
NOTES ON THE THEORY OF LARGE 
DISPLACEMENT WITH SMALL STRAIN 

Department of Civil Engineering Mechanics, 
Technical University, H-1521 Budapest 

Received July 16, 1984 

Presented by Prof. Dr. S. Kaliszky 

Summary 

In this paper the kinematics of large displacement with small strain is analysed. It 
has been proved that the partial linearization in strain-displacement relations and equations 
of motion (or equilibrium) is not correct, because the neglected non-linear terms have the 
same magnitude as the ones left. It was shown that the "small rotation tensor O)L" does not 
rotate but describes the vector-product. The real rotation tensor with both small and large 
rotation is given with the aid of polar disintegration. The rotation tensor with quadratic 
approximation is given. too. The boundary-value problem of large displacement with small 
strains is given. 

It has been shown that the state of a body is characterized locally by the kinematical 
and dynamical relations of continua. But the small strain with large displacement is the 
result of the "smallness" of one of the global measurement of the analyzed body. Hence, 
the "smallness" global can be taken into consideration at the numerical approximation of the 
equation of state: The basis functions depend linearly or quadratieally on the coordinate 
pointing in the direction of "thinness". 

The typical problems which can be solved with the aid of the theory of large displace­
ment and small strain are enumerated here. 
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Affin strain tensor in the neighbourhood of a point 
Linear approximation of the affin strain tensor; small affin strain 
tensor 
Metric tensor in deformed state 
Metric tensor in non-deformed state 
Identity tensor 
Prescribed surface traction 
Orthogonal tensor 
Position vector from the origin 0 in deformed state 
Position vector from the origin 0 in non-deformed state 
Displacement vector; its components 
Prescribed displacement vector; its components 
Measurement tensor of strain 
Kronecker's delta 
Small strain tensor; its components 
Linear approximation of the small strain tensor, linear strain tensor 
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Angle of rotation described by rotation tensor 
Angle between differencials of position vectors dr and dR 
Lame moduli 
Length of radius of curvature 
Mass density 
Stress tensor; its components 
Rotation tensor in the neighbourhood of a point 
Linear approximation of the rotation tensor; small rotation tensor 
Three-dimensional bounded and open domain 
Traceless part of the small rotation tensor Q,L 

Vector collinear with the axis of rotation described 
by small rotation tensor Q,L 

VP Gradient tensor of vector p 
VR'" Mapping tensor of strain 
cos(n, q) Components of outward unit normal vector n on 8Q 
mes Q Diameter of domain Q 
8Q Boundary of domain Q 

11 11 Norm 
< , ) Scalar multiplication 
o Direct multiplication 
E Belong to 
'" Notation of transposition 
Italic subscripts can be 1,2, 3. Einstein-convention of the summation is used 
over the repeated subscripts. 

Introduction 

The mechanical behaviour of thin-walled bodies has two characteristics. 
On the one hand, the kinematics of the thin-walled bodies is characterized 
by large displacement but small strain, on the other hand, the distribution 
of stresses can be described by linear functions in the direction of the "thin­
ness". Because of the latter, the theory of the thin-walled bodies is regarded 
as a special numerical solution to three-dimensional problems [4, 6]. In this 
way, the theory of the thin-walled bodies \vith large displacement and small 
strain is regarded as a special numerical solution to the three-dimensional 
non-linear theory, too. 

First, the kinematics of large displacement with small strain is analysed 
then the boundary-value problem of the theory is written down. In the end, 
he possible applications are given. 

In this paper only isotropic, homogeneous and linearly elastic bodies 
are analysed. 
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Survey of literature 

The non-linear theory of elasticity was discussed by Novozhilov [9]. 
Deduction of the classical theory of rods and shells from the three-dimensional 
problems was made by A. Love [7]. Two- and single-variable problems are 
regarded as a special approximation method [6], and an exact derivation of 
the two- and single-variable problems from the three-variahle ones was givcn 
in a previous paper [4]. The derivation of the boundary-value prohlem of 
cables and flexihle membranes from three-dimensional problems is given in 
the paper [5]. 

Kinematics of large displacement with small strain 

Let l' and R denote the position vector in non-deformed and deformed 
state, respectively, and u = R -1' the displacement vector. Let g and G 
denote the metric tensor in non-deformed and deformed state, respectively. 
The tensor y = G - g is called the measurement tensor of strain. The relation 
between differencials of position vectors in non-deformed and deformed states 
of one and the same point of the body dR = VR* elr holds [8]; where the 
tensor VR* is called mapping tensor of strain. Using relations 

R = r + u(l') 

hence 
VR* = I + Vu* 

and 
y=Vu Vu* + VuVn*. 

