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Summary 

The study has introduced the solution of a homogenous differential equation system 
on the basis of eigenvectors for the case of external damping proportional with speed that 
makes the simple description of approximate solution possible in case of a certain number of 
eigenvectors. A method was shown to compose the equivalent damping matrix of structures 
consisting of different damping characteristic elements and for the differential matrix equa­
tion system describing vibration. The description of the equivalent differential equation ip 
the given form makes the superposition of the matrix of external and internal damping pos­
sible. The equivalent damping matrix was written with eigenvectors obtained from the solu­
tion of an original size real eigenvalue task as a sum of matrices belonging to the individual 
eigenvectors. The knowledge of these component matrices makes possible the test of damped 
vibration 'with a certain number of eigenvectors, enabling to determine damping characteristics 
at these vibration forms. 

Damping caused by internal friction is always to be taken into consideration with 
vibration of structures, at the same time external vibration dampers can be used, too. To 
consider damping effects. when calculating structures with the method of finite elements, a 
model is to be worked out efficient even in case of great degree of freedom. The study introduces 
a linearized model that makes possible to obtain damping effects with suitable accuracy in 
case of determining a certain number of vibration forms and frequency. that is the partial 
solution of eigenvalue tasks. 

External damping proportional with speed 

The differential matrix equation describing vibration IS: 

lUii(t) + Cli(t) Ku(t) = q(t) 

To solve the homogeneous differential equation system introducing an 
unknown 

y(t) = [n(t)] 
u(t) 

the following differential matrix equation can he 'VTitten 

Ay(t) + By(t) = 0 

where 

~] 

(2) 

(3) 



24 J.Gy{jRGYI 

Looking for the solution with formula 

yet) = eft w 
(mark"'-' means complex quantities) 
the following generalized eigenvalue task is obtained 

~Aw = -Bw 

(5) 

(6) 

where - as matrix B is not a positive definite - eigenvalues can be real 
negatives (great damping), or complex conjugated with a negative real part 
(small damping). Depending on the structure of the damping matrix, if damp­
ing does not belong to certain vibration forms the real part of complex eigen­
value pairs can be zero. 

It can be proved that eigenvectors ware orthogonal to matrixes A and 
D, enabling to write the solution of the differential equation system (3) on 
the basis of eigenvectors after their normalization to matrixes A and B. 

2n 

y(t) = S w,w;AYoeJ.,t. (7) 
,=1 

Here Y 0 contains the initial conditions 

Yo = [~:l 
Separating the real solutions belonging to real and complex eigenvalues 
(n, is the complex eigenvalue pair number) and considering that 

n, 
u(t) = S 2e-Qjt [{AjMu o + (Aj C - fUA}~1 - wjcBjM) u o} cos Wjc t -

j=1 

- {B j MUD + (BjC - QjBjM + wjcAjM) u o} sin WjC t] + 
2n 

+ S v/vT{Muo + (- Q/M + C)uo} e- Q1t
• 

/=2n,+1 

Here (!j and wjC can be obtained from a complex eigenvalue pair 

while (!/ can be obtained from real eigenvalues 

},/= -Q/ 

(8) 

Matrixes Aj and B j can be calculated with the help of real and imaginary 
parts of complex eigenvectors Vj 
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The solutions belonging to inhomogenous parts can be similarly written on 
the basis of eigenvectors. 

Using the method of finite elements, the degree of freedom of the system 
can be very high at the same time the different eigenvectors play different 
roles in the solution, and depending on the initial condition, the solution can 
be obtained ·with suitable accuracy in the knowledge of some eigenvectors 
belonging to the smallest vibration number. In case of solving the solution in 
a closed form (8) there is no obstacle to perform the calculations, there is 
no need to calculate the multiplication factors depending on initial conditions 
of solutions belonging to different eigenvectors. 

Calculation of internal, freqnency independent friction 
in case of different damping characteristic elements 

Internal frequency independent friction can be written with the aid 
of complex stiffness and in case of structures consisting of different damping 
characteristic elements, the differential matrix equation belonging to the 
vibration is: 

Mii(t) + Kii(t) = q(t) (9) 

Looking for the solution of the homogeneous equation in form of: 

the generalized complex eigenvalue task is obtained: 

Kv=2M 
p, = ( 2).As shown in [I] there is no possibility to ·write the solution in a 
closed form similar to (8), the constants belonging to the suitable solution 
of certain eigenvectors are to be calculated from the initial conditions. The 
real part of the solution according to [2]: 

(10) 

Here V" ~nd Vi are matrixes containing the real and imaginary parts of eigen­
vectors V 

v = VD + iVi 

Dl(t) = <e-v,/2 corc t cos corct) 

D2(t) = <e-,·,/2 COrc t sin corct) 



26 J.GYORGYI 

where ')Ir and corc can be obtained from br 

51.- _ (1 I • Vr) 
U r - T L 2 COrc' 

The constants in vectors a and h can be calculated from the initial conditions. 
If only some of the eigenvectors are calculately the pertaining multiplication 
factors cannot be determined accurated as the number of constants is lower 
than the number of the prescribed initial conditions. In this case the method 
of minimum squares is used to calculate the elements of a and h or the initial 
conditions are prescribed at places of decreased number. 

