t*> = I results in

cdt

t-—=20
dt
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from which follows that vectors t and dt/dt are perpendicular to each other.
One of the components is tangent-directed, and the other is expressed by the
relationship (established by making use of relation (3—5)):

L Y e (3.13)
dt ds dt ds

i.e. its direction agrees with that of the principal normal. Since the tangent
and the prineipal normal determine the osculatory plane of the curve, the ac-
celeration vector lies on the osculatory plane of the track. ‘

In the formula

a=—t+1’Gn =g, +a, (3.14)

of the acceleration vector the tangent directed acceleration measuresthe change
of the magnitude of speed and its sense corresponds to the sign of dv. In case of
an accelerating motion dv is positive, i.e. the sense of the tangent oriented
acceleration is the same as that of the speed vector while in case of a decelerat-
ing motion it is opposed to that.

The normal directed component of the acceleration vector, the normal
acceleration measures the change in the direction of the speed vector. Since it is
of a principal-normal direction, independently of the direction of the speed
vector, it always points towards the centre of curvature (in agreement with the
direction of the unit vector n) wherefore it is called a centripetal accelerasion.

It ensues from the above that the acceleration vector lies in the osculatory
plane on the side of the tangent where also the track is to be found. At the point
of inflection where the tangent intersects the iravel of the moving point oanly
tangential acceleration results, namely, since G = O is true, the acceleration
of normal direction is equal to zero. And in addition, it is to be seen that only
the acceleration of a point travelling along a straight line might be equal o zero,
since at a curved travel necessarily a normal directed acceleration is induced
in every case by the change of direction of the speed vector.

Given the knowledge of the coordinate-formula (2.2) of the position
vector r, the acceleration vector is given by the formula

dv

— = k 3.15
" (3.15)

(83

a—= I'::.’I:i+yj-';—

the magnitude of its components lying along the lines of the coordinate axes
are as follows
a, = &(t); a,=§(t) and a, = £).
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The equation of the acceleration vector is

e=la| = Valf a+ a (3.16)

and the direction cosines (their angles with the axes of the coordinate) by equa-
tions:

cos a, = cos (a, 2) = =z
2]
— _ ¥
cos §, = cos (a,y) = -2~ and
la|
cos y, = cos (a, z) = Z (3.17)
lal

The acceleration vector is inclined at an angle

p— Lol

to A =
la]

g (3.18)
to the direction of the tangent.

The values of the so-called lateral acceleration (a4, m/s?) developing in the
normal plane permissible on the lines of some foreign railways are indicated
in column 2 of Annexe 1, established on the basis of the prescriptions of the
railway in question.

Table 1 contains the values of the lateral acceleration established on the
basis of the entries of Annexe I, the measurements performed and the results
of theoretical investigations which serve as basis for the geometric examinations
and for the determination of the numerical values.

From among the kinematic characteristics of a higher order the charac-
teristics of the third order or h vector is in the first line the geometrical determi-
nant of the curvilinear railway tracks serving for very high speeds, and also
the generator and measure of physiological effects. Its designation is b, the
measuring unit m/s.

Table 1

Permissible values of the unbalanced radial acceleration

The magnitude of
unbalanced radial
acceleration

Characteristic of the change
of curvature

In case of a gradual change of curvature
(e.g. circular curve with transition) 0.65

In case of a discontinuous change of
curvature (e.g. circular curve without
transition) 0.35
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The h vector gives an exact information on the variation of acceleration,
therefore, by making use of the relationship (3.12) the following may be written

:d_az‘r":i(d” £ dt] _ gt d
dt dt

v T de dt dt ' de

h b
dt dt

(3.19)

i.e. the third order b vector is the first derived vector with respect to the ttme of the
acceleration vector and the third derived vector with respect to the time of the position
vector.

In the formula (3.19)

dv
1. —_—=a m/s2, 3.20
” f / (3.20)
2
2. Do _da e, (3.21)
de? dt
3. according to (3.13)
& en s (3.22)
de
% dt dv dG dn
4, = —(vGn) = —CGn-+v|—n-+G-——|(3.23
de? dt ( ) dt T & dt }( )
where dG/dt — derivative of the eurvature with respect to time,
dnjdt — derivative of the unit vector n with respect to time.
Let us express the derived vector
dn du ds \
e 22 e e = T
dt ds dt

with the aid of the unit veetors of the attending trihedron. Since the unit veector
n (of constant length) is of a variable direction it is true that

it can be written that
n’ = ay,t + a43b (3.24)

For determining the coefficients let us multiply equation (3.24) in a scalar
way with unit vectors t and b. Then n’t = a,;, however, the derivation of
n - t=0 gives n’t = —nt’, and from the formula (1.3.13) t" = Gn, therefore

ay =—G

and in the second case n’ - b = a,, def. T'
where G — curvature of track, m—1 and
T — torsion of track, m~—1.
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Hereafter
n-v=(Tbh—Gt) - v (3.25)

and the expression (3.23) can be written as follows

d% dG

— =ga,Gn+v|——n+ Gu(Th— Gt 3.26
di® oo [ dt G )] (8.26)
By making use of the relationships (3.19), (3.20), (3.21), (3.22) and (3.26),
the formula of the h vector may be written, in the form

doy
dt

h:( — 3Gt

30,6+ 1 %G-) -+ #*GTh (3.27)
t

Summarizing the symbols entering in formula (3.27):

v — value of speed, m/s;

a, — value of tangent-directed acceleration, m/s?;

G — curvature of track, m=1;

T — torsion of track, m—1;

dGjdt — derivative of track curvature with respect to time, m~1s-1,

From formula (3.27) it is to be seen that h in case of a space track, rises
from the osculatory plane of the track, and is composed of three orthogonal com-
ponents. The magnitude of the components can be calculated from five relations
which are the definite functions of the speed, acceleration, the derivative of the
acceleration with respect to time, the curvature, the derivative of the curvature
with respect to time and torsion.

From formula (3.27) of the h vector the following ensue:

— In case of a constant speed motion or of an accelerating motion the
h vector inclines from the rectification plane of the track (i.e. from the plane
determined by the tangent and the binormal) towards the centre of curvature
(see Fig. 7 demonstrating the spatial position of the h vector, the acceleration
vector and the speed vector).

— In case of a movement along tangents with constant speed or with
acceleration, the magnitude of the h-vector is always zero.

Since in most of the movement-geometric examinations the effect of the
h factor is decisive (see Chapter 6), the examination of the h vector dwindling
to zero in case of a curvilinear track (G == 0) is of particular significance,

By making use of the formula of the position-vector r (2.2) expressed
by using coordinates, the formula of the h vector reads
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Normal plone

and the magnitudes of the components directed to the directions of the coor-
dinate axes are expressed by the functions

h,=%(t), h,=¥(t) and h, = E(t).
The magnitude of the h vector is given by the equation
h= || =VR2-r2+0E, (3.29)

and its direction cosines (angles of inclinations made with the axes of coor-
dinates):

cos o, = cos (h, x) = —%l— ,
cos 8, = cos (h,y) = ~y— and
i
cos v, = cos (h, z) = ﬁ (3.30)

The angles subtended by the projection of the h vector on the plane (z, n)
and (¢, b), respectively, with the tangent line are to be calculated by using the
following relationships

) b, 5 bl
tg Apn = — tg Ay = — (3.31)
. Ih| |

In establishing the permissible value of the h vector the results of the
theoretical examinations and measurements as well as the prescriptions valid
with the railways of different countries (column 4 in Annexe 1) are to be con-
sidered. Thereafter, on basis of the geometric investigations and calculations
the permissible value of the h vector is to be selected from Table 2.
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Table 2

Permissible mognitudes of the h vector

Magnitude of the
3rd order character-
istic

Character of change of
curvature

In case of a continuous, breakless change of
curvature (function dG/dl) 0.5

In case of a change of curvature 0.4

with break (function dG/dl)

In case of a discontinuous change of
curvature (function dG/dl) 0.3

In case of the circular curve and the straight
line joining without transition 0.2

4. Vector kinematies of rigid hodies

In the following the movement geometry of a rigid body will be investigated
by taking into account the general statements made when discussing the vector
kinematics in the preceding chapter.

