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Summary

The study has introduced the solution of a homogenous differential equation system
on the basis of eigenvectors for the case of external damping proportional with speed that
makes the simple description of approximate solution possible in case of a certain number of
eigenvectors. A method was shown to compose the equivalent damping matrix of structures
consisting of different damping characteristic elements and for the differential matrix equa-
tion system describing vibration. The description of the equivalent differential equation ir
the given form makes the superposition of the matrix of external and internal damping pos-
sible. The equivalent damping matrix was written with eigenvectors obtained from the solu-
tion of an original size real eigenvalue task as a sum of matrices belonging to the individual
eigenvectors. The knowledge of these component matrices makes possible the test of damped
vibration with a certain number of eigenvectors, enabling to determine damping characteristics
at these vibration forms.

Damping caused by internal friction is always to be taken into consideration with
vibration of structures, at the same time external vibration dampers can be used, too. To
consider damping effects, when calculating structures with the method of finite elements, a
model is to be worked out efficient even in case of great degree of freedom. The studyintroduces
a linearized model that makes possible to obtain damping effects with suitable accuracy in
case of determining a certain number of vibration forms and frequency, that is the partial
solution of eigenvalue tasks.

External damping proportional with speed
The differential matrix equation describing vibration is:
Mii(t) - Cu(t) - Ku(t) = q(t) 1)

To solve the homogeneous differential equation system introducing an
unknown

ol

the following differential matrix equation can be written

Ay() + By(®) = 0 (3)

Az[i?:r ?ﬂ B:[“M K]'

where
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Looking for the solution with formula

y(t) = & &% (5)
(mark ~ means complex quantities)
the following generalized eigenvalue task is obtained

AW = —BW (6)

where — as matrix B is not a positive definite — eigenvalues can be real
negatives (great damping), or complex conjugated with a negative real part
(small damping). Depending on the structure of the damping matrix, if damp-
ing does not belong to certain vibration forms the real part of complex eigen-
value pairs can be zero.

It can be proved that eigenvectors w are orthogonal to matrixes A and
B, enabling to write the solution of the differential equation system (3) on
the basis of eigenvectors after their normalization to matrixes A and B.

2n

y0) = 3 % W Ayy . ™
r=
Here y, contains the initial conditions

Yo =[1, )
Uy

Separating the real solutions belonging to real and complex eigenvalues
(n, is the complex eigenvalue pair number) and considering that

W, = [26,]
vy
ut) =]2"1’ 2ot [{A; Mit + (A;€ — 0;AM — ;. B; M) ug} cos wjet —
—{B;Mu, + (B;C —¢;B;M + w; A;M)u,} sin w,t] +
3 v(Mi 4 (— oM 4+ Qg eet Q
Here p; and w;, can be obtained from a complex eigenvalue pair
}“j = —p; + 1),
while g, can be obtained from real eigenvalues
A= —yg

Matrixes A; and B, can be calculated with the help of real and imaginary

parts of complex eigenvectors v;
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v, = v% L ivi
V= V;+ 1V}

vV ylyiE
iy Vi¥j

The solutions belonging to inhomogenous parts can be similarly written on
the basis of eigenvectors.

Using the method of finite elements, the degree of freedom of the system
can be very high at the same time the different eigenvectors play different
roles in the solution, and depending on the initial condition, the solution ean
be obtained with suitable accuracy in the knowledge of some eigenvectors
belonging to the smallest vibration number. In case of solving the solution in
a closed form (8) there is no obstacle to perform the calculations, there is
no need to calculate the multiplication factors depending on initial conditions
of solutions belonging to different eigenvectors.

Calculation of internal, frequency independent friction
in case of different damping characteristic elements

Internal frequency independent friction can be written with the aid
of complex stiffness and in case of structures consisting of different damping
characteristic elements, the differential matrix equation helonging to the
vibration is:

Mu(?) + Ka() = q() ©)

Looking for the solution of the homogeneous equation in form of:

i = ¥ ot
the generalized complex eigenvalue task is obtained:

Kv=IM
(A= 06°).As shown in [1] there is no possibility to write the solution in a
closed form similar to (8), the constants belonging to the suitable solution
of certain eigenvectors are to be calculated from the initial conditions. The
real part of the solution according to [2]:

u(t) = [V'Dy(t) + V'Dy(t)] a + [V"D,(t) —VDy(t)] b (10)
Here V° zimd V! are matrixes containing the real and imaginary parts of eigen-
vectors V
V=V 4 iV
1(2) =

D,(t) = e "2 w, t cos w, t)
D,(t) = (e~ w, tsin w, 1>
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where v, and ©,, can be obtained from 4,

]

Y .V,
6, = (1 -—{- 'L“)-J Ope -

The constants in vectors a and b can be calculated from the initial conditions.
If only some of the eigenvectors are calculately the pertaining multiplication
factors cannot be determined accurated as the number of constants is lower
than the number of the prescribed initial conditions. In this case the method
of minimum squares is used to calculate the elements of a and b or the initial
conditions are prescribed at places of decreased number.

