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Summary 

Fundamental equations of the endochronic material model for cohesive granular materi· 
als have been presented, together with relationships needed for numerical models. Application 
possibilities of original and of significantly modified varieties have been illustrated on numer
ical problems. 

Introduction 

In civil engineering problems, knowledge of physical characteristics and 
internal regularities of the material is often of decisive importance. Theory and 
numerical application results of a material law with several deviations from 
fundamentals of the classic theory of plasticity ·will be presented, found to be 
superior in accuracy to earlier theories for materials of intricate behaviour 
(e.g. concrete, special rocks, etc.) little accessible to other models for tracing 
the exact development of internal stresses and deformations. 

Essentials of the theory will be recapitulated under 2. Equations adapted 
to numerical analysis are presented under 3, followed by essential properties 
of computation programs. A detailed train of computation for linear and plane 
stress states is found under 4, referring to results obtained by gradually correct
ing the model. 

Essentials of the endochronic material theory 

Essential in the endochronic material model is to describe inelastic 
deformations by means of a special variable, the so-called "internal time". 
Internal time is an incremental positive scalar variahle, its increase uniquely 
depends on the increase of deformations. Opposite to classic viscoplastic 
models, here no explicit yield condition is needed. 

Fundamentals of the theory are due to K. C. Valanis [1], ,vith primary 
concern of metallic material properties. Z. P. Bazant, C. L. Hsieh and others 
extended the sphere of validity to cohesive, granular materials (concrete, 
rocks, etc.) [2, 3]. The most important difference hetween the two material 
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types is sensitivity to hydrostatic pressure. This effect is insignificant for 
metals but for granular materials it is advisably taken into consideration. 
Neither the effects of inelastic expansion due to large devi.ator deformations, 
as well as of the deformation-plastification are negligible for the type of 
material examined. 

Let us recapitulate equations of the endochronic material model, omit
ting anything but essential steps. For detailed analyses in several fields see 
e.g. [4]. 

Endochronic material equations 

The examined material is considered to be homogeneous and isotropic, 
omitting dynamic effects. 

Let us start from Schapery's fundamental equation of classic visco
plasticity: 

(1) 

where IOU - strain tensor velocity; (1ij -stress tensor; F -load function. 
In the following, subscript i, j refers to coordinates of an orthonormed basis: 
xli = 1,2, 3) etc. The second term of the equation is measure of inelastic 
deformations, it also depends on the strain tensor velocity. Function @2(8ij ) 

may be considered as continuous and smooth if inelastic material deformations 
develop gradually. Thereby @2 can be expanded to tensorial Taylor series: 

.. . )'n (2) 

where 
(3) 

Again, quotient of the norm of inelastic deformation increment by the 
norm of the entire deformation tensor is greater than zero and less than in
finity, if norm of the strain velocity tends to infinity: 

iflim Ilsull-+ 00 
then 0 < If d s7j 11 < 00. 

lid Sij 11 
(4) 

Let us consider the Taylor series taking both assumptions into considera
tion. If linear term PUeU is kept there, then the first condition cannot be 
met since 8ij may be either positive or negative. Therefore Pu has to be taken 
as zero. From a similar consideration, the cubic term has to vanish, to have 
Pijkmvs = O. Neglecting terms of order four or higher, it is finally: 

(5) 
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To eliminate time, let (1) be multiplied by dt, then divide (after rearrange
ment and reduction) the tensor of inelastic increments by the norm of defor
mation increment tensor 

(6) 

to obtain: 

l!de;]11 = of WI(aij, eij)[~+Pijkldeijdekl Ileij! 
Ildeij[1 oaij II 1,- devsdevs eijllm 

(7) 

Taking the double requirement of the second condition into considera
tion, it is easy to sho,v that it is only met for m = 1/2. Taking it into considera
tion results in the endochronic material model in concise form: 

d eij = DI]kl d akl + d e'h 

where inelastic deformation 

de;] = of dz 
Oaij 

(8) 

(9) 

dz being the fundamental difference compared to any previous material model: 

{(dC)2 (dt)2}'t dz= - +-
ZI TI 

(10) 

where 

(11) 

z denotes the internal time scale complemented with real time in the endo
chronic model (real time being the second term, for creep effects). Of course, 
the first term, function of the rate of deformations, is the decisive one. The 
other parameters are: ZI' the relaxation strain, and -rI' the inelastic deformation 
rate. 