In the investigations the rigid body is considered as a system of poinis,
that is. a population of mass points.

A characteristic feature of the rigid body is that the spacings of its points
do not change in the course of its motion. However, in reality in case of material
bodies the spacings of the points can vary under the effect of an external force
but, in the course of the kinematic examination of the railway track one may
use the geometric abstraction of the rigid body, since in the course of investiga-
tion the incidental changes in the dimensions of the moving body are negligible
compared with the dimensions of the rigid body.

4.1 Law of motion of the rigid body (i.e. system of material points)

The motion of the system of points (the rigid body) from the point of
kinematies is unequivocally definite if one knows the position in space (i.e.
the space coordinates) of the system of points at any moment, in short, the
law of motion of the system of points (the rigid body).

The law of motion of the rigid body as read from Fig. 8 can be written as
follows

r(w, 1) = ra(t) + 0(t, & 7.0) = ra(t) + 0(t, W) (¢.1)

which is a vector-vector function and describes the motion of the rigid body
in the way of a two-variable function of variables ¢ and w.
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Fig. 8.

(=}

The symbols entering in formula (4.1) have the following meanings:
£ 4(t) ~— position vector of selected point A(x.y, ) (incidentally centre of
gravity) of a rigid body (vehicle) in the system of coordinates x, y, =
(briefly ““object-vector™);
w(t) — vector directed from a selected point of the rigid body (vehicle)
A towards optional point P of the vehicle examined, the position
vector in system &, 7, { (Fig. 8);
r(w.t) — position vector of an optional point of the rigid body (vehicle) in the
system of coordinates x, v, » (briefly “image vector™).
Written in form of coordinates, the law of motion of the rigid body reads:

r(w, 1) = [xa(t)1 +ya(t)i + za@k] 4 o[5t() + nm(t) + Ib()]  (4.2)

(From formula (4.2) it is to be seen that the degree of freedom of the rigid
body is six.)

Stabilization of the variable w gives the law of motion of a selected point of
the rigid body (vehicle), (£ = const; 7 = const; { = const), consequently
in case of point T (see Fig. 8):

rr(w, 1) = [x4() i+ ya(t)j + 240) K] + [Er6(0) + 7rm(t) + Erb(0)] . (4.3)

while stabilization of the time-parameter ¢ permits the determination of the
positions of all of the points of the rigid body at a given moment of time (t = const.;
& == const.; 1 == const.; { == const.).

4.2 Vectors characterizing the motion

For a kinematic characterization of the motion taking place on the rail-
way track of spatial trace, the vectors characterizing the motion, i.e. describing
its progression in time are used which, at the same time express the relation
between the motion and geometry.
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Knowing the position vector r describing the variation in time of the
motion and the position of the point of the rigid body examined (w = const)
the most significant kinematic characteristics of the motion taking place on the
rail track relating to the point examined can be determined in their order of
suceession as follows:

dr
— speed vector v =— m/s,

dt
. du .
— acceleration vector a = yx m/s?,
12
. d3r
— h vector b = —— m/s3,
de’

Presentation of the vector-vector functions which characterize the motion
of the rigid body can be done with the aid of a ““vector space” or ,,vecior field”,
accordingly, one can say ‘‘speed-space”, “acceleration-space”, ‘“h-vector-
space”, etc. However, their diagrammatic representation is difficult, in case of
a streamlined illustration it is possible by curves (trajectories) in the points of
which the direction of the tangent is the same as that of the vector associated
with the point in question characterizing the motion.

In the following, by assuming the rail vehicle to be a rigid body, for the
most significant elements of the track geometry (circular are, transition curve),
the vectors characterizing the motion induced af the critical points of the vehicle
are determined and thereafter, the differences between the vectors obtained
in that way and those calculated by assuming the point-motion should be
established.

The examination for a general case is demonstrated by Fig. 9. In the
system of coordinates . y. s the position vector of a selected point 4 of the

)

Fig. 9.
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vehicle, which may be the centre of gravity of it, is r 4. The components of the

vector g oriented from point A towards the critical point T examined are as

follows:

— in the tangential direction: a.t,

— in a cross direction (perpendicular to the track centre-line, along the line
connecting the running faces of the rails):

Ar
]

b

and

— perpendicularly to the plane placed on the tangent, i.e. cross direction

Ar
C t><'—“' .
|
where:
a, b, ¢ — longitudinal measurements established from dimensions of
the vehicle, m;
. . . dr
i — unit vector of tangent direction |t = 7 :
Ar — difference-vector r, —r, at the cross section of the track

examined (Fig. 9).

Knowing the position vector (“object vector”) and the vector p the position
vector of the critical point of the vehicle T examined (*‘image vector™) can be
given in the system of coordinates x, y, z with the aid of formula

r=17, +p

and in the knowledge of the above equation the vectors characterizing the
motion can be established. The differences between the values of the veciors
characteristic to the motion at points T and A which furnish explanation to
the practical use and significance of the examination of the motion of a rigid
body or a point can also be determined.

4.3 Examination of curves without cant (m = 0)

Numerical data:

¥ — 160 kmjh, {v ~ % m/s),
R = 4000 m, (L = 88 m),

a = 12.25 m,

b =143 m,

c

= 2.025 m.
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\:R(‘I-:osa)
L/

Fig. 10.

a) Determination of vectors ¥ ,, 0 and ¢

Considering Fig. 10, as a curve without a eant, it can be written

v v
Py,=|Rsin—t|i + R|1 —cos —¢t| §--0-k 4.4
A R ( R JJ (4.4)
o= at—bntch (L3)
with the replacement of vi = [
a-f=a- dra = (acos ——l—]i-}— asin—l— j+0-k,
dl R R
—-—bn:—biit—: b-sinL i—(b-cos—l—’j—:—o-k
G di R R
i j k
.1
b =c(txn)=¢] cos — sin— 0 =ck
R
——sini cos — O
the “image vector” r being defined by formula
. v v v ],
r=r,+p={Rsin—t+acos—t-+bsin— i+
aTe [ R R R |
v v v
IR|1 —cos—t|+asin—t—bcecos—t]|j+ck 4.6
—r[ ( R T R R ]J+ (4.6)
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b) Examination of the speed vector

The formula of the speed vector at the critical point of vehicle T (Fig.
10} is:

dr v av . v bv v
Vp=—=|VCOS— t— —8SIn—f - —cos— ¢ {i +

dt R
v av v bv v
L lvsi t-+—c08 —t -4 —sin—t]|j--0k 4.7
[ "R TR TR nR]J+ *7

At the moment ¢ = 0, the magnitude of the speed vector can be obtained
with the aid of formula

and by replacement of the numerical data

,_V 160 | 1.43.160 | (12.25.160
3.6 3.6.4000J

| |” = 160.058 km/h
3.6.4000

The magnitude of the speed vector at point A4 is given by the formula

v v
V= = (v cos— t|i-+|vsin —t]j-+ 0.k 4.8
AT ‘\ R } "R J’ (*.8)

The numerical value of the speed vector at point A(z=-0) is " = 160 000
km/h. The difference is ¥ = 0.058 km/h which in comparison with point A4
means a change of 0.036 per cent.