The above-mentioned facts justify the necessity to find an equivalent
C matrix, with which the solution can be obtained in a closed form, in accor-
dance with (8).

In (2) UefiTnun suggests describing the differential equation belonging
to the internal friction in the following form:

Mii(z) + MM~ K)2T u(r) + Ku(t) = q). (11)

The matrix of dissipation factors I' is determined from the suggestion
that the particular solution of inhomogeneous equation should be equal with
the real part of the solution obtained from equation

Mii(t) + (K, u + 1 K,) () = q(t) (12)

when exciting with a harmonic force. According to [2]
=KK,. (13)
If eigenvectors and vibration numbers, orthonormal to M belonging to an

undamped position (v, and ©,) are known

C= MV{w,» V*M) K;*K,. (143
The disadvantage of the method introduced is that both real and com-
plex stiffness matrixes are to be produced and to determine matrix C, matrix
K, is to be inverted. As the degree of freedom can be quite high the production,
storage of the invers matrix (it will not have a tape structure) is a difficult task.
If matrix K, is substituted instead of K is equation (11) and the deduc-

tion is repated, expression (13) is obtained for matrix I’ again. If eigenvectors
obtained from eigenvalue tasks

K,V = 0, MV (15)
are normalized to M, considering that
V*MV = E
VK, V= <w%u>
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the damping matrix is:

1

C =MV V*K, (16)
Ory

that is matrix K, is not to be inverted, the damping matrix can be produced

easier with the eigenvectors of eigenvalue task in (15). Thus the damping matrix

is produced from components in accordance with different eigenvectors:

n 1 . . ~
C:;I‘ZMV,V; K.. 7

Let us consider the case when the structure has identical damping
characteristics. Then
K=(@u-+i)K
and the homogeneous differential equation can be written as

{ n

Mii(t) +

v " . R
T E”i"’"r ¥r Ku u<t) - Kzz ll(t) =0 (18)
r=1U 0, /
With the substitution

u(t) = Vx(t)
and after multiplication with matrix V from the left the differential equation
breaks up into n number differential equations with one unknown

X e - ol,x=0.
Here

f o v

¢, = V* My, v¥K, | V.

re=] U Wpy

If only a certain number of eigenvectors appear in the expression in
brackets, the number of values ¢, obtained are in accerdance with them, viz.
the damping matrix in the sum (17) “distributes” the dissipation characteris-
tics of the structure aecording to certain eigenvectors. This means that the
calculations can be performed with a certain number of eigenvectors, for
these vibration forms the pertaining damping characteristics can be obtained
potentially while for the other ones they cannot be obtained.

Simultaneous effect of external and interral damping
The differential matrix equation belonging to matrixes
Mii(r) + Ci(e) + (K, + i K,)(t) = q(t) (18)

was suggested among others by Gupta [3], who calculated the frequency and
damping characteristics of the damped system on this basis. Let us examine
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first the special case when the matrix of external damping is proportional
with the mass matrix while the characteristics of internal damping are identical
at every element of the structure. The homogeneous equation

Mii(z) + fMa(r) + (u + iv) Ka(t) = 0 (19)

with substitution u(z) = Vy(t) and after multiplication with matrix V* from
the left (V is the matrix of eigenvectors normalized to M belonging to the
undamped case) the equation system is broken up:

FAt) + BF + (u + i) 02§,() = 0. (20)

Looking for the solution in formula:

jile) = o

re

5,1,2=i—g—z'w,vu__ﬂ;_%.iv:iﬁ_iwr(dr_}_ifr): {_g——‘ ,f, - o, d

2

.
1)
N

Leaving out the divergent member from the solution in a way shown in [2]
the real part of ¥ ()

v (t) = e~verell2 e, cos @, t - ¢, sin 1] (22)
Here
O = o, d,
y = ,8 -+ 2C';’rfr
= L T
wrc

As in (21) the quantity under the root is complex §,,, will be complex too,
that is a small damping belongs to every vibration form. If inside friction had
been neglected

4@“

great damping would have occurred at certain vibration forms depending on
the value of § (and on that of » ).Itis evident by a contradiction that internal
friction stops this great damping. Its cause is that vibratory motion viz. small
damping was supposed when introducing complex stiffness. One method to
solve the contradiction is to carry out calculations considering internal fric-
tion and not considering it. In the latter case the vibration forms with small
damping can be chosen. To obtain the final solution the pertaining character-
isties are taken from the model calculated with internal friction while the ones
belonging to high damping are taken from the model calculated without
internal friction. The damping effects originating in the non-linear elastic
character of the material have an effect in this case, too, but their extent
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can be neglected compared to external damping causing high damping. The
suggested method requires the calculations twice and this solution will not
be homogeneous either, cannot be written in a closed form (8).