A more common, somewhat simplified form of (8) is that decomposed 
to deviator and hydrostatic parts: 

dS .. deij = __ '} de;] 
2G 

de = da + de" 
3K 

de" = de o + dJ. + ad::;' + dJ,' 
3K 

(12a) 

(12b) 

(12c) 

(12d) 
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where eij deviator part of strain tensor; - mean strain (s = ~ Skk) , 

Sij -stress deviator tensor; -mean normal stress (G= ~ Gkk) ; SO - stress

independent inelastic strain (e.g. thermal expansion or shrinkage); K and 
G are moduli of elasticity of volumetric deformation and of shear, resp. (both 
are variables);). inelastic expansion; }.' - shear compaction; z and z' -
internal times assigned to distorsion and to hydrostatic effects, respectively. 

Effective application of the basic equation depends on how the internal 
time is assumed. This problem ,,,-ill be examined next. 

Assumption of the internal time 

Decomposition of Eq. (8) has bisection of dz as concomitant. Thereby 
(10) becomes: 

(13a) 

(13b) 

In subsequent examinations, time effect will be omitted (in other words, 
d, d,' 

only "rapid" effects with - ~ 1 and - ~ 1 will be considered, permitting 
dt dt 

to neglect the "real" time-dependent second term in the right hand side of 
(13). Internal times become, in modified form: 

dz = dC and dz' = dC' . (14) 

For the examined materials, consideration of hardening and of plasti
fication is rather important, possible by transforming internal deviator and 
volumetric time variables, properly assuming dC and dC'. Different attempts 
have been made for it, see e.g. [1] or [3]. In the actual case: 

di _ dlj 
., - f( ri, sij' Gij) 

(15) 

where 

and 

(16) 

,,,-here 
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where F(eij' aij) and f(rJ, eij' ai) are functions of distorsional plastification 
and hardening, resp.; H(aij) and h(rJ') are functions of compactional plasti
fication, and of hardening upon hydrostatic effect, resp.; ~ and f are incre
mental scalar variables to indicate the rate of distorsion or compaction. 
Increments of ~ and ~' have been defined as: 

d~ = V J 2(deij) = V! deijdeij (17a) 

d~' = V(11(deij))2 = I den + dezz + de33 1 (17b) 

where J 2 is second invariant of the deviator tensor of deformation, and I} 
is first invariant of the complete deformation tensor. 

Inelastic expansion and compaction due to shear are expressed by 
functional relationships: 

dl. = I(/.) . L(I., eij' aij) dg 

al.' = [I(/.) . L'(I.', eu, aij) a~' 

(18a) 

(18b) 

where land L, and l' and L' are expansional, and shear compactional harden
ing, and plastification effects, respectively. 

Use of the endochronic material model in the finite 
element method 

Equations (12) have to be transformed for numerical analyses. Let 
stresses be expressed as: 

or added: 

dSij = 2G(deij -de;) 

da 3K(dc _de") 

(19a) 

(19b) 

aSij daoij = 2Gdeij 3Kdeoij - 2Gdeij - 3de" Oij' (20) 

First two right-hand side terms describe the elastic effect, so they can 
be written in another form (immediately substituting corresponding compo
nents of the inelastic part): 

d • , I. ~dZ'} (21) 
3K 

Further substitution, and zeroing deo, yields the form suiting the finite element 
program: 

1 - c a {S F(eij, aij) dJ: I H(aij) d t~ + 3K~ (d' Id")} ( aij - ij/{m ekm - ij _ " T a _ ,,,,uij Uij /'. T /, . 
",d( rJ, Cij' aij) "'2 h( rJ ) 

(22) 
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The finite element method, or nearer, examination of physically nonlinear 
systems, will not be discussed here. The presented test program has originally 
been intended for problems of plates of a linear-elastic material, actually 
extended to the concerned problem. A simple triangle has been applied, with 
one node of two degrees of freedom at each corner. The stress field is constant 
inside an element. The scheme of the structogram for the program: 

Input of basic data (topology, initial stiffnesses, etc.) 

1= 1,N LOADS 
cycle controls application of load increments. Load values may differ between steps, 
cycle can direct also unloading and reloading 

Iteration cycle to each equilibrium 
I 

Establishment of global stiffness matrix in dependence of instantaneous I 
i material characteristics 
i 
I Computation of nodal displacements I 

I 1\ Check displacements for 

, ~v""n" I max I Uti < eps 

i 
I yes no 
! 
I I j = I, N ELEMENTS. cycle for all elements of the structure I 
I I computation of deformations and of "elastic" and 

I 
"endochronic" stresses 

I i I 
computation of nodal force excesses from unbalanced 

I i 
element stresses 

Printing out displacements, deformations and stresses for the equilibrium condi-
i tion at the end of load increment, corresponding to the given error limit 

Functioning of the program presented in the structogram - essentially, 
a procedure corresponding to the modified Newton-Raphson method -
is illustrated in Fig. l. 