¢) Examination of the acceleration vector

At the point of vehicle examined one obtains

dv 2 av? v . ov ],
ay =—— ={——sln—?¢ ———¢€08 — ¢ ~— ——sin-— 1|1
di R R? R? R
e v av® v bv? v
L —cos — 1 — sin — f -+ cos—t]j+0k 4.9
TRPR T RTTR TR R ]J ()

Substituting the numerical value into formula (4.9) gives, for the acceleration

(t = 0):

2,4 72 212
lar]| ___Vav +(U_+%) = 0.4940 m/s?
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The aceeleration vector at point A4 is given by the equation

2 2
aA:-‘ﬁ’_A—:-—(l’—sinl’_zi'T 1cos1z]j+0k (4.10)
dt R R R R
The numerical value of the acceleration at point 4 (¢t = 0) is as follows

la ] = — = 0.49383 m/s>

}_’i
R

The difference Aa is 0.00017 m/s? (0.034 per cent). (For this examination
the plane x, y of the system of coordinates is assumed to be horizontal.)
d) Examinaiion of the h vector

At the point of the vehicle examined the value of the h vector can be
obtained by using the formula:

da v v ar® | v bv? v 1,
hy=—=|——cos _t-4+ sin—i¢——¢cos — i}
di 2 R3 R R?
+ -2 sinit—-——a—v-—cosﬁ—t—é{/—sin—i—)—t j+0k (4.11)
R? R R? R R? R

Replacement of the numerical data gives the numerical magnitude of
the b vector (¢ = 0):

23 312 2,,8
Iyl = V‘ ¢ +b_’“) +22 = 0.005489 mjs?
R R R

The h vector at point 4 can be calculated by applying the formula:

da 3 P T v
hy=—2—__ €08 — tfi-— [——sin—¢|i4+ 0k (4.12
AT (R'z R ) (R'3 R ]JT 12

The numerical value of the h vector at point 4 (¢ = 0) is as follows:

3
by = _;’{_ = 0.005487 m/s?

The difference is

Ah = 0.000002 m/m? (i.e. 0.036 per cent).
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4.4 Examination of curves with a cant (m == 0)

Numerical data: ¥ = 160 km/h,
R = 1300 m,
m, = 0.133 m
a = 1225 m
b = 143 m
¢ = 2.025m

a) Determination of vectors r,. 0, and ¢

Considering Fig. G the following formulae can be written:

ra = "R sin — ¢ iR ;l—cosif);i— LN (4.13)
| R | R 2
/ 3 » Q. 0

Py = lR—i}a-nﬁthT[R——S—'{l—cos—t)—:-i]j+0k
) 1/ R | 4] 4

o=atLb JE—_c'tx,J",] (4.14)
el (]

from which one obtains by substitution of vt == 1

J ( l
et = a A = aco:——-—lr’r asm—};—‘,—@k
) ) R)
{ 2
b :(b sm—l—)i—— b co:———];-{—b'm}?k
]Jr% 3
i j k 7]
Jr) [ .1
—c|EX~ = — ¢} CO§S— sin — 0 =
I R R
{ [ 2
sin— ~—Co0S8 — TR
L R R 3
2 2m [
== ¢ PR gin —é—i—]— ¢ =R cos—l- j+ck
3 R 3
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the formula of the image vector r is:

\ LV v, v 2mp . v .,
P=ry+pQ= Rsm;{—t—;—acos—;{—t——,—bsm—}-{-t——c 3 smEtl—T—

v v v 2m v
S+tRil—cos—t|-+asin—t—beos—i+ ¢ R cos —t]|j +
[ [ R ]T R R "3 TR ]]

m 2m -
+{§£+b 3R—I~c]k (4.15)

b) Examination of the speed vector

At the critical point of vehicle T the speed vector is

dr r v av . v by » 2empy v 7.
Vp == —— = |V CO8 ——{ — sin — f +~— €0S — f — cos — i+
dt ]_ R R R 3R R
- » 9
+ vsin—t-+ 22 cos it-'rb—isin—l—t— ST RY am—tilj+0.k (4.16)
R R R R R 3R

The numerical value of the speed vector for t = 0 will be

SR [T
T "R 3R

The speed vector at point A:

27 —160.073 km/h

¥

dr 4
v juamen =
4 dt
At point 4 the magnitude of speed (t = 0) is 160 000 km/h, the difference

dv = 0.073 km/h which corresponds to 0.046 per cent.

v .
v cos— t| i
R

v sin - z] j4 0k (4.17)

¢) Examination of the acceleration vector

At the point of vehicle examined we have:

a ~—§1— ——fsinf}—t——— avzcos AP bo? sin thcmszsin—v—t i-]

T R R : R R R | 3R R |7

[T s L B B B g b ZOmRY 0P 0k (4.18)
R R R? R R? R 3R? R

By substituting the numerical data (t = 0) and by considering the
gravitational acceleration one obtains:

avt > bo? 2empr? |2 mp-9.81 . 5
anl = l — —_ = 0.6520 m/s*
far| V R (R+ R 3R? 1.5 /
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The formula of the acceleration vector at point A4 is:

dv . . > v ).
aA:—.——&—?:————(%Sul%i)l+(%COS%t}]—{-()k (4.19)

The numerical value of the acceleration vector at point A (t = 0) taking
the gravitational acceleration into account will be:

=2 — (.6496 2
la.] s m/s

The difference is da = 0.0024 m/s%, i.e. 0.37 p.c.

d) Examination of the b vector

For the critical point of the vehicle:

da v v a® | v bv® v 2empr® v .
h.——— = |— €08 —f - ——sin — t — —— c0s — ¢ -+ cos — ¢ |1
T dt 2 R R3 R R3 R 3R3
3 s 3 » 3 , 9 3
e T g Y B g B 20mR 0 ] 0k (4.20)
R? R Re R Rs R 3Rs R

The numerical value of the h vector for ¢ = 0 is:

23 +3 312 2,,6
by = |f [— 2 B2 Zeme?)E @ 05107 myss
.RO Rﬁ

The formula of the b vector at point A is as follows:
3 ) 3
h, =224 :_(” cositJi_(Lsinf’_z\HOk (4.21)
dt R R R R |

and the nuerical value of the h vector, at point A(r = 0) will be:

3
lhal = ;{2 = 0.05195 m/m?3, with a difference of

Ah = 0.00002 m/s* (i.e. 0.038 p.c.)

4.5 Examination of the cosine-transition curve without a cant (m = 0)
Numerical data: V = 160 km/h,
L =88 m, (R=4000m),

m = 0,

a =1225m
b = 1421 m,
¢ = 2.025 m.

7%
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a) Determination of vectors x4, p, and r

By rationally considering Fig. 10 and taking for basis the approximate
formulae of marking from the cosine transition curve and by replacement of

[ = vt one obtains:

R ? B o
v vfi ————|1 —cos | 1j+0k (4.22)
4R 27*R L
p=oat—bn+ch, (4.23)
carrving out the substitution vt = { gives
7.
dr . . al al T o).
4t = @—" = @i |——— sin— i+ 0k
dil 2R 27 R L
.1 dt .
—bhn=—b——=0i—bj+0k
G di
i j k_i
cb=c(txXn)=c 6 |=ck
L0 1 o |
The formula of the image vector r reads:
9.9 3
] 21> 2 1) - av
r=r o= (vi--a)it - {1—-005 5J+~——t—
4R 22°R | L 2R
el | aw .
— sm——-——i——b]‘j{—ck (4.24)
2z R 1

b) Examination of the speed vector
The formula of the speed vector at the critical point of the vehicle reads

Lv . =«w | av av v

t.lj—{—() k (4.25)

3
]
!i
E
|
t,
(3
I
gn
3
g

dr LR Ly | =w
V4= = pi-- i — —sin—t|j+-0k 4.26
AT ’ (ZR 2@R L ]3 ' (1:26)
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The numerical value of the speed vector at point A(L/2=ut)isas follows:

o= Tra _ Vﬁz,;_('_”‘fi_ Lo \* _ 160.0003 km/h
T @ 4R 2R

the difference being

Av = lvy] = Iv,] = 0.0006 km/h (0.0004 per eent.)