If the measurement tensor of strain is small, the relation 

liyll <{ Ilgll 
holds and the small strain tensor of the body is defined hy 

1 
E=-y 

2 

(see [8]). 

(1) 

(2) 

(3) 

(4) 

(5) 

From the condition (4) regarding the measurement tensor of strain, 
it does not follow that the tensors EL and W L are small, that is the relation 

IIELII <{ 1 (6) 
and 

IlwLi! <{ 1 (7) 

hold. Here 
1 

'Vu"') (8) Er = -(Vu 
- 2 
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Fig. 1. Large displacement with small strain 

is the linear approximation of the small strain tensor, and 

(9) 

is "the small rotation tensor". 
For the verification of this statement let us consider two examples. 

First, the rigid body rotation "will be analysed. Let Q denote the tensor of 
rotation. The position vector in a deformed state is 

R=Qr, 

the displacement vector is 

u = (Q -I)r, 

and the strain tensor is 

E = ~ [(Q-I) + (Q* -I) + (Q-I)(Q* -I)]. 
2 

(10) 

(11) 

(12) 

Obviously, the strain tensor is identically equal to zero because QQ* = I 
(Q is orthogonal). At the same time neither EL' nor w L is zero, and they are 
not small either. (This example is mentioned by Gol'demblat and Lur'e, 
too [1, 8].) 

The rigid body rotation refers to the whole body, so a thin, long beam 
bent into a circular arc will be considered here (Fig. 1.). On the basis of geo­
metric considerations 

X 
rp=-. 

e 
(13) 
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The problem seems to be a two-variable one, in this way, the position vectors 
in non-deformed and deformed state are: 

the gradient tensor of displacement is 

l ~cos~-l q 12 
\TU= _ 

. x 
SIn-

e 12 

. x J SIn -
12 , 
x 

cos "12 -1 

and the measurement tensor of strain is 

(
2Y 

Y == -.:::::... 
12 

. x XJ -sI.n-cos -
12 12 

.. ,X 
Sln--

12 

The measurement tensor of strain will be small in case the relation 

112.Y..l... (L)21 ~ 1 
e I 122 I 

holds, e.g. the relation 
h 
-~1 
12 

Y Er-~; ~J 2 2 

(14) 

(15) 

(16) 

(17) 

(18) 

holds, too. In this case, the gradient tensor of displacement \Tu and tensors 
EL and wL will not be small and they will not be negligible as compared with 1. 
For this reason, the argument of functions cosine and sine should be small, 
e.g. the relation 

x 
-~1 x E [0, L] (19) 

12 

should apply which refers to the prevailing of 

\Tu ~ 1. (20) 

It is obv-ious from the above mentioned that in the case of large displace­
ment 1' .. -ith small strain, the strain tensor is non-linear, and the non-linear 
parts of it are "needed", so that the strain tensor is small indeed. So, in the 
identical mathematical transformation 

(21) 
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no partiallinearization on the basis of the magnitude of EL and (t)L is possible 
in the case of large displacement. The reason for it is that the whole sum is 
needed for the relation to hold (4). So, in literature the partial linearization 
on the basis of magnitudes EL and (t)L is not correct in the case of large displace­
ment ,dth small strain [8, 9]. Naturally, the neglection of EL in the identical 
mathematical transformation 

(22) 

in the equation of motion (or equilibrium) is not correct either [9]. In the 
case of large displacement ",rith small strain none of the non-linear terms 
can be neglected, the partial linearization cannot be executed ·with the aid 
of transformations (21) and (22). 

Comments 

1. The partial linearization on the basis of magnitudes EL and w L is 
founded on the descriptive idea of the "smallness" of "strain tensor EL" and 
"rotation tensor (t)L". The first error is that the magnitudes are characterized 
by the words "small" and "large" and the expression "if enough small, then 
can be neglected". The second one is that EL is not a strain tensor in the case 
of large displacement, and (t) L is not a rotation tensor at all. This ,\ill be dealt 
with later. 

Now, let us investigate the partial linearization. Previously it was 
shown that from 

(23) 

relations (6) and (7) cannot be originated, i.e. the squares and products of 
multiplying EL and (t)L cannot be neglected. On the other hand, if one of the 
non-linear terms is small and negligible then, it should be negligible as compared 
with E not with 1. In this case, as will be shown, the sum of non-linear terms 
left is negligible as compared "\Vith E, too. 