Next, some typical diagrams of results obtained in the analyses 'will be 
presented, enhancing the significance of modifications by correcting the 
program (and the theoretical bases). 

Numerical results, and model correction 

The first problem involved a compressive test in linear stress state. 
Control tests were those by Hognestad, Hansen and Mc Henry [6], and by 
Popovics [7]. Figure 2a shows scheme of the tested "structure", and 2b the 
(J _. e diagram at ultimate condition. 
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I ... 

a -- e functions for cyclic load, and for several unloadings and reload
ings are seen in Figs 3a and b, respectively. 

After the first analyses, details to be refined became apparent. Rising 
limbs of hysteresis loops were too "low", making the material to look like 
more plastic than in reality was. On the other hand, in reloading after unload
ing in low stress state, the material appeared too stiff. 

To eliminate these errors, the following sophistications have been applied: 
To inelastic deformations that contained before only the "plastic" term, 
another component, the term for crumbling upon micro cracking effects has 
been added. 

2 

Hence, (12) is replaced by: 

d - dSij d fI 
eij - -- + eij 

2G 
(23a) 

(23b) 

(23c) 
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Other terms remam inaltered. In plastic deformation, modifieation consists 
in a transformation by shifting: 

(24) 

where oc ij is centre of the deviator load surface, needed in eyclie loading. 
Of eourse, the spherical part of stresses has also to be modified: a* = 

(j -oc'. 
cP in (23b) stands for the crumbling funetion, 'with properties accessible 

to detailed definition (see e.g. in [8]). It is rather similar in form to the Prager
Drueker plasticity condition. In conformity with Dougill's [8] suggestion: 

1 * * 2 ekm ekm (25) 

Substituting it into (23c), the deviator inerement of deformation at 
failure: 

(26) 

IS a transformed variable again. dY.. stands for a new kind of internal time: 

(27) 

where e - multiplier parameter of cyclic load (see later); and Ft - funetion 
for the plasticizing effect of microcracks. Of course, also d~ and d~' have to 
be modified by e and e', respectively. Under monotonous load e = e' = 1 
(see in [5]). 

Another signifieant modification is kinematic hardening introduced in 
eyclic loading. Accordingly, eenters of the actual load surfaces (ocij' OC;j and a') 
jump to the maximum, and minimum, stress and strain points at the begin
ning of unloading, and of reloading, respectively. 

Loading and unloading may be influenced also by load direction-depen
dent e and e' parameter values. In analyzing the strain energy dissipated in 
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Fig. 4 

the load cycle, it may be deduced that two different values have to be assumed 
for c and c', separately for loading and for unloading (see in [5]). Let subscripts 
n and 'V refer to unloading and reloading, resp., then the two correction param
eters are related as: 

(28) 

The loading unloading - reloading criterion as a function of deviator and 
volumetric work (dW = s"m de"m and dW' = 3ads) decides when to replace 
the original parameter c = c' = 1 by cn or cv; namely: 

dw > 0 and W = Wo -, c = 1 
dw' > 0 and w' = Wo -+ c' = 1 

dw < 0 -+ c = Cn dw' < 0 -+ c' = Cn 

dw > 0 and W < Wo -+ c = Cv 

dw' > 0 and w' < Wo -+ c' = C'l' 

original load 

unloading 

reloading 

where Wo and w~ are instantaneous maxima of wand w'. 

(29a) 

(29b) 

(29c) 

Earlier stiffness increment in the new loading limb may be eliminated 
by simple means. The error resulted from the excessive increase of C in cyclic 
loading, so that hardening functions yielded excessive stiffness for the material. 
Let us determine the Co value where the loading process turns unloading, 
and computation has to be continued from the same point Co in reloading, 
a correction producing the proper "behaviour". 

2* 
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In concluding the discussion of modifications, let us mention that intro
duction of the term for crumbling has, at the same time, somewhat modified 
the computation of the variation of stiffness parameters. 

Second term in 
dS·· dG de .. = __ ,] -e··-

I] 2G I] G (30) 

being for ultimate deformation, 

dG 
d% = - - -->- dG = 

G 
G· dx (31) 

also G vs. dX may be indicated. 
Computation results obtained with the modified material model are 

illustrated in Figs 4 to 7. 
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Further research is going on at the Department of Civil Engineering 
Mechanics on theoretical and numerical uses of this model in the analysis of 
complex stress effects (tension, important shear effects, triaxial stress state). 
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