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Summary 

A simple method has been presented for producing macro-elements for solving plane 
stress problems, as well as a method for existence testing, emerging in the finite element method, 
after (1). 

Introduction 

Generalization of the application of the finite element method has the 
strive to develop possibly simple but efficient element types as concomitant. 
Simple is understood as simplicity of relationships for the elements, possible 
to be produced in closed form, while efficiency, as adequate accuracy in case 
of division into rather few elements. Simultaneous fulfilment of both require
ments usually fails. Element complexity is fudamentally determined by the 
complexity of the assumed displacement function (in case of a polynomial, 
by its number of degrees), and the relation between degrees of freedom of the 
displacement function and the element (sub-, iso- and superparametric ele
ments). Plane elasticity problems are mostly solved by means of triangular 
elements, having - besides of known advantages (such as simple relationships 
for the element, and close approximation of an arbitrary domain) - the 
disadvantage that, assigning a different triangle network to a given node 
system of a domain, a different final result is obtained. 

Now, a rectangular macro-element composed of triangles will be pre
sented, likely of eliminating these inconvenients, and to meet in limiting 
case the basic relationships of elasticity. 

For the sake of lucidity, the emerging relationships ",-ill be presented 
for rectangular triangle elements of a homogeneous isotropic material, but 
they can be extended to more general cases. 

Basic relationships 

Fundamental equations of plane elasticity in matrix form are: 
equations of equilibrium: 

Ba + p = 0 (1) 
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strain-displacement equations: 

e = B*z (2) 

stress/strain equations 
G= De (3) 

where: 

III case of a linear elastic material and plane stress problem: 

D=~ll f.1 ] E f.1 1 
2(1 + f.1) . 

Elimination of stresses and strains leads to the Lame equation of elasticity. 
In matrix form: 

BD-l B* z + P = 0 

or, III particular: 
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Stiffness matrb:: of the rectangular triangle element in Fig. 1 for a linear 
displacement function becomes (see e.g. p. 185 in (1»: 

K= Eh 
12(1 - fJ,2) 

r
6f3 + 3(1-[1)f3- 1 3(1+[1) --6f3 -3(1-[1) 

3(1 + ,a) 6f3-1+3(1 - [1)f3 --6[1 -3(1-[1)f3 
-6f3 -6,a 6f3 0 

l-3(1 -,a) -3(1 - ,a)f3 0 3(1-,a)f3 
-3(1-,a)f3-1 -3(1-[1) 0 3(1-,a) 
-6,a --6f3-1 6[1 0 

-3(1-[1)f3-1 
-3(1-,a) 

o 
3(1-,a) 
3(1-,a)f3-1 

o 

= fkll k12 k13 k14 k15 k 16 ] 
k21 

~Gl ••••••••••••••••••• kS6 

b 
where f3 = - and h is the thickness of the plate. 

a 

Simple macro-elements and stiffness matrices 

Selecting the element types 

-6,a 1 -6f3-1 
6[1 

~~-, j 
(6) 

Four possible triangular divisions in the neighbourhood of plate point 
i are seen in Fig. 2. In the following, cases in Figs 2c and 2d ·will be ignored 
since they a priori fail symmetry conditions hence are meaningless for us. 

~j 

J)GJ, <1l I 
61 7 8t" 
--T-~--A.X_~ b) 

C) 

c) d) 

Fig. 2 



80 N. N. SHAPOSHNIKOVel al. 

Discussions will be restricted to divisions in Figs 2a and 2b. They are composed 
of macro-elements I and II in Fig. 3 with no special transformation, hence 
stiffness matrices of these two macro-elements have to be established, to be 
used for writing equilibrium equations at point i. By the time, stiffness matrix 
(6) ,vill only be applied in its symbolic notation. Stiffness matrix of uncoupled 
elements in hypermatrix form: 

(7) 

or, in particular: 

K= (8) 

Stiffness matrix of macro-element I 

Using Eq. (8), stiffness matrix of element I is obtained as: 

(9) 

where - taking "global" and "local" element numbering, and the need to 
transform displacements of the triangle given by nodes 0, CD, CD into consid-
eration -

L 1 = 1 (10) 
1 

1 
1 

1 
1 

-1 
-1 
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-1 
-1 

-1 
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Fig. 3 

K1 = kll k12 kg kI5 kI6 0 0 l k2I k22 k24 k25 k26 0 0 

k3l k32 k34 k56 k35 + k53 k36 + k5! I k5I k52 

k4I k42 k44 + k6G k 45 + k63 k46 + k54 l k6I k62 

k51 k52 k53 + 1£35 k54 + k36 i k55 k33 k56 + k341 k3I k32 

k-l k62 k63 + k 45 k 6,! + k46 i k65 + k'13 k66 + kH kU k42 

0 0 kI5 k 16 k 13 kg 

I 
kll k12 

0 0 1£25 1£26 k23 k 2.1 k21 k22_ 

(11) 

Stiffness matrix of macro-element 11 

Using Eg. (8), stiffness matrix of element II is obtained as: 

KII = Lfl KLII · (12) 

Here, taking "local" and "global" numbering according to Fig. 3b, as well 
as element displacements relative to Fig. 1 into consideration, matrices LII 
and KII become: 

1 ~I 
(13) 

-1 

-1 

-1 
1 

1 
1 I 

-1 
I 1 

-1 I 

I 1 
-1 

KII = 

6 

(14) 
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Equilihrium equations at plate point i 

Examination of the arrangement in Fig, 2a 

In knowledge of stiffness matrices KJ and K Il , equilibrium equations 
for point i can be "iVTitten, Displacement vectors at i = 1, 2, ' , " 8 are denoted 

as zi' Z1' ' , " Z8' Their coefficients are composed of the proper 2 X 2 blocks of 
matrices Ki and KII in conformity with Fig, 2a, presented in Table 1 like for 
difference operators, 

Table 1 

Therehy equilihrium equation at i: 

(KF + KP K22 I K33) _ I (K12 
II -, II ~i -, 1 K 31) - I 0, - I 1I "'1 -, ~2 -, 

O ,- --L (K·13 
~-1 I I K 21) _ 

11 "'5 (16) 

--L (K·12 --L K31) -
I 1 I 11 "'i 0, Zs + p = 0, 