Let the signs -< denote that a term is smaller in magnitude, and let 
the sign r-.J denote that it is equal in magnitude. 

Now, the case will be examined when EL is "small", i.e. EL EL is negligible 
as compared to E, i.e. the following series of relations hold: 

(24) 

Since the magnitudes are smaller than 1, so the magnitudes of the products 
of raising to power and multiplication of the same magnitudes will be lessened 
by the same magnitudes. So, from (24) it follows 

(25) 
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i.e. the well-known condition for "smallness" of EL holds 

Leaving the term EL EL from E because of (25) 

I 1 1 1 
IIELII c::=: IIEL ,-ELCOL --COLEL --COLCOLII· 

222 

The consequence of (27) is either 

I [EL COL -COLEL -COLCOLII <:: IIELII 

59 

(26) 

(27) 

(28) 

and in this case the proof is ready, because the sum of the left non-linear 
terms is negligible as compared v,ith EL and E at the same time because of 
(25), or 

(29) 

In this case, it should be noted that only one of the four non-linear terms is 
negligible, so each left term should have a magnitude greater than EL EL: 

As a consequence of (30a, b) the magnitude of wL is 1. Indeed if its magnitude 
is less than 1, then the following series of relations hold: 

(31) 

and so does relation (28). However, if the magnitude of COL is 1, then the 
magnitude of W LW L is also equal to 1, and 

(32) 

Relation (32) contradicts relation (29), so the magnitude cannot be equal 
to 1, or greater than 1. So its magnitude should be less than 1, in this way 
relations (30), as well as (28) prevail. It is proved that if EL is small, and its 
square is negligible, than the sum of the left non-linear terms is negligible, too. 

Now, the case is examined when, because of the relation between EL 

and coL' the expression ELEL + EL (!)L COL EL is negligible as compared ,vith E: 

If EL has such a small value that EL EL can be neglected as compared ,vith E 

than due to the above said, the magnitude of (!)L should be smaller than 1, so 
(!)L COL is negligible a" compared with EL' i.e. with E. At the same time, the com­
ponents in the main diagonal of coL (!)L are square-sums, so they are always 
positive, but EL can be both negative and positive. Therefore both EL and 
coLcoV taken separately, should have a magnitude less than 1. Due to the 



60 G.LAMER 

above said, if the magnitudes of EL and w L are less than 1, then w L wL is negli­
gible as compared with EL' i.e. with E. It is proved, that if the expression 
ELEL + ELWL -WLEL is negligible, then wLwL is negligible, too. 

So, it has been proved that the partial linearization used in literature 
[8, 9] is not correct because the neglected and left non-linear terms have the 
same magnitude. 

It can be shown, that if the optional part of a non-linear term is regarded 
as negligible, the sum of the left non-linear terms is negligible, too. The reason 
for it is that the definition of "smallness" does not refer to EL or some kind of 
sum of non-linear terms in E, but to the whole of the measurement tensor of 
strain y given by expression (3). So each non-linear term is "needed" for 
"smallness" to be valid. This reflects the mathematical fact that a curvi­
linear or surface curvature is indicated in the examined body regarded as 
inextensible. In the neighbourhood of the one- or two-dimensional domain, 
relation (4) can apply because the examined neighbourhood is near the inexten­
sible domain, i.e. a relation similar to (18) is in force. 

2. The strain of the neighbourhood of a point in the body cannot be 
described by EL because the strain tensor - as defined - is the tensor E 

itself [1, 7, 8, 9]. So the tensor EL can only be the "whole" strain tensor at 
the moment, when Vu is small, i.e. the quadratic terms of it are negligible 
as compared with y. 

3. The tensor wL does not describe the rotation of the neighbourhood 

of a point in the body but it defines the vector product of vector wL (Wi = 

= -~ eijkWjk) where eijk is the three-dimensional alternator [10]. So, the 
2 

vector q = W LP is orthogonal to vector W L in the plane and at the same time 
it is orthogonal to p, too. The sum of tensor OJ L and the identity tensor I 
gives the rotation tensor if OJ L is small, and its square is negligible as compared 
with wL' i.e. the tensor 

(34) 

is the small rotation tensor [2, 10]. In this case, both (6) and (7) hold i.e. 
the gradient tensor of displacement is small. Hence the mapping tensors of 
strain 

VR* = I + Vu* (35) 

form the (commutative) groups under tensor multiplication. This group is 
called the small mapping group. It can be proved that this group is a Lee­
group. 