¢) Examination of the acceleration

The vector of the acceleration at the critical point of the vehicle is given
by formula

v
di

=90

St e

aT

— sin— ¢ §--0k (4.27)
2R 2R L 2RL L

‘ 7 3
[zf- v v, axvt |, av ,

The numerical value of the vector of acceleration point L/2 = ¢t can be ob-
tained by replacement of the actual data into equation (4.27):
2 2
oy = = 22T (.3548 m)s?

2R ' 2RL

The formula for the determination of the acceleration vector reads as
foliows:
dv o[ 2 av

a,= =0i+ [ —

AT 0 "l2R 2R L

By replacement of the actual data into equation (4.28) one obtains the
numerical value of the acceleration vector at point 4,(L/2 = wvi):

I7s _ ¥ 02469 m/s?
dt? 2R

@] =
[Bap ==

The difference between the magnitudes of the acceleration vectors at the
middle of the transition curve is

da = laz| — |ay| = 0.1079 m/2, i.e.,

43 per cent.

According to the above calculations the deviation of the accelerations
at the midpoint of the transition curve is comparatively significant, however,
considering its numerical value (0.1 m/s?) it does not play a decisive role, as,
after the transition curve, the magnitude of the lateral acceleration increases
to 0.4938 m/s?, as pointed out in the preceding paragraph, where the value of
da is only 0.00017 m/s?, i.e. 0.034 per cent.
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d) Examination of the h vector

The formula of the b vector at the critical point of the vehicle reads as
follows:
N da

Tt

hT :Oi‘—{‘

213 2293 .
T _sin g 227 coslll.j—{—Ok (4.29)
2RL L 2RIL? L

The numerical value of the b vector at point L/2==vt is (namely, the change
in the curvature is the highest in that point of the cosine transition curve:

s

hrl = 2

~

= 0.3917 m/s3

Formula of the b vector at point 4 is

da v’ 7w
hyp=—2>=0iL si tHj+0k 4.30
AT (HRL T )JT (+:39)
The numerical value of the h vector at point 4 is as follows (L/2=1t):
! 3
= PEAl - T 03917 m)ss,
| dt® 2RL

and, in this case, 4h = 0

4.6 Examination of the cosine-transition-curve with a cant (m == 0)

The numerical data are as follows:

14 = 160 km/h,

L = 278 m, (R = 1300 m),
mp, = 0.133 m,

a = 12.25 m,

b = 1.421 m,

¢ = 2.025 m,

a) Determination of vectors x4, p and r

Respective consideration of Iig. 9 and the approximate formulae of
marking the cosine-transiticn-curve and carrying out the substitution of [ = ¢t
results:

4R 272°R

r, = vti-F _§_+vt e L (l—cosiv—t] j+0k
4 4R 27*R L
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A =51, —r -Oi—f—'+—rn—R 1—cos 2 Ik
=Ta b == 43 4 I
[[Ar[wim}
4
0= at+ b 2" —-c(tx A‘} (4.32)
|| ||

carrying out the substitution vt = I gives

at:adrA::az-{—- —EE—— oL sin % | i+ amR%sin—El‘_«;
dl 2R  2zR L L L |
A = — —{—me [1~cs——l]k
| dr| 3
—c(tx Ar}“- L—— L sin — [ man 7zl =
| 4] 2R 2z R L 4L L
0 —1 ﬂ(l—-cos—l)
L 3 |
omgl 1 — cos 1 +cmRL sm———l[l—cos——l —
6R L 6zR
CTRT Gin T 1—{-—cmR 1 —cos 21 j+ck
4L L 3
The image vector r can be éxpressed as follows
cmpvt
r:rA-}-p:[vt-i— — 6; l—cosmt]—}—
P RL G T4 (1 g0 T o) TR g T
6x R L 4L
2 L v avt al. . v
+ — l1—cos —t|—b+ — sin t+
4R 22°R | L 2R 22R L
_:__cmR ﬁ——cosﬂt j+ 1"—?—[1———cosd—1?—t}+
3 l L 4 L

+ 1 —cos 2 |+ IRT in ™ i elk 4.33
3( L)+4LsmL‘ (4:33)
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b) Examination of the speed vector

The speed vector at the critical point of the vehicle

dr cmpv v cmpm vt . st
Vvp=— =t ——F |1 —2cos- t]——RL——st r—
dt 6R 6RL L
Cipy ) cmpv . L[ @w CT AT av |,
—— B cos? | 1 —{-——-R——smz(—— ‘ —_L_cos i
6R L 6R | L 412 L
BIKx Lv ., av | av
+ — sin t+— |1 — cos — t} +
2R 2z R 2R
cmpmv . Tl . MpR v bmpm T
—+ i sin —— ¢ § -+ R -+ R t -
3L L - 4% 3L
9
ampIU av
4+ =B cos i1k ; (4.34)
4172 L

The numerical value of the speed vector at point L2 = vt is as follews:

ol =] (o cmpm } o Ly Lv  av  cmpmv N
i J i N i i -~ t
12R ) 4R 2zR 2R 3L

: . s 2L
. mpzv | bmpmy — 160.042 km/h
4L 3L

The expression of the speed vector at point 4 (Lj2 = vt) reads
dr s ; av ) (mpmv . av ) -
Va = A _ vit A Le sin 2 ¢ i+ TRTY in T2 4| K (4.35)
di 2R 2=R L | 4L ‘

V27122
’”R'”’) = 160.030 km/h
AL

The numerical value of the speed vector at point A(L/2 = vt) is (L[2 = vt):
dr Y Lv Lv : L
dt

- [
4R 2aR
The difference in values of the speed vector is:

v = vyl — lv4| = 0.012 km/h (0.01%,

[¥al =

¢) Examination of the acceleration vector

The expression of the acceleration vector at the critical point of the

vehicle is

dv empay? | @
ap=—=|— " sin—1t—
di 2RL
cmpmiy’ a Qempmv® (. @ av
—————1 - 08§ —t4-———— |sin — | cos —1
6RL? 3RL L
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ecmpi® . o ], 72 v
LR sin— t|it- 1 — cos i+
L R L

413 2
L anvt . v | cmpatv? av ], |
-+ sin —1t-+—"——cos —1tj+
2RL L 312
7212 T v 32 T
. ‘mR:r v . bm 7y cos T, ampivt . wv (4.36)
417 3L* L 4L3

The value of the acceleration vector and point L/2 = vt can be calculated
by using the numerical data and the value of the acceleration due to gravity
as follows:

‘ 2 3,212 2 22y 12
. :“_ cmpav® | empmty ‘ PR i
[had¥] ) : o i H
‘ 2RL 413 ] 2R 2RL
5,2 127N .0
| [amgpa’e mgp-9.81 04300 ml<
T n— _‘_———’“—— D) /-
413 2-15

The acceleration vector is to be caleulated by the formula

a, == va =0t [ T cos Ty i+
di 2R 2R L
L [RRTE e T t) k (4.37)
417 L

The magnitude of the acceleration vector at point 4 (L/2 = vt) is obtained
by taking into account the acceleration due to gravity:

| o+ 9.81 2 — 9.
_me 981 vt mp— 981 .0 m/s?
; 2-1.5 2R 2.1.5

The difference of the magnitudes of the acceleration vectors is to he found
as follows:
da = |ay| — |a,] = 0.1052 m/s® (329,)

The acceleration vector is comparatively significant, however, considering
its magnitude is not highly decisive since after the transition curve, in the cir-
cular arc of a radius R = 1300 m, as seen from paragraph 4.4.3, the lateral
acceleration attains the value 0,65 m/s®> but the value Ae is only 0.0024 m/s?
(i.e. 0.37 per cent).

d) Examination of the h vector

The h vector, at the critical point of the vehicle, is to be found by using
formula:
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2,3 4,3
hy — _dj_l___ . 2cman cmpmtyt oA
dt 3RL* 4L* '
7 4 2 7 293 7
| empry’ 4 sin idd LI (_’z_y_ t) I
6RL? L 3RL?
2em e’ ] (et empadd) | aw
% cos? AR —_ sin i+
3RI? L (ZRL 313 } L
23 ; 3B 7373 o
+ j;; i ] [ m:;” + b";*;g” ]sin’f_’“wl_
3 ,
+%%§‘lcos i t-Jk (4.38)

