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The paper gives a short review of the state equation and the statistical parameters 
of a shell containing infinitely rigid elements and elastic joints. The shell rests on elastic 
supports. 

Introduction 

In case of prefabricated shell structures we often find that the elements 
of the shell are much more stiff than the joints so the elements may be con­
sidered as infinitely rigid, while the joints are elastic [2]. The aim of this 
paper is to give a short review on the state equation of the structure under 
some particular conditions and describe principal formulas of the stochastically 
nonlinear problem. Numerical examples will be treated in a later contribution. 

We make use of the following suppositions: 
I) The middle surface of the structure consists of infinitely stiff triangular 

elements, 
H) The elastic properties are represented by generalised spring elements 

situated in prescribed places along the edges of the shell elements, 
IH) The load vectors are considered as acting in the center of gravity 

of the shell elements, 
IV) Initial strains are not dealt with. 

Kinematic relationships, statical relationships and 
constitutive equations 

The kinematic equations describe the relationships valid between the 
relative displacements of the joints and the absolute displacements of the 
gravity centers of the shell elements 

Llw = Gu 
where 

u: displacement vector of the gravity centers, III detailed form at the 
gravity center bearing the subscript a 
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and together at the elements (their number being I) 

U * - [u* u* u* u*] - 1 2'" a'" I . 

Furthermore at the joint having the subscript c 

.dwt = [Llwc.g Llwc,7) Llwc" LlXc,g Ll1.c,1j LlXc,,] 

and together at the joints (their number being k) 

Llw* = [Llw{ ... Llw~ ... Llwt] 

where x,)', Z denotes the axes of the global frame while ~, '!], , denotes the 
local coordinates at the point c (-we shall return to their positions later). 

Introducing the hypermatrix of the orthogonal transformation 

r
cos (~,.er) cos (~,)') cos (;, z) 
cos (,!],x) cos ('!],)') cos('!],~ 
cos (" x) cos (,,),) cos (', z) 

l 
and the carry over matrix 

cos (~, x) cos (~, )') cos (~, z) 
cos ('!],x) cos (rJ,),) cos('!],~ 
cos (C, x) cos (C,)') cos (" z) 

-(za -Zb) Ya -)'b 

[1 I -(xa -Xb) Za -Zb 

I Bba 
I -()'a -)'b) (xa -Xb) 

I 
I 

I 

the blocks of G are generated by the following formulae 

if 

a = as 

else GCQ = O. 

1 
L 

b denotes here the subscript of the joint at the shell element, a" refers 
to the element fitting into the joint with subscript c and possessing the higher 
number, while a. to that of the lower number at the boundary of each investi­
gated element. 

The equilibrium conditions describe the relationships being valid at 
each element between the load and the stress resultants. Referring to the 
principle of virtual work we obtain readily the formula 

G*s p = 0 

where 
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IS a stress vector of six dimensions and 

* [ >I< >I< >1<] S = Si ••• se •.. si: 

(k denotes the number of the joints) 
In addition we have to present the constitutive equations. While dealing 

.vith them, we have to fix the positions of the local frames: the'; axis of the 
coordinate system fastened to the joint with subscript c is the common edge 
of the shell elements fitting together at c. Axis 'i] is the halving line of the angle 
formed by both elements in the plane being perpendicular to the edge shaped 
by the elements. The axis C is perpendicular to both'; and 'i] and is positively 
directed towards the space covered by the structure. 

The constitutive equation at point c is 

€ denotes the elements of the strain tensor, while a those of the stress tensor. 
The independent elements of the symmetric tensor He are 

I 
h12 = 

_ vxy h13 = 
vxz hll =-

Ex Ey E z 

I h Vyz I 
h 22=- '23= -- h33 = E

z Ey E z 

I I I 
hH =- h55 =- hss =-

Gxy GyZ Gzx 

E stands for Young's moduli, G denotes the shear moduli and 11 for Poisson 
factors. 

If the elasticity of those parts of the shell, represented by a joint, is 
substituted by a prism with area h2 and thickness v, while being in homogeneous 
state, furthermore the principal axes of the orthotropy coincide with the local 
frames of the joints, the constitutive equations can be described in the form 

~we= -Ae He At Se 

where 

A.-~r I 
vlh 

,- hv l 
I/h 

I/h 

Introducing the flexibility matrices 

Fe = Ae HeAt, 

Jw=Fs 

1 
I/h J' 
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holds. Considering the diagonal matrix R supporting the boundary elements 
at their grav-ity center and combining the equilibrium conditions, the kinematic 
relationships and the constitutive equations we obtain a hypermatrix equation 
analogous to the hy-permatrix state equation of the bar structures 

Random relationships 

We will consider just those stochastically nonlinear problems where 
only the boundary spring coefficients and the components of the load vector 
are random, while the initial strain vector is supposed to be zero. First we 
determine the mean value and covariance matrices of displacements and load 
effects using the method of Taylor's expansions. Then we shall assume that 
the set of random variables located in the diagonal elements of R are inde­
pendent of the random variables of the load vector. The spring coefficients 
of the supports are random variables of symmetrical to each axis common 
distribution, assuming strict quality control the "tails" (taken in the common 
distribution space) are cut and the distribution is redefined in such a way 
[1], the mean values of R are contained in matrix W. Using this notation 'we 
can introduce a matrix Y as well, 

Y= -R-M(-R) 

where Y is a diagonal matrix, too, containing random variable elements. The 
diagonal elements of Y may be condensed in y. Mean value of the vector y 
is equal to zero, the covariance matrix for the variables contained in y is Byy • 

The random load vector is also determined by the vector of mean values 
1\i(p) and by the covariance matrix Bpp. 

Introducing the matrix 

A = -W + G*F-1G 

the vector of displacements can be written in the form 

u = (Y + A)-l p 

We expand this random function into Taylor series. 
Expanding first the matrix (Y + A)-1, 

(Y + A)-l = {(YA-1 E)A}-l = A-1(YA-1 + E)-l = 
= A-l(E - YA-1 + YA-IYA-1 ... ) 

holds, provided the norm of matrix YA -1 is less than 1. Let us introduce the 
operation Di(c) = C where c is a vector of n element and C stands for a diagonal 
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matrix with the dimensions n X n. The elements of vector c are placed in the 
pivot elements of matrix C. 

Restricting ourselves to a linear approximation, 'we receive 

u = A-l p _A-IDi{A-lp}y. 

If the nonlinearity of the problem is not high we can get suitable approxima­
tions as follows 

M(u) = A -1.!U(p) 

Buu = A-I Bpp A-I + A-I Di {A -lll:f(p)} ByyDi {A -llVI(p)} A-I. 

With the aid of the expansion of u the vector of s is obtained as 

Besides 
l11(s) = _F-l GA -1 .zVI(p) 

Bss = F-1GA-IBpp A-IG*F-1 

+ F-IGA-l Di {A -1 111(p)} ByyDi {A -liVI(p)} A -IG* F-1, 

If the nonlinearity is strong, we must be satisfied with the comparison 
of limit values belonging to in advance specified probability level, obtained by 
the semi-probabilistic methods, otherwise the upper bound formula for the 
probability of failure derived in ref. Szentiv<1nyi B. (1980, 1981) can be di­
rectly used [6, 7]. In case 'when the random eccentricity of supports should be 
taken into account or if the randomness of spring coefficients is extremely 
high the method of realization weighted 'with its probability can he sug­
gested (ref. Roller et al. 1976, Szentiv<1nyi 1977) [3, 5]. 
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