The tensor 
cftL = I + EL (36) 
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is the small affin tensor, and the multiplication of cf(L and ,QL satisfies the 
follo-wing series of relations 

(37) 

The small strain tensors cf( and the small rotation tensors ,QL form the sub­
groups of the small mapping group. 

4. In case of large displacement, the relation (20) does not hold, hence 
the mapping tensor of strain VR* cannot be regarded as a multiplication of 
the two tensors linear in Vu. But each tensor can be regarded as a product 
of multiplication of a symmetrical and orthogonal tensor [2, 10]: 

VR* = ,Q 0 cf(. (38) 

Here cf( is the symmetrical tensor describing the strain of the neighbourhood 
of a point in the body and generating the same metric tensor as VR *. Herc 
,Q is the orthogonal tensor, describing the rotation of the neighbourhood of 
the point in the body. Both cf( and,Q can be determined unambiguously [2, 10]. 
(Of course, cf( and ,Q are not commutative.) The rotation of the neighbourhood 
takes place around the single real principal direction of Q. \vith angle e, which 
is determined by 

[2, 10]. 

1 
cos e = -=- (TrQ. -1) 

2 
(39) 

The tensors cf( and Q. neglecting the third and higher power of tensor 
Vu are 

~ (Vu + Vu*) -~ (Vu Vu -L Vu* Vu*) + ~ Vu Vu* -~ Vu* Vu, 
2 8 I 8 8 

(40) 

,Q = I +~(Vu* -Vu) +~VuVu -~Vu*Vu* -~VuVu* -~Vu*Vu. 
2 8 8 8 3 

(41) 

As follows from (38) there are two kinds of rotations. One of them is 
the rotation of the neighbourhood of a point and the other one is the rotation 
of direction. The first kind of rotation is determined by rotation tensor Q. 

The rotation of direction is determined by the mapping tensor of strain VR * 
by means of relation dR = VR* dr. The rotation of direction dr takes place 
around the vector p = dr X dR with angle {} which can be determined from 

.Cl <dr, dR) C 

cos 'If = ---'----'--
IldrlllldRl1 

(42) 

[2, 10]. The effects of the t·wo rotations i.e. the tensors Q and VR* are not 
equal to each other (see Fig. 2). The mapping tensor of strain VR* can be 
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regarded not only as a rotation tensor, because in this case it should be ortho­
gonal on the whole examined domain. Hence, VR * is constant and it describes 
only the rigid body rotation. 

4~-u. 
I 

Fig. 2. Rotation of neighbourhood of a point and rotation of a direction 

The equations of the mechanical state with large 
displacement aud small strain 

In this section indicial notation and Einstein-convention of summation 
will be used over the repeated subscripts. The Italic subscripts can be 1,2, 3. 

These forms of relation are based on [9] using relation (4). 
Strain-displacement relations: 

8 .. = ~ (Olii + Oli} ..L. Olis o lis)' 
I] 2 ox} oxi I oxi ox} 

Equations of motion are 

~ [(0 , I Olik) (j ] = 0 0
2 

lik 
oxr pi, T OXp pr ~ ot2 • 

Hook's law has form: 

Boundary conditions are 

( 
Olik) ( ). 

0pk + axp Gpq cos n, q = Pnk' 

(43) 

(44) 

(45) 

(40) 

(47) 

where cos (n, q) are the components of outward unit vector n on the surface 
aQ and Pnk are the components of the prescribed surface traction at the same 
point in the deformed state. The prescribed surface traction Pn may depend 
on the position of unit normal vector n. In the case of a non-conservative 
tracing load 

(48) 

where P"s are the components of the prescrihed surface traction at the same 
point of the surface clQ in non-deformed state. 
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Initial conditions should be given at t = to for the solution of dynamic 
problems. The initial conditions in the non-linear and linear state are identical, 
so they are not given here. 

Some typical characters of the mechanical state of a thinawalled 
body ""ith large displacement and small strain 

In Section "Kinematics ... " it was shown that in theory only one a 
priori hypothesis is used, namely the measurement tensor of strain should be 
small, and "written in form 

Ilyll ~ Ilgll· (4,9) 

Above it was proved that on the basis of (49), no partiallinearization can be 
done and both EL and OJL are "large". The reason for this is explained in the 
following. The relations describing the kinematical and dynamical behaviour 
of a body is based on the differential geometry and the body is characterized 
by these relations locally - in the neighbourhood of a point. Hence, all 
further hypotheses of linearization should be 'l7l'itten in terms of local magni­
tudes. The relation (49) itself is wTitten in a local form. But at the same time 
the relation (49) expresses global "smallness"; namely, the ratio of the global 
measurement (h) in the body and curvature radius (e) of the inextensible line 
or surface should be smaller than 1, 

(50) 

Hence the "small strain" and "large rotation" should "be drawn into" the 
theory using global relations. In the solution it can only be done at one point, 
at the choice of the basis function. 