By replacement of the numerical data one obtains the value of the h
vector at point Lf2 = vi:

k| = (CmRv T 2empa’y® 2;/ 7171}3 Crnpcrr'?u?"‘lL
T 12RI>? 3RI2 i l SRL 2L L
3,3 3
o (e e T 03704 myed
4L3 3L3

The h-vector can be calculated at point 4 by making use of the formula:

daA

h, =
A 7

:Oi—:—( DRTY in Ttk (4.39)
L

The numerical value of the h vector at point 4 (L/2 = vt) is follows:

d31'A _ 23 P>
- [‘_)RL‘

de®
The difference of the values of the h vectors is

Ah = 0.0112 m/s® (i.e. 2.9 per cent)

m iyt

418

1

29712
LIRS } = 0.3816 m/s?

In the aforesaid, by taking for basis the motion of the rigid body (i.e.
the system of points) the critical values of the vectors characterizing the motion
induced were determined and the diversions in relation with the assumption
of the point motion, for the most fundamental cases occurring in planning
railway lines were examined. From the results of the examination it is to be
seen that in case of the motion taking place on the railway line the assumption
of the point motion in the movement-geometric examinations would meet,
in general, the practical requirements and the necessity of a kinematic examina-
tion of the motion of a rigid body may occur in specific circumstances only.
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5. Uniform cosine-transition geometries

In the present paper a particular attention is given to the transition curves
having much more favourable characteristic features as continuous, breakless
transitions of curvatures, by putting particular emphasis from among them
on the

cosine geomelry

which, according to the results of the movement-geometric investigations pos-
sesses unequivocally the most favourable kinematic, i.e. geometric charaec-
teristics.

The clotoid transition curve of the linear curvature-transition is signifi-
cantly more unfavourable from the point of the movement-geometry than the
continuous, breakless eurvature transitions, since the joints of the curvature
funection at the beginning and end of the transition are not breakless.

In investigating the different geometries the transition curves applied
— between tangents and curvilinear sections,

— in connection with compound curves and
— in case of reverse curve designs,

in all of the above cases the fransition curve is considered as a special geometry.
In determining the curvature-transitionary geometries the following
symbols are used:

R — radius of circular arc (Fig. 12);
1
G = R — curvature of circular arc, m—1;
l — distance of the point examined from the beginning of transi-
tion (the joining peint of lesser curvature), m;
G, ~— curvature at the point examined, m—1;
X, ¥ — orthogonal coordinates of the point examined in the local
system of coordinates, m;
X, Y — orthogonal coordinates of end point of the transition curve,
m;
L — length of curvature transition (i.e. transition curve), m;
R — R.R, radius to be calculated in the knowledge of radii of com-
® 7 R, —R, pound curves (Fig. 13), m;
R ER, radius to be calculated when knowing the radii of reverse
o=

R,+R, curves (Fig. 14) m;
From the above symbols it follows that

R, >R, and G, <G,
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5.1 Uniform geometry of the cosine transition curve
In case of transitions between tangent and curve as well as in case of

compound and reverse curves, and further for cant transitions (see Chapter
5.2) the cosine basic geometry depicted in Fig. 11 is applied.

GHm)

;
{

=

Fig, 11.

By reflecting the segment 0 < x <{ 7 of the cosine function (depicted
in Fig. 11 by short dashed line) in the x-direction (long dashed line) and leng-
thening the ordinates by the unit length yields the function of the basic cosine
geomeiry (full heavy line in the figure):

v:c[l“cosfll
) L

In a general case (i.e. of compound and reverse curves) at point x = 0
y == 0, wherefore, the general function of the cosine basic geometry reads:

1

P 1
Y ==~eT¢

, o
1 —cos—1 5.1

where ¢, and ¢ are constants to be calculated in compliance with the problem
given.
Table 3

Constant values of cosine-transition of curvature

Position of the transition curve ey c

Between tangent and circular
curve of radius R 0 1/2R

Between compound curves
(R, >R.,) Ry= RR:/R; —R; 1/R; 1/2R,

Between reverse curves

Ry = RiRy/Ry+R, 1/R, 1/2R
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In case of a cosine curvature-transition we have:
, = i
G =c,+ |l —cos—1 m. (5.2)
1 0 I

The values of the constants ¢, and ¢ are indicated in dependence of the
situation of the transition curve in Table 3.

a) Cosine transition curve between tangent and circular curves

The geometrical determination of the cosine transition curve between the
iangent and curvilinear section and the knowledge needed te marking out the
transition curve is dealt with in connection with Fig. 12.

The curvature function of the transition curve considering Eq. (5.2),

-
i

able 3 and Fig. 11 reads

(2]

t~ =

G, = L il —co IJ n~*, {5.3)
2R

namely, ¢;==0, and according to (5.2} at the middle of the transition curve (=
= 0.5 L)e = 1/2R.

The trigonometrical function of tangent is:

{
L L ! (5.4)

m:JQﬂ:——l~
0

A

N
2R L

I3

At the end point of the traunsition curve (I = L) the inclination of the

tangent 1s

It

Ty, =

2R

The system of equations for the arc-length parameter of the orthogonal
coordinates, required to a marking out in the system -of coordinates =,y is,
in accordance with the accuracy of staking oui, aud by considering the first
two terms of the power series given by the equation:

5.5)
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l 13714 Iz 12 2
y:—[sinrldlwm —_ + 1— L ]___.
1152=2*R3 2n? 4R 167%R?
0

Llcos =1

B tll 5L B,
192 7 27°R T 2UZR T B8R

2.‘ 7 2./ (7
Lt cos 2] I3 sinl | IIfsin=2 ] Ifcos ll}
"T1287R T 82°R* | 64x°R5 ' 1447*R° m (5.

The coordinates of the end point of the transition curve can be calculated
by using formulae (5.5) and (5.6):

X=—1L [1-—-0.02267 L—] m (5.7)
Y = L2 (314—86—8 —0.00274 & J m (5.8)
R R

The further data necessary to mark out the transition curve using the
symbols of Fig. 12 are as follows:

L
T, = R (5.9
f=Y—(R—Recos 1) m (5.10)
xg= X — Rsin 1, m (5.11)
t= Yctg 7, m (5.12)
t, = X —1 m {5.13)
t, = Y cosec 7, m (5.14)

The approximate layvout formulae of the transition curve are, in case of
the condition x ~« I, as follows:

X

¥ o= J Ty dx = ® P 1— cos — x m (5.15)
4R 27’R L
0
2 2
y=L(2_1 J~0.149L— m (5.16)
R 14 b R
=8y L m (5.17)

822 R 42.23R
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Between straight line and circular
curve

(3i :ﬁ(‘pcos‘—t—l)

2tiw

Fig. 12, Cosine transition curve I.

b) Cosine transition curve between circular curves of identical direction

Between lines curving in the same direction (i.e. in case of compound
curves) the symbols used for the geometric determination and the marking out
of the cosine transition curve are indicated in Fig. 13.

The calculation of the geometry of the transition curve should be per-
formed similarly to that recognized in case of the transition curve between the
tangent and circular curve, using the uniform cosine basic geometry. The function
of curvature determining the geometry of the transition curve by taking into
account Fig. 13, i.e. Table reads, as follows:

G, = _1_+ 1 {1 — coS ig_ z’ m~1 (5.18)

wherein R, = R, R,/(R, — R,) m, (5.19)
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w

Fig. 13. Cosine transition curve II.

and R, and R, are the radii of the circular curves of the compound curve
(R, > R,) m.

