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Summary

The element of a body whose stresses or strains or their combinations are governed by
prescribed conditions are termed conditional joints. During a loading process new contacts
develop (locking of gaps) or existing connections become ineffective (plastification) causing
physical nonlinearity of the solid. This ideal elastic-plastic-locking behaviour of materials
can be described by subdifferential constitutive law and referring continuously non-differ-
entiable strain and complementary energy functionals.

Using the new terminology of subdifferentiation there are possibilities to discuss more
generally the constitutive laws of non-differentiable but convex energy functionals of bodies
consisting of elastic-plastic, hardening, contacting-locking elements.

Introduction

The ever widening range of materials and structural forms increasingly
requires the development of complex mechanical models more exactly, describ-
ing the real behaviour of materials and structures, to improve the economy of
design and construction of these structures.

The first classic material model assumed the material to behave elasti-
cally. The search for economy induced to take plastic material properties
inte comsideration, continuously developed both theoretically and practically
since the beginning of the century represented by [1] to [13].

By about the mid-century, first of all in machine construction, but later
in building mechanics, analysis of the contact properties of structures has
come to the foreground represented by [14] to [22]. By the late “fifties, [23]
has suggested to take the contact character as a material law into consideration
by respecting the so-called “locking” hehaviour of materials. It has induced
the research on the so-called conditional joints by the late ’sixties ([24] to

[28]), pointing out that singular points of solids or structures. behaving under
either plasticity or contact condition, may be handled as conditional joints,
thus, also the contact character may be considered as a material property.

Research on constitutive laws expanded simultaneously with that on
the theory of plasticity, feeding on its roots. Pioneering works [29] to [32]
have started a surge of investigations ever hetter founded mathematically
({33] to [45]). By development of computer facilities the numerical treatment
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of plasticity and contact problems has prospered simultaneously. Among the
great many research teams, the Italian school’s fundamental works in mathe-
matical programming applications are remarkable ([49] to [51]).

Development of mathematics emitted the clearing of mathematical
fundamentals more generally, By the late *seventies, mathematical formulations
of elegance, after French patterns mainly, have led to the possibility of com-
bined handling of elasto-plastic contact (locking) behaviour of materials
([52] to [67]), theoretical and practical confluence of plasticity and contact
problems.

This paper is an attempt for the sake of confluence by coordinating
conditional joints resulted by mechanical respect, and so-called subdifferential
connections due to mathematical approach [67].

The theoretical examination of subdifferential connections and material
law relies essentially on fundamental work [60].

The generalized conditional joint

Structural elements or solid points behaving under predefined condi-
tions are called conditional joints. Referring these conditions to forces or
stresses, strength-type (static-iype) conditional joints, and to displacements
or strains geometric-type (kinematic-type) conditional joints can be distin-
guished. If these phenomena occur at the same connection element or point
consecutively then generalized conditional joint is spoken of [25]. For example
a behaviour controlled by strength-type condition is attributed to plastifica-
tion of certain regions of solids; but the contacting-detaching connections,
opening-closing cracks or gaps are conceived as conditional joints of geometry-
type. As a typical generalized conditional joint the closing crack of a solid,
following by plastification can be treated.

Thus, stress or strain discontinuities assigned to the point, in & certain
mutual precedence, can be considered as generalized conditional joint.

Behaviour of the generalized conditional joint depends on the loading
process, during which the stress/strain relation at the point is governed by
the joint’s conditions. Considering all the points of the solid as a generalized
conditional joint it seems self-intended that the behaviour of the material
may be described by the connection conditions.

Let the examined solid be a subspace V of the three-dimensional Euclid-
ean space, with boundary surface S. Let us assume any point of the solid
as a generalized conditional joint. Mechanical state of the solid is described
by stress and strain fields

oij(x:) € RS i€V
gix) €ERS x eV
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of the six-dimensional vector space interpreted in geometry space V. At the
generalized conditional connection point, stresses and strains are limited by
generalized activization condition [26],

gx) = {Fu(x:), filx), k=1,2,....,m; I=1, 2,...,n} x€V

where m and n are the number of sirength- and geometry-type conditions
specified for the same point x,
Fi(x)) = F(o(x;), o5(x)) <0, o0 €RS,
and
filwd) = fleg(x), Blyx)) <0, e €R
respectively.