Let the "global smallness" of the body be explained. Now, the body is 
regarded as a direct product of a one- and a two-dimensional domain: Q = QJ.. 0 
o Q2' If Q 1 is a curvature, then Q 2 is a plane (surface) domain and vica versa. 
If the relation 

max mes Q 2 ~ min mes Q 1 (51) 

holds, the body is called thin-walled. In case Q1 is a curvature, the body is 
called a rod, but if Q2 is a surface, the body is called a shell [6]. 

If relation (51) applies, the movement of the body can be characterized 
by large displacement and small strain, because the neighbourhood of domain 
Q1 is small, and the relation 

I max ;es Q2/ <{ 1 (52) 

can be satisfied. The relation (52) is the condition of smallness of strain, if 
domain Q 1 moves nearly non-deformed in space. 
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Due to (52), it is suffieient to restrict oneself to a few basis functions 
applying constant, linear and quadratic functions in the direction of "thin­
ness" [4]. Two problems arise oVI'-ing to this approximation. The first one is 
that the stresses determined by displacement through the strain-displacement 
relations and Hook's law cannot result in equilibrium. The second one is that 
the boundary conditions, as such cannot be satisfied. 

The solution to the first problem is as follows. The stresses required for 
equilibrium should be approximated independently from displacement. As a 
consequence, these stresses cause no strain and Hook's law does not hold to 
them. These stresses are "statically determinate" ones. 

The solution to the second problem is that the prescribed surface trac­
tion should be numerically approximated. The moment of identical order of 
surface traction, compared to the point of domain Q (i.e. the axis of rod or 
middle surface of shell) should be added to each equation of equilibrium. The 
moment of the prescribed surface traction will be interpreted as a body force 
in the equation of equilibrium of force. The body force is the force per unit 
length for the rod, and a force per unit area for the shell. A "body moment" 
analogue with the body force cannot occur in the equation of equilibrium of 
moment [3]. There is one exception to this in the case of a rod: the torsion 
moment. It can be shown that the shear force distributed over the surface 
"formally" giving bending moment is no other as pure shear. 

The small strain practically means a movement of domain Q 1 during 
which it does not change its measurement, i.e. its metric tensor. A large 
displacement can be produced both in the case of free and rigid support, 
respectively. In the latter case, if the investigated body is a rod, the distance 
between the supports should be smaller than the length of the rod. If the 
investigated body is a shell, than the area of the minimal surface stretched 
out over the supports should be smaller than the area of middle surface of 
the shell. The conditions of inextensibility are transformed into anholonomic 
constraint relations. The deformation of domain Q1 can be expressed by the 
change in magnitude of the force distributed over domain Ql' The magnitude 
should be divided hy the length or area of element of domain Q 1 in a deformed 
state. 

In the case of large displacement and small strain there are two kinds 
of boundary-value problems. 

1. If the out,,-ard load is given, the motion should be determined. The 
inverse problem, if the motion of each point of domain Q 1 is given, the out­
ward load should be determined. 

2. If the motion of (a part of) houndary of domain Q 1 is given (with 
length of rod or area of shell), the outward load as well as the motion of the 
point of domain Q1 should be determined. 

In the case of the second type of boundary-value problem the anholonom-
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ic constraint relations have great importance because the given kinematical 
boundary conditions can be satisfied by many domains but the solution 
can be given by those having the same length or area as the analysed rod or 
shell, respectively. A great many boundary-value problems of cable and 
flexible membrane shell are of the second type. 

The theory of large displacement and small strain has only one a priori 
hypothesis, namely, the measurement tensor of strain is small. It means that 
the theory can be used for analysis of the cable and flexible shell, as well as 
of the thin rod and shell in case when the curvature radius is large by orders 
of magnitude than the "thinness" of the thin-walled body. Hence the theory 
can be used for the analysis of global buckling of rods and shells, for the analysis 
of the global post-buckling behaviour (in case of a rod it is called elastica) 
and for the analysis oflocal buckling of rods and shells. In case oflocal buckling 
neither the hypothesis of small strain, nor the hypothesis of elastic behaviour 
(nor both) is satisfied, so the theory is unsuitable for describing local post­
buckling behaviour of a thin-walled body. 
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