The tangent trigonometric function of the cosine transition curve between
the circular ares curving in the same direction is:

L™ z] (5.20)
Rl 2R0 It 7T L




)
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The inelination of the tangent at the end of the transition curve is given
by the formula (I = L)

For marking out the transition curve the orthogonal system of coordinates
x, y is used, where the geometric beginning of the transition curve is the origin
of the local system of coordinates. Consequently, the cosine fransition curve
between circular arcs curving in the same direction is considered, as opposed to
the earlier practice, as an individual geometry and not an intermediate section
of a basic geometry.

The system of equations of arc-length parameters of the orthogonal coor-
dinates needed to marking out, by taking into account the first two terms of the
power series, reads as follows:

14

x—-J-cosndlwl{l—L)—lS(l —[—-,1 -+ 1 +
\ 16a2R3 6R? O6R,R, 24R}
0
, s L3 . @ L2 L> ) 4
. — -k sipn —1 — - lcos —1--
2R,R, = 47°R}| L 27°R,R,  4a°R:] L
3 2
LD a2y m (5.21)
3233
!
(. L2 L 33L4 13704
y::Jsmn,dlw—n — — — L
22°R,  2wR2R,  O64=R,RZ  1152x'R3
0
_I_lg(l L1 I oy 14( 1
" |2R, " 4R, 322°R,RZ  64aR} 24R3
! 1 1 1 ! 1 | I ( L3 . L? £
" 16R:R, 32R,RZ 192R3J " | 223R2R, ' 24°R,RZ
L3 ] . I? L L
F——|Isin —I+ =+ -+ -+
82°R? L [ 222R, = 2xR:R, = 2x'R,R}
, oL* PPr? P22 1212 7T
T ip3 272 - 2 s oa]cos—l+
487*R3 47°RIR, 47°R, R} 16722R3 L
L3 L3 2n L
-+ ( -+ ] Isin— 14+ |————F—+
3272°R, R} 64a°R3 L 647*R, R3
4 2 A g -
—l-——L—-— cos ——Zl+—]—;———wcos3 Sy m (5.22)
12874R3 L 1442°R3 L
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The coordinates of the end point of the transition curve can be caleculated
by making use of formulae (5.21) and (5.22):

22 .
X1 _.Ls( 1, 002267  0.11601 " (5.23)
6R} R3 RoRy
Y:L2(0.14868+ 1 ]_B L
R, 2R, 24R?
0.00274 ~ 0.01935  0.04744 iy
+ + + m (5.24)
R R,R? RIR,

When marking out in practice the transition curve between two circular
ares curving in the same direction two instances may occur.

Case A): the position of two circular curves is given (in Fig. 13 by the coor-
dinates of the origins O, and 0,) and we look for the data of the transition curve L
corresponding to this situation. A close approximate value of the length of the
intermediate cosine transition curve to be obtained can be determined with the
aid of the tangent-angle method as follows:

L~ |4223 R,D m (5.25)

with D = R, — R, — 0,0, m.

In the practical solution of the above problem the length of the transition
curve cannot, as a matter of course, be shorter than the minimum leagth oh-
tained on the basis of the h vector.

Case B): the transition curve is given L, and we are to find the position of
the circular curve of radius R, related to that of radius R, i.e. the distance D
(Fig. 13):

D=R, —R,— (X —R,sint,)? - (R, — Y — R, cos 7,)* m (5.26)

The actual spacing 0,0, issued in this case is
0,0,=R,—R,—D m (5.27)
The position of the system of coordinates x, v to be used to mark out is definite
Jfor both cases by knowing the direction 0,0, and the angle
X — R, sin 7.

Tp = arct (5.28)
P gRl——Y-—chosrL

The further data needed to mark out the transition curve are (see Fig. 13)
as follows:
_LR+R, (5,29

T
Y72 R, 'R,
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f=Y—(R,— R,cos 7,) m (5.30)
e = R,sin 1, m (5.31)
a=X—e , m (5.32)
t = Yecig 1, m (5.33)
=X —1 m (5.34)
t, = Y cosec 7, m (5.35)

The approximate formulae for laying out the cosine transition curve be-
tween compound curves are, for the condition x ~~ I, as follows (Fig. 13):

g2 = D (1 — cos = x) m (5.36)
. 2R, 4R, 27"R, L
vy L +£l{l_—1_J 032 0149 L m (5.37)
2R, R, |4 Tt ; R,
e:RQarc114:1]31—.&—1—{1‘1 , m,
2R,
a:X—e:L(l—Rl—TRQ—) m,
2R,
2 2 2 72 L 2
f:Y-—-—e ?&O.S-‘L—+O_149‘L_~M m
2R, R, R, 8R,R}

¢) Cosine transition curve between reverse curves

The geometrical determination, i.e. the layout of the cosine transition curve
between reverse curves is demonstrated in connection with Fig. 14.

The calculation of the geometry of the transition curve is performed in
conformity with the principles recognized in connection with the transition
curves to be applied between tangent and circular curves, i.e. between circular
curves curving in the same direction.

The curvature function of the cosine transition established on basis of
the data in Fig. 14 and Table 3 reads as follows:

=21 __1 {1 —cos ~. 1] m=, (5.38)
R, 2R, L
where
R, — Ta R e (5.39)
R+ R,

8*
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Fig. 14. Cosine transition curve 1II.

R, and R, are the radii of the reverse curves in m. The tangent triangular func-
tion of the transition curve is:

R, 2R, 7

I

I
'L’I':.JGdl:—l——— ! (z__lisiniz-z (5.40)
0

The inclination of the tangent, at the end of the transient curve (I = L) is:

L L L R,—R,
'UL:-—~——- o —_—

R, 2R, 2 R, LR,
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In marking out the cosine transition curve between reverse curves the system
of coordinates x, y is used, the origin of which is the geometric beginning of the
transition curve. Similarly to the compound curves, the transition curve is con-
sidered also in this case as an individual geometry.

The system of equations of arc-length parameters of the orthogonal cooz-
dinates needed to mark out the curve is established by making use of the first
two terms of the power series, as follows:

x:fcmr,dl ( L )~.13(1 1 - 1 -+
. _ 162°R3, 6R? OR RO, 24R%,

L3 Ly ) 7 {
-+ — sin — [ — —
47°RE,  27°R. R, ) L | 472R3,
2] ; 3 2z
P e T B gy m (5.41)
2a?R Ry, | L 327°RE, L
!
. r2 Lt 33L* 13714
y:fsm 7, dl == -+ —  A—— -+
2a°Ry,  2a*RIR,, 64a*R,RE  1152='R3
Lplrrr I ) 14( 1
2R, 4R, 3222R,R},  64a%R}, 24R3
1 L1 1 l ] ( L3 L3
16R:R,,  32R,R:,  192R3 ) 27°R,RE, 27°RER,,
L3 ) - [ Lt L2 Lt
— Isin _ 1+ — —_ —
87°RE, L 27*R.R%, 27°R,, 27*RIR,,
— 4 — —+ cos —1
487*R3,  4a*RER,, 47*R,R,  16a2%R3
‘ I3 18 ] ) . I
+ — Pein 00—
| 327°R; RE, 647°R3, L | 64a*R, R2,
1 : 4 :
. cos —%E—E—l———L————cos3 Ay m (5.42)
128=*R3, L 144=*R3, L

The coordinates of the end point of the transition curve are to be deter-
mined by using (5.41) and (5.42):

. 1 2267 .
X1 15 L 002267 0.11601 n (5.43)
6R% RS ROrRl
v — 12 (_ 0.14868 n 1 ] Y 1 L 0.00274 .
R, 2R, 24R3 R
0.01935 0.04744
T s sl J m (5.44)
R1R5r RiROr
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When actually laying out the transition curve between reverse curves,
similarly to what has heen said in connection with the compound curves, two
instances might occur:

Case A): the position of the two reverse curves (in Fig. 14 the coordinates
of the points O, and O,) is given. The close approximate length of L cosine transi-
tion curve can be given by the formula obtained with the aid of the tangent
angle method:

L ~142.23R, D m (5.45)
with D = 0,0, — R, — R, m,

Also to solve this problem, the condition is valid that the length of the
transition curve should not be larger than that defined as a minimum with the
aid of the b vector.