The above-mentioned facts justify the necessity to find an equivalent 
C matrix, with which the solution can be obtained in a closed form, in accor­
dance with (8). 

In (2) UellTJU:!H suggests describing thc differential equation belonging 
to the internal friction in the folIo;ving form: 

Mii(t) + M(M-IK)l/2ru(t) Ku(t) = q(t). (11) 

The matri.x of dissipation factors r is determined from the suggestion 
that the particular solution of inhomogeneous equation should be equal with 
the real part of the solution obtained from equation 

(12) 

when exciting with a harmonic force. According to [2] 

r (13) 

If eigenvectors and vibration numbers. orthonormal to M belonging to an 
undamped position (vr and cor) are known 

(VI.) 

The disadvantage of the method introduced is that both real and com­
plex stiffness matrixes are to be produced and to determine matrix C, matrix 
Ku is to be inverted. As the degree of freedom can be quite high the production, 
storage of the invers matrix (it will not have a tape structure) is a difficult task. 

If matrix Ku is substituted instead of K is equation (11) and the deduc­
tion is repated, expression (13) is obtained for matrix r again. If eigenvectors 
obtained from eigenvalue tasks 

Kll V = co~u l\:IV 

are normalized to lW", considering that 

V* l\:IV = E 

(15) 
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the damping matrix is: 

(16) 

that is matrix K tz is not to be inverted, the damping matrix can be produced 
easier "with the eigenvectors of eigenvalue task in (15). Thus the damping matrix 
is produced from components in accordance with different eigenvectors: 

(17) 

Let us consider the case when the structure has identical damping 
characteristics. Then 

:K = (ll iv) K 

and the homogeneous differential equation can be 'written as 

l\-iU( t) KZ! u(t) = 0 (18) 

With the substitution 

net) = Vx(t) 

and after multiplieation with matrix V from the left the differential equation 
breaks up into n number differential equations with one unknown 

Here 

If only a certain numher of eigenvectors appear in the expression in 
brackets, the number of values cr obtained are in accordance 'with them, viz. 
the damping matrix in the sum (17) "distrihutes" the dissipation characteris­
tics of the structure aecording to eertain eigenvectors. This means that the 
calculations can be performed with a certain number of eigenvectors, for 
these vihration forms the pertaining damping characteristics can he obtained 
potentially while for the other ones they cannot he obtained. 

Simultaneous effect of external and internal damping 

The differential matrix equation helonging to matrixes 

(18) 

",-as suggested among others hy Gupta [3], who calculated the frequency and 
damping characteristics of the damped system on this basis. Let us examine 
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first the special case when the matrix of external damping is proportional 
with the mass matrix while the characteristics of internal damping are identical 
at every element of the structure. The homogeneous equation 

Mll(t) + (J Mii(t) + (u + iv) Ku(t) = 0 (19) 

'With substitution net) = Vy(t) and after multiplication with matrix V* from 
the left (V is the matrix of eigenvectors normalized to lid belonging to the 
undamped case) the equation system is broken up: 

Yr(t) + {J y (u + iv) W;Yr(t) = o. (20) 

Looking for the solution in formula: 

Yr(t) = c eiJrt 

- . {J 
6r1 •2 = ~2 1

/- (J2 
W ,ll--

r 4w~ wr(dr + ifr) = i (~ + wrfr) : Wr dr· 

Leaving out the divergent member from the solution in a way shown in [2] 
the real part of Yr(t) 

11 (t) = e - ",w"I{2 [c cos W t -L c sin W i] ./ r 1 re I 2 re (22) 

Here 
W re = wrdr 

B I ?W· f, I I ..... r r 
V r = -'-----'-"--'-

As in (21) the quantity under the root is complex (5,1.2 will be complex too, 
that is a small damping belongs to every vibration form. If inside friction had 
been neglected 

- . {J 
6r •1 = 1, 2 l! {J'> 

W 1--
r 4w~ 

great damping would have occurred at certain vibration forms depending on 
the value of {J (and on that of wr)' It is evident by a contradiction that internal 
friction stops this great damping. Its cause is that vibratory motion viz. small 
damping was supposed when introducing complex stiffness. One method to 
solve the contradiction is to carry out calculations considering internal fric­
tion and not considering it. In the latter case the vibration forms with small 
damping can be chosen. To obtain the final solution the pertaining character­
istics are taken from the model calculated with internal friction while the ones 
belunging to high damping are taken from the model calculated without 
internal friction. The damping effects originating in the non-linear elastic 
character of the material have an effect in this case, too, but their extcnt 
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can be neglected compared to external damping causing high damping. The 
suggested method requires the calculations twice and this solution 'will not 
be homogeneous either, cannot be written in a closed form (8). 