Condition F, corresponds to the well-known yield condition of the
theory of plasticity, thus, F, is the yield function; condition f; regulates the
locking of connections, thus, advisably, f; is the so-called locking function
[28]. Stress and strain-type constants «;; and f;; in conditions F) and f
define the convex sets interpreted in the six-dimensional Euclidean space:

K, = {&; 1 i< 0} &;€RS,
and
Kfi={0;| F, <0} o €RS
respectively. Illustrating all the conditions g=0 (F, =0, k=1,2,...,m;
fi=0,1=1,2,...,n) in the six-dimensional coaxial coordinate system Oy
¢;; leads to a convex hypersurface set of m - n elements corresponding to the
number of conditions prescribed for the same point x,, enveloping convex
sets Ki and K,, namely
front K; = {&; | fi =0}, ¢&;€RS,
and
front Kf = {oy; | F, =0}, o €R®
respectively.

Every element of this hypersurfaces set includes the origin, corresponding
to the unloaded state of the conditional joint. Precedence of conditions specified
for the same joint namely, the mutual dependence of conditions is illustrated
by the relative position of hypersurfaces.

Figure 1 presents a section of six-dimensional hypersurface set g =0
in a simplified form for cases m = 2 and n = 1, that is, when a geometry
condition is surrounded by two strength-type ones. During the loading process,
the behaviour of the joint controlled by the consecutive conditions may be
observed.

In course of activization of strength meaning (F, = 0); and of geometry
meaning (f; = 0) of joints strain and stress increments dsjj, and doj; arise,
respectively, in conformity with the normality law

da;'zj € d/lh * ﬂFIx(GU)
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and
dﬁ'?j E d), . ﬁﬁ(é’,’j), (1)
where coefficients d.1, >> 0 and dJ, > 0 are the non-negative, multiplier veloc-

L P . . . . a >
ities of activization state characteristic increments ds?j and d Gije respectively.
These are charaeterized, in the inactive state of connection

for Fr, <0 by 4d,=0, or,
for fi<<0 by A =0
in the active state of the connection
for F;, =0 and dF, = 0, by A, >0, or,
for fi=0and dfi=0, by 4 >0;
and in the unloading (after active inactive again) state of connection
for F;, =0 and dF, << 0, by 4, =0, or,
for fi=0and dfi< 0, by 4 =0.

The symbols 9 F,(0;;) and 79f,(8 ;) in (1) are the sets of so-called gradient
tensors, that is: where FU and f,j are elements of a normal cone constituted
by outer normal vectors at points o;; € front K; and ¢; € front K, of
six-dimensional convex hypersurfaces F, = 0 and f; = 0, respectively. If func-
tionals F, and f; are differentiable at pomts o;;and g, resp. then the normal
cones contain a single element F}; and fi > Tesp.: 1f they cannot be differentiated
but subdifferentiated, then the normal cones consists of sets of several elements.
For normal cones containing more than a single element, the extension of
the Koiter’s generalized yield law [31, 32] for the case of generalized activiza-
tion law is spoken of. More exactly: a vector de; or dof; belonging to a singular
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point o‘ijEfront K; or sijéfront K, lies among, or is coincident with the
normal vectors belonging to the regular points near the concerned point.
There upon the activization law can be formulated, namely: activization
state characteristic increments can only arise where the activization function
has a value of zero, that is, the activization function is potential function of
activization state characteristic increments. Furthermore, functionals F, and
f; are called the superpotentials of the connection, and the generalized condi-
tional joints are called subdifferential connections [60]. The subdifferential
connection will be detailed in the next chapter.
In the case of generalized conditional joint, the orthogonality law pre-
vails, namely:
defy + doj; =0, o€ K, (4)
or
do% - deyy =0, ;€ K,

d

that is, if e.g. o;; € front Kj, namely in the active state of the connection,
Fi(0,) = 0 and dF,(0,) = 0, then vector dei; > 0 is element of the normal
cone, but do’ij of the tangential cone, hence def—zj . do‘l.j = 0. With unloading
of the connection, if Fi(c,) = 0 and dF,(0;) < 0 then de; = 0; and in the
inactive state of the connection, of F,{(Gij) < 0 and dF,((crij) > 0, then ds?j = 0,
as well. Thus, relationships (4) are equally valid in the inactive, active, and
unloading state of the connection.