Case B): the length of the transition curve, find the relative position of the
circular arcs of the reverse curve is given. On the basis of Fig. 14 we have:

D=—R,—R, + V(X — R,sin 7;)* + (R, — Y + R, cos 7,)? m (5.46)
and
0,0, =R, - D + R, m (5.47)

The system of coordinates x, ¥ of marking out, is unequivocally deter-
mined by the dircction 0,0, and the angle known for both of the above cases.

2y = aro tg — . RSN TL (5.48)
1 — Y -+ R, cos 71

Further data needed to mark out the transition curve are, by taking
Fig. 14 into account, are the following:

y——t B R (5.49)
2 R, R,
L, = —arc cos —1— Ry m (5.50)
T 1+ R,
S WS S | (5.51)
R, 2R, 7 L

as well as
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5.2 Uniform cosine cant transition

The calculation of the cosine cant transitions by using the uniform basic
geometry is presented for the cases: between tangent and circular curve, be-
tween circular arcs curved in the same direction and between reverse curves,
to be seen in Fig. 15.

The length of the cant transition agrees in all cases with that of the transition
curve.

In case of the cosine cant transition between tangent and circular curve
the function of cant reads (Fig. 15) as follows

m =R (1 cos T z) mm (5.52)
> 3

= T

. V2 . .
wherein my = 11.8 = 100, the amount of cant in a circular curve (mm).

. Between sircight lone and circular curve

il. Belween circuler  arcs curving in the same direction

R>R, m:m_.rﬂ. (1-cos 1)
- i 2 L
m -
N
f_rrxt:ﬂaﬁ-’-mo
m, =118 % -100
< RZ
!
1, Between reverse curve
R>R L Ri-?y
m >R, L.==arc cos =
e S R, <R,
! b
A
-l
T3 ’
o ; t
i t
»
My Myemy T
St v s {(1-C OS2 |
Y=gt -y (cosl)
m 3 V2 v?
= ol {J —1 ; yzllB—e ~10020, =
% 2( cosL) ;oom, HBRZ 00 Gsz
™ b G, v2 .ovP R
=M=z (l-ces= () mamZizo L 2118 4 -100-¢
yj=me A MG o 18 <1005

Fig. 15. Cosine cant transitions
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In case of a cant transition between circular arcs curving in the same direc-
tion (Fig. 15):
My, — m 27
m=m-+~—2——1 |1 —cos =1
2 L

2 A

~ 100 and m,— 11.8 —

1 2

— 100 mm

with m; = 11.8 v

amount of cants in circular curves (mm).
Calculation of the cosine transition between reverse circular curves on basis
of Fig. 15:

m, T - =
vy = 2" [1——00531) mm (5.54)
yj:ml———%z—l—-[l—cos—z—lj mm (5.55)
where
V2 2 R,
m, = 11.8 --100 and m; =11.8———100-= mm.
2 1 1

(The latter equation results from the condition of the zero point of the curva-
ture.)

6. Actual problems in the field of the geomeiry of motion

In order to practically represent the motion-geometric examinations
dealt with in the foregoing the approximate solutions to some simple funda-
mental problems are presented.

The examinations have in general, a double objective:

— determination of the unknown functions f(1") and
— f(R) required on the basis of the acceleration vector and the h vector,
thereafter, starting from the critical state, calculation of the value desired.

A) The examination according to the acceleration vector (“‘acceleration-
aspect’ ) is based on the inward (i.e. its opposed outward) radial acceleration
applied on a vehicle moving along a curved track. the formula of which reads:

v
la,| = Gv* = — m/s®  (6.1)
e
which in case of the state of motion v = const (m/s), (a,) = 0) means at the
same time the value of the acceleration (|a,| = {a,]).

B) In case of an examination on the basis of the h-vector (“h vector aspect™)
starting from the assumption v = const. of the acceleration-aspect, by neglect-
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ing the torsion of the track, the magnitude of the h vector for the motion along
a curved track is expressed aceording to (3.27) by the formula

b=

m/s?

/f(v3 G2+ {o %G;]Z

An introduction of practical considerations of the trajectory function
G = f(I) yields
dG _dG dl  dG

o dl a dl

the magnitude of the h vector being as follows

i 3
b = VGH— (_dg_} L2 dC mjs8 (6.2)
dl 3.6° di
since G* — 0.

In formula (6.2) the velocity ¥, given in km/h and dG/dl, is the derivative
of the function of curvature of the curved path with respect to the length of
curve.

B.1 The approximate magnitude of the h vector on a track of a circular arc
with transition curve.

The maximum of the functions dG/dl of the transition curves which might
be taken into consideration in designing railway tracks is the following:

dG %
__} =X m=2 (6.3)
dl e RL
wherein: R — radius of circular curve joining to transition curve (m),
L — length of transition curve (m).

The value of « is, in case of continuous, breakless curvature funetions

for cosine tramsition curve 7/2 = 1,57

for a 4th degree parabola and for a sinusoidal transition curve 2
(in case a of clotoid transition curve at the beginning and end points of the
transition the function of curvature has break points, therefore here, the
derivative dG/dl is not defined).

Simultaneous consideration of (6.2) and (6.3) yields the approximate
magnitude of the h vector at a critical point of the transition curve, by the
formula:

o al?
3.63RL

iy m/s* (6.4)
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B.2 Approximate magnitude of the h vector in case of a direct joint of tangent
and circular curve; on the basis of (6.2):

wherein: 7 — speed, km/h;
R — radius of circular curve, m;
d — length percieving change in curvature (in case of four-axle
vehicles bogie-base, in case of two-axle vehicles wheel-base;
in the calculations of the present paper d = 17 m).

6.1 Examinaiion of the case of curve without transition

Direct joining of straight and circular curve sections without transition
is permitted only in case where at the tangent point the magnitude of neither
the acceleration nor the h vector surpasses the permissible threshold value.

The value of the limiting radius determined on the basis of the accelera-
tion (6.1), above which the straight line and the curved section might be joined
without transition is obtained by making use of formula:

72

Rfr —— A
" 3.6

0.22 72 m (6.6)

in case where according to Table 1 ¢ = 0.35 m/s?
For a constant speed, motion the magnitude of the h vector calculated
according to (6.5) and not taking the transition into consideration, with the

30000

20000~

10000~

Length of transition turves of wavy
change of curvature

2.2 4 8
vs SVia; s gV, 3 oV, 5
( T ¢ e -RE)C IR B 2 e mivig
3616R 36°4R7

I -
R e

Fig, 16. Need of transition curve
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value of |h| = 0.2 m/s® (Table 2) we have:

3
Rp ~ 7 0.00637173 m (6.7)
3.6 d

I
The limiting functions R] and R; are depicted in Fig. 16. Consequently,
the speed above which, from the viewpoint of the examination the h vector
is critical, issues from the equality R; = R; and reads

L M == 35 km/h (6.8)

In case of a motion of constant acceleration (¢, = const.) considering
(3.27) and not taking into account the tangent-directed component one
obtains

G

[h! ~ 3ve,G — v® —

from which considering h| = 0.2 m/s® (Table 2) and |a,| = 0.35 m/s® (Table 1)
results the limiting radius in omitting the transition curve as follows

R} =146 ¥V 1+ 0.0063 V3 m. (6.9)

(It is to be noted that in calculating the above the approximate value
of the h vector the omission of the tangent-directed component V3G? in case
of values of several thousands of metres does not cause but an error of a few
cms.)

6.2 Determination of the minimum length of the transition curve

On a line with transition curves, due to the permanent change of the
curvature the length of the transition cannot be determined according to the
acceleration-aspect and so many railways have no other choice but to establish
the length of the transition curve on an empirical basis (L = 10 V' - m, where V'
is the speed in km/h and m is the cant in m).