The requirement to describe external and internal damping with one 
equivalent model proportional 'with speed is a must. Pe3HHKoB [4] constructs 
the equivalent matrix with eigenvectors and eigenvalues belonging to equation 
(18) that makes the use of relation (8) possible for further calculations. From 
the above mentioned facts it is evident that the method gives satisfactory 
results if small dampings belong to every vibration form. The method intro­
duced in the following tries to eliminate this deficiency. 

(12) is the matrix of dissipation factors only in case of internal friction 
and can be ,uitten in the form: 

1"' = K;? 

and it was produced with equivalence prescribed for excitation 

q(t) = qeio:t 

looking for the solution in case of excitation in form 

u(t) = ueio:t 

from equation (12) 

[(Ku - r/,2 M) + i Kr] ii = q. 

If the solution is calculated from equation (18) 

Comparing relations (23) and (24) we receive: 

1"' = K;;IKv + r/, K;;IC = 1"'1 + 1"'2-

Accordingly the damping matrix consists of two parts, too: 

C = Cl + C2 • 

(23) 

(25) 

Here Cl is the matrix given by (16) in accordance with the internal friction 
while C2 is in accordance with (16) 

n 
Cz = S MVrv; C=C. 

r=1 

We obtained the trivial solution that the damping matrix can be achieved 
as a sum of the external damping matrix and the equivalent matrix of internal 
friction while the 'vibrations result from the differential equation system using 
a certain number of eigenvectors: 

Mii(t) { ~M -*(C I 1 K)}'() ~ Vr Vr T - v ut 
r= J (t)ru 

(26) 
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Results of numerical experiments 

The figure shows a double-support beam of constant cross-section. The 
beam is divided into five, identical length parts and the bending vibrations 
of the system "with ten degrees of :freedom are tested. The external dampers 
are operated at points marked in the figure. At the given point 'vibration 

Fig. 1 

forms 5 and 10 have nodal points thus at these vibration forms external 
damping has no effect. To characterize external damping a clamping value 
was taken thus high damping occurred at the frequency point in accordance 
'with the first vihration form. 

Table 1 contains angular eigen frequency (wrc ) and damping characteris­
tics (Qr' vr) helonging to undamped and damped vibrations. 

Tahle 1 

Frequencies and damping characteristics in case of external damping 

c= 0 c= 30 k",s/m 

illr [l/sJ Wre [lIs J Qr [lisJ t'r 

1 0.6980 0 6.530 
0.0908 

2 2.796 2.756 1.171 0.8495 
3 6.331 5.746 0.5149 0.1792 
4, 11.42 10.55 3.173 0.6019 
5 19.37 19.37 0 0 
6 27.95 27.07 2.265 0.1676 
7 40.70 40.53 0.9127 0.0450 
8 57.81 57.62 0.6817 0.0237 
9 77.80 77.69 0.7774 0.0200 

10 88.74 88.74 0 0 

Also internal friction was calculated. We supposed that an internal 
friction characterized with v = 0.02 on the first part (v = v/:rc where v is the 
logarithmic decrement). Table 2 shows that this internal friction has different 
effects at different vihration forms. Its specific value, distributed to the whole 
har, is Vaverage = 0.02/5 0.004. At eight vibration forms the deviation from 
the mean is within 20%, at the same time the damping characteristic at the 
first vihration form is only 25% of the mean. In case of external damping 
internal friction increases values Qr and VI where there was a low damping. 
In this case, in accordance 'with high damping, value !2r does not change in a 
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Table 2 

Frequencies and damping characteristics in case of external and internal damping 

c=o c= 30kJ."<,/m 

Wre Qr Vr CJ1'C Or Pr 

1 0.6980 0.00034 0.0010 0 6.530 
0.0908 

2 2.796 0.00429 0.0031 2.752 1.174 0.8531 
3 6.331 0.0146 0.0046 5.745 0.5301 0.1845 
4 11.42 0.0259 0.0045 10.54 3.197 0.6067 
5 19.36 0.0387 0.0040 19.36 0.0386 0.0040 
6 27.95 0.0484 0.0035 27.07 2.315 0.1710 
7 40.70 0.0690 0.0034 40.53 0.9809 0.0484 
8 57.81 0.1427 0.0049 57.62 0.8256 0.0287 
9 77.80 0.2735 0.0070 77.69 1.052 0.0279 

10 88.73 0.1772 0.0040 88.73 0.1770 0.0040 

demonstrable way. Where there was no damping effect from external damping 
(vibration forms 5 and 10) damping characteristics are in accordance "With 
those originating from internal friction. 

The calculations were repeated for the case when only some eigenvectors 
were "ivritten in expression (26). The damping characteristics belonging to 
these vibration forms were obtained with accuracy in accordance vl'ith the 
eigenvector calculation that justifies the facts mentioned for the solution 
of vibration calculation by eigenvalue calculation. 
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