The requirement to describe external and internal damping with one
equivalent model proportional with speed is a must. Pesaukop [4] constructs
the equivalent matrix with eigenvectors and eigenvalues belonging to equation
(18) that makes the use of relation (8) possible for further calculations. From
the above mentioned facts it is evident that the method gives satisfactory
results if small dampings belong to every vibration form. The method intro-
duced in the following tries to eliminate this deficiency.

(12) is the matrix of dissipation factors only in case of internal friction
and can be written in the form:

'=EK;'K,
and it was produced with equivalence prescribed for excitation
q(1) = ge™
looking for the solution in case of excitation in form
i(t) = ae™
from equation (12)
(K, —a2M) +iK]d=q. (23)
If the solution is calculated from equation (18)
(K, —o2M) + i(K, + «€)]d = q. (24)
Comparing relations (23) and (24) we receive:
'=Ky K, +«K;'C=T, +T,. (25)
Accordingly the damping matrix consists of two parts, too:
C=0¢C 4G,

Here €, is the matrix given by (16) in accordance with the internal friction
while C, is in accordance with (16)

n
C, :rél Mv,v¥ C=C.
We obtained the trivial solution that the damping matrix can be achieved
as a sum of the external damping matrix and the equivalent matrix of internal
friction while the vibrations result from the differential equation system using
a certain number of eigenvectors:

Mii(z) - { S My, v (c L Kv)}ﬁ(t) LK, u(t) = 0 (26)

=1 Wy
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Results of numerical experimenis

The figure shows a double-support beam of constant cross-section. The
beam is divided into five, identical length parts and the bending vibrations
of the system with ten degrees of ;freedom are tested. The external dampers
are operated at points marked in the figure. At the given point vibration

7

Fig. 1

forms 5 and 10 have nodal points thus at these vibration forms external
damping has no effect. To characterize external damping a damping value

was taken thus high damping occurred at the frequency point in accordance
with the first vibration form.

Table 1 contains angular eigen frequency (w,,) and damping characteris-
ties (o,, v,) belonging to undamped and damped vibrations.

Table 1

Frequencies and damping characteristics in case of external damping

e=10 ¢ = 30 kNs/m
or {1s] wre [1/5] or [1/s] tr
1 0.6980 0 6.530 -
0.0908
2 2.796 2,756 1.171 0.8495
3 6.331 5.746 0.5149 0.1792
4 11.42 10.55 3.173 0.6019
5 19.37 19.37 0 0
6 27.95 27.07 2.265 0.1676
7 40.70 40.53 0.9127 0.0450
8 57.81 57.62 0.6817 0.0237
9 77.80 77.69 0.7774 0.0200
10 88.74 88.74 0 0

Also internal friction was calculated. We supposed that an internal
friction characterized with » = 0.02 on the first part (v = v/ where » is the
logarithmic decrement). Table 2 shows that this internal friction has different
effects at different vibration forms. Its specific value, distributed to the whole
bar, is vaverage = 0.02/5 = 0.004. At eight vibration forms the deviation from
the mean is within 209, at the same time the damping characteristic at the
first vibration form is only 259, of the mean. In case of external damping
internal friction increases values o, and », where there was alow damping.
In this case, in accordance with high damping, value o, does not change in a
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Table 2

Frequencies and damping characteristics in case of external and internal damping

c=0 ¢ = 30 kNs/m
Cre or Yr Cire or Ve
1 0.6980 0.00034 0.0010 0 6.530 —
0.0908

2 2.796 0.00429 0.0031 2.752 1.174 0.8531
3 6.331 0.0146 0.0046 5.745 0.5301 0.1845
4 11.42 0.0259 0.0045 10.54 3.197 0.6067
5 19.36 0.0387 0.0040 19.36 0.0386 0.0040
6 27.95 0.0484 0.0035 27.07 2.315 0.1710
7 40.70 0.0690 0.0034 40.53 0.9809 0.0484
8 57.81 0.1427 0.0049 57.62 0.8256 0.0287
9 77.80 0.2735 0.0070 77.69 1.052 0.0279
10 88.73 0.1772 0.0040 88.73 0.1770 0.0040

demonstrable way. Where there was no damping effect from external damping
(vibration forms 5 and 10) damping characteristics are in accordance with
those originating from internal friction.

The calculations were repeated for the case when only some eigenvectors
were written in expression (26). The damping characteristics belonging to
these vibration forms were obtained with accuracy in accordance with the
eigenvector calculation that justifies the facts mentioned for the solution
of vibration calculation by eigenvalue calculation.
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