The length of transition, on the basis of the third order movement-
characteristic is to be calculated from formula (3.27) of the h vector keeping
in mind that the magnitude of the h-vector should not surpass the permitted
threshold value, not even at the critical point of transition (see Table 2).

In case of transitions with a wavy change of curvature (cosine-, fourth-
order-parabole- and sinusoidal transition curves) the critical point is the mid-
point of the transition. From the magnitude of the h vector (3.27), after
simplification, one obtain the following sixth order equation for the length
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of transitions with a wavy change of curvature
2 4 26

- vila] . v

- ~— b LE ¢ 2 Ls4 ¢,

16R* 4R? ’ 2 " R?

v 9v%|a,

L* 4+ esm®® =0 (6.10)
the single positive root of which is the solution to the equation.

6.3 Determination of the maximum permissible speed in a circular curve without
cant and transition curve

In practice, this instance occurs in circular curves of a great radius and
in turnout curves without a cant.

¥, kmih

Fi

. 17. Maximum permissible speed along eircular curves without transition,
non-superelevated

o

The maximum permissible speed on the basis of acceleration (6.1) is the

following

72 =3.6VaR~213}R km/h (6.11)

if according to Table 1: a¢ = 0.35 m/s®. Taking the h vector into account
(Table 2) |h| = 0.2 m/s3; according to (6—5) we have

K] 3__

Vi~ 3.6 Vh|dR =541} R km/h (6.12)

Figure 17 shows the limiting functions ¥V and V", By taking them into
consideration, the limiting radius above which, in calculating the maximum
permissible speed the h vector is critical, by using equality ¥? = 7" the follow-
ing can be determined:

RV = =z 270 m (6.13)
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Examination of the minimum permissible radius of circular curve with transition
curves

The value of the minimum permissible radius of circular curves calculated
from the formula of cant on the basis of acceleration is

R?nin = ”MT m (614)
m -+ 0.153|a|
(where m is the cant, in m).
From the formula (6.4) of the 3rd order motion characteristic
Ri = A—— m (6.15)
3.6%h L
From the comparison of the formulae Rpin and anm, le.(6.14) and (6.15)
it is to be seen that while the minimum radius ecalculated on basis of the accel-
eration for a given speed depends only on the characteristics of the circular
curve (m, a) and is not affected by the existence of the transition; the radius
to be calculated from the magnitude of the b vector calls the attention to the
significance of the transition (L, z). Further, from relationship (6.13) Rl:. one
can see that by increasing the length of L the value of R, may be decreased.
Thus, the circular durve of constant cant should always be examined as
a uniform geometry since it arises from the geometric continuity of the railway
line, a circular durve of constant cant cannot occur but together with a transi-
tion curve. The separate examination of the circular curve with a motion of
constant speed would be misleading, as in that case only radial acceleration is
indicated, the value of the lateral h vector is equal to zero. This, however,
would result in narrowing down the examination and neglecting the ecritical
state.
According to Fig. 18 the point of intersection of functions Rpi, and
R}, determines the value of speed V', above which the effect of the h vector

Ripin. M

v v kmih

Fig. 18. Minimum permissible radius of a circular curve with transition
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Vinax,, kmih

Fig. 19. The maximum permissible speed in case of a circular curve with a transition curve

is eritical:

e km/h (6.16)

6.5 Determination of the maximum permissible speed for the case of a circular
curve with transitions

The permissible maximum speed in case of a given cant calculated from
the acceleration is obtained by the formula

.a [m -+ 0.15313.‘ i
Vhax = -l —o.01i8 R km/h (6.17)

and from the value of the h vector (1.6—4.)

3
[ThiR - L
Vi = 3.6 1/ __~;hlfi L km/h (6.18)
Functions V& and Vi, are represented in Fig. 19. The abscissa of the
point of intersection of the functions in comparison to which the radii of the

circular curves are greater, and therefore, the h vector is critical, can be

calculated on the basis of the equality Viax = - by equation
hizL?
RV: 'l : m 3 m (6.19)
o2 {laf 4
{) o 0.153]

Examination of radii of vertical eurves applied in changes of grading

The radius of the vertical curve can be calculated on the basis of the
acceleration with the aid of the formula
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R —— m, (6.20)
3.6%|ay|
wherein a; designates the acceleration permissible in the vertical plane
(a; = 0.35 m/[s?).
From the formula of the 3rd order characteristic of motion (6—35)

s &
3.6%h|d 238
Taking the motion in the vertical plane into account [h| = 0.3 m/s®

The limiting speed can be calculated from equality R‘} = R; on the basis

of (6.20) and (6.21) above which the effect of the h vector is critical (Fig. 20).

iy
7, = 3.6 24

— ~= 52.5 km/h (6.22)
la|

Here, it is to be noted that in practice, several railways. considering the

small radius resulting from the probable acceleration, determine the value of

the vertical radii from the empirical relation RJ- = T in lieu of the acceleration

aspect. Figure 20 clearly demonsirates that the above proceeding represents a

significant “overdimensioning™ which is otherwise also to be seen from the

comparison with the values calculated from the formula R, = 173/328 justified
by the geometry of motion {Table 4).

10000

A
v, 7, kmih

Fig. 20. Examination of the radii of vertical curves applied in changes of grading

Table 4

Magnitudes of radii of vertical curves applied in changes of grading

Rj» V, km/h
m 60 80 100 120 130 140 150 160
Ry= V3238 908 2152 4202 7260 9231 11529 14181 17210

Ry= V* 3600 6400 10000 14400 16900 19600 22500 25600
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From the instances dealt with in the foregoing, above speed ¥ =
= 35...52.5 km/h (i.e. the radius E = 270 m), and in calculating the length
of the transition it is the effect of the h vector which is to be taken as critical.

At the same time it can be stated that in case of the examination per-
formed on the basis of the acceleration the error made will be ever greater
with an increase in speed (i.e. the radius of the circular curve) as is to be seen

in Figs 16 ... 20.

Annexe 1.
Unbalanced outward Maximum  3rd order Velocity of o op oune”
Country radial acceleration cant characteristic raising (1/¥)
2 max m/s Mpax mm lmarm/st [vem| mmfs nfV = etgx/V
U.K. (BR) 0.65 150 0.25 (38—57) 10
Austria (OBB) 0.65(0.85) 160 — — 6
Bulgaria (BDZ) 0.65 — — 28(—35) —
Belgium (SNCB) 0.65 160 — — 6
Czechoslovakia (CSD) 0.63 150 0.4 28(—33) 10
Denmark (DSB) 0.65 156 — — 8
Finland (VR)* 0.69 150 — — 10
France (SNCF) 0.98 160 0.3 50 .5
Netherlands (NS) 0.78 150 — —
Japan 0.5—0.88 180 0.14 45 —
Tokaido 0.65—10.39
Jugoslavia (JZ) 0.65 150 — — 10
Poland (PKP) 0.6—0.65 150 0.7 (1.0) (28—35) 8
Luxemburg (CFL) 0.63 150 — e 8
Hungary (MAV) 0.65 150 - — 10
(8)
GDR (DR) 0.65 0.5
(0.85) 150 (1.0) 28—35 8
GFR (DB) V < 160 km/h: 0.85
V > 160 km/h: 0.65 150 — 28(—35) 10 (8)
Norway (NSB) 0.65 (0.69) 150 — — 5.7
Ttaly (FS) 0.85 0.3 7
160 (0.15—0.2) (40— 44) (5.2)
Rumania (CFR) 0.60 — — 28—35 —
Sweden (SJ) 0.65 150 — — 8 (6)
Switzerland (SBB-CFF) 0.65 150 0.24 — 6 (5)
Soviet Union (SzZsD)* 0.7 — 0.6 2835 —
USA 0.5 152 — 32 —

* Gauge: 1524 mm

Prof. Dr. Jen8 MecyErT H-1122 Budapest, Székédcs u 23.