The subdifferential connection

Let U denote the six-dimensional linear space constituted by generalized
displacement vectors of a mechanical system (the solid) interpreted in a
three-dimensional Euclidean space, and F its six-dimensional linear space
constituted by generalized force vectors. Be U and F dual spaces, u € U and
f€ F a dual element pair.

Transformations 4 : X—F X cCc Uor B:Y-U Y < F are termed
connective operators of the mechanical system [60], where

fedwyc F  wvueXc U,

or
u€B(f)c U vfeYcCF.
Sets
. D,={f|feY, B(f)=6}

Dg={uluecX, A(u)==96}
are termed domains of connective operators 4 and B, while sets

{4(w)} and {B(f)}
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are the ranges of the connective operators. If for yu € X or Vf€ Y, sets
A(u) or B(f) consist at most of a single element each, then the connection is
called unique.

Connective operators mean a transformation between spaces of forces
and of displacements, so that they lead to the material law, considering the
solid points as connection points.

A connection under the validity of

A(u) = 90(u), YuelU

B(f) = 90(f). VfeF

where @ and @ denote convex functionals, interpreted in space U, and F,
respectively, is called a subdifferential connection. Namely then f¢ A(u) and
u € B(f) are elements of the set of subgradients of functionals ®(u), and Of),
respectively

or

FedD(u) and u € FO(f)

where dual functionals @ and @°(0°)° = @) are termed superpotential, and
conjugated superpotential of the connection, as generalized potentials. Intro-
duction of the concept of superpotential is due to Moreau [54], further general-
ized by Panagiotopoulos [61] relying on maximal monotonous operators.

It is needless to interpret functionals @ and @° on the whole space U
and F, but it is sufficient to interpret @ = @, and ®° = & in a convex subsets
X c U, and Y C F, respectively, and for 1 § X and f¢ Y to stipulat @ =
= L oo, and &° = -Loo. Thereby, by introduction the indicator of convex sets
[55], interpretation of @ and @° can be extended to the whole spaces U and F,
respectively:

D(u) = Dy(u) + Ix(u) VYueU,

(f) = O§(f) + I(f) VfEeF,

where the indicator functionals of the convex sets are

or

€ X,
Ii(w) = 0, for ucX,
oo, for ud X,

and
0, for €Y,

“(f) = !
oo, for f4Y,
respectively.
Dual functionals @ and @° are affected by variational inequalities:
D(u,) —P(u) > {fou;, —u> Vu, € U, for ue U,
and

o(fy) —Df) = (u, fy —f> VL EF, for f€ F.
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and since f and u are subgradients of @ and ©®° at points u and f, equality

O(u) + O(f) = <u. f>
is valid in Fenchel transformation [52].
In occurrence of the special cases

Dyu) =0 or Off) =0,
hence
D(u) = Ix(w) or Df) = IY(f)
for the connection, it is called an ideal unilateral {conditional) connection.
Now, fand u are subgradients of the indicators, directly, i.e.:

FebIs(w), Yuel,

and
weBI(f). V€ F.

where fand u are elements of a normal cone composed of outer normal vectors
at points u and f of convex sets X and Y, respectively. For u € int X, and
f€int Y, the normal cones contain only the zero element; for u € front X, and
f€front Y, normal cones may contain nonzero elements. If functionals @
and @° are differentiable at points u € front X, and f¢€ front Y resp., the
normal cones contain a single element.

If convex subsets X or Y equal to the whole spaces U or F,ie., X = U,
and Y = F, that is, I (u) = 0 and Iy(f) = 0 (being meaningless the condi-
tions u ¢ U and f§ F) so that

D(u) = @(u) and &(f) = OG(f),

it is called a bilateral (unconditional) connection where functionals @, and
@§ are differentiable everywhere.

Subdifferential connection as material model,
the subdifferential constitutive law

Generalization of the concept of differentiability of convex functionals,
interpretation of subdifferential and of subdifferential connections are seen
to permit generalized discussion of conditional connections, hence, of the
constitutive law. Namely, also for material models indicated by convex, not
everywhere differentiable strain and complementary strain energy density
functions W(e;;) and W%(o,,), resp., relations between stress tensor o;; and
strain tensor g

U,-jéﬁW(aij) sijER“
and

Sz'jE'ﬁ‘Wc(G'ij) G',‘jéRG
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remain valid, where W(s;) is a convex functional interpreted in the six-
dimensional R® Euclidean space defined by scalar product (o, &>, with its
conjugated Wc(o‘ij):

We(o;j) = sgg {oy &y — Wl(e;)) Ve, €RS,
eyERS®

where also Wc(o‘l.j) is a conves functional. Functionals W and W* are termed
superpotential and conjugated superpotential, resp., of the constitution law.
Derivation as subgradients of convex functionals W and W° is responsible
for the monotonous increasing character of connective operators o,(¢;;) and
¢;(0y;), that is:

7 1 ; 1 .

Wlerj) — Wiey) > o(el; —ei;) Ve € RS, for &;€ RS,

and

1 o 1 ﬂ

Wc(ﬁ'i/'> — —};C(G‘[j) 2 8[‘]'(0‘1']' — G','j) \\'{JG}J‘ € RG, for Gyf € RG,

corresponding to Drucker’s stability postulate [29, 30]. Functionals W and
W* are defined as:

<o for ;¢ K RS,
me) = | ,

oo for 8ij€ K}
and
.e G 6
We(oy) — <oo for o€ K‘CRS,
co for o;;4 K-,

where functionals W and W may be subdifferentiated for &;; € K and ;€ K¢,
resp., what means that sets 9//(e;;) and 19Wc(o‘!.j) of their subdifferentials are
no empty sets for any fixed ¢;; or o,;, while for ¢, ¢ K or o'l.jQKc, that is,
if W(e;;) = oo or W(o,;) = oo, then dW{(e;)) = 0, and §Wo;) = 6.
Though, convex sets K and K° are:
K = {Sij lf(é‘u) :\i 0}. int I{ == {8ij {f(:?,]) < 0},
front K = {¢; | f(e;;) = 0},
and
Ke = {ai | F(oy) < 0}, int K* = {ay; | F(oy) < 0},
front K¢ = {O','j l F(O‘,‘j) = O},
having indicators I;(e;;) and IfK(Gij) leading to energy functionals W and
W* as:
Wiey) = Woler) + Txley) &ij € RS,
and
We(oy) = Wi(oy) + Iikl(oy) o€ R
where I§<(crij) is conjugated indicator of Iy(¢;;). In particulars:
}. 'f(fij) == 0, fOI‘ Eij E K = RG,
I(ei) =
oo, for ¢;4K,
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and
A Fo) =0, for o;€ KCRS
oo, for O',‘j é K¢,

Ei(oy) = {

Namely, if & €int K, then 2 = 0, and for &; € front K, it is f(sij) = 0. Simi-
larly, if o; € int K°, then /A = 0, and for o, € front K it is F(o;;) = 0.

Since strength- and geometry-type conditional functions F(o;;) < 0 and
f(e;) < 0 specified for subdifferential connections are convex, in space R°
everywhere subdifferentiable functionals the material law becomes:

o € OW o(ej) + B xlei))s
ei;€ 0Wi(oyy) + #1k(a1))-
Let us form the set of subgradients of indicator Ix(e;) at point ¢,

I (er)) = A f(ey) = 4 - fy, for ;€ K,
7 e, for ¢4 K,

and

j:

however, for ¢, € int K. it is 41, (¢;})=0, but for ¢, ,€front K, it is #1(e;;)==0.
Similarly
A 19F(O','j) = /- Fi]-, for O’,’jE Kc’

29_[6 O} =
i) [e, for oy 4 K.

By geometrial interpretation, sets #I,(e;) and #Ik(o;;) constitute the
normal cones of outer normal vectors 1-f;; and 4. F; at points ¢; and o;; of
enveloping surfaces of convex sets K and K°. For F(o'l.j) < 0, and f(el.j) <0,
the cones contain the zero element alone, for F(o‘!.j) = 0, and f(eij) = 0,
in addition to the zero element, also further nonzero elements may be contained.
If Iy(e;) and I§<(o‘,-j) are functionals everywhere differentiable above K and
K¢, resp., then the normal cone contains a single element.

Thus, the subdifferential constitutive law may be summarized as follows:

o E 79W0(8ij) + ). ﬁ], fOI' Eij E K,
7ol for 4K,
e, ¢ [Poloy) + A - Fy, for oy € K5,
7ole, for o4 K-

Because of the subdifferentiability of convex functionals, as generaliza-

tion of the classic Legendre transformation, the Fenchel transformation [52]
is valid, namely:

W(ei;) + We(oy) = 045 * eijp 0ijs €, € RS,

but here I and W° are functionals not differentiable everywhere !
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In the special case of W, = 0, and W = 0, that is, if:
W(E,'j) = IK(gij) and WC(O‘U) === I%(O’U)-

a perfectly closing, or perfectly plastic material is spoken of.
In this case:

oij € I g(e)) = {l “fip for g;€K,

8, for ¢;4K,

and

A - Fiﬁ fOI‘ Gij E KC,

8, for o;;¢ K"

The Fenchel transformation is also then valid, hence, if
e;j € K and W(sg;;) = Ix(e;;) then

WC(O‘U‘) = dij . Sij —II((SI']') =} .ﬁj 81']'7 SijE K.

Sij E '191‘}((0'1]) = {

Namely then

Tp(es) = 0, for g;€K,
7 oo, for &4 K,

and
A+ fiy, for g €K,
o;; € Bl (e;;) = / J
1 € Olxley) {e, for ;4 K.
Similarly, if
o;; € K¢ and W¥(oy;) = I%(o;), then
W(S,’j) == Ejj Ojj ——-I}g(Gij) = /- Fij * Oijs Gije Kcv
namely then:
L C Ke
Li(oy) = 0, for o;€ K"
oo, for Uij é Kc,
and
A+ F;, for o€ K¢
g;; € #I%(0;;) = e H ’
y € Blidw) {e, for oy 4 K.

Thus, in an ideal unilaterial connection:

W(eij) = Ix(ei) = 2 'f(eij) =0
Gl'j(sij) = 2, '.fij lf sij E I(,
We(ou) = 2 f oy
and
WE(O','J') == Ii((G'U) = 4- F(O',j) = {
Eij(Gij) = /1 . F,‘j if O'ije K=,
W(Sij) = /- Fij . Uij
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The case of simultaneous &; € front K, and oy € front KC is impossible,

since

front K N front K¢ == 6.
hence front K and front K® are disjunct sets. It would mean that the same
point of a solid body cannot get in locking and in plastic state at the same
time,

For an ideal bilateral connection, if Iy(e;) =0, ¢;, € R® and I'(0;)) = 0,
0;; € R%, that is, if K = Ry, and K€ == RS, then

Wieij) = Wy(ey;) and We(o;;) = W(oy)),
and
Wi(oy) = o1j 817 — Woler),
an elastic material is spoken of.

The material model interpreted as subdifferential connection was seen
to integrate elastic, locking and plastic properties of the material. In course
of the loading process, a solid point may get into elastic, plastic or locking
state, or even it may be unloaded, thus, it may behave according to different
0;; — &; laws controlled as a subdifferential connection.

To have a closer insight into this generalized material law, let it be applied
for the simplest case: uniaxial stress/strain state [66], where the subdifferential
material law is characterized by a polygontype stress/strain function. Hence
the name if “polygonal constitutive law” for the subdifferential material law.
Let us consider such a polygonal material law in Fig. 2, as subdifferential
curve of convex energy functionals W(e) and W*(¢), namely where:

c € 9W(e) and &€ 9W(o).
As seen in the diagram, for ¢ € int K7, where
front K¢ = {0 |og < <oy},

the point behaves as an ideal bilateral connection: perfectly elastic.
However, for o € front Ki, where

front Kf = {o]0 =&, or =101},
accordingly, ¢ € K, (but ¢ ¢ K; < K,) where
Ky={e|p<e< By}

the point behaves as an ideal unilateral connection: perfectly plastic. Further-
more, for ¢ € front K, where

front Ky = {e|e=f, or ¢ = f;},
accordingly ¢ € K3 (but o ¢ K; — K§) where
Kg: {G ‘“égo‘gaii}s

the point behaves as an ideal unilateral connection again: perfectly closing.

4
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By way of complementing, hypersurfaces referring to conditional joints
envelope surfaces of closed convex sets K, and K, have also been represented,
but each closed, convex hypersurface only by a single point pair, in conformity
with the uniaxial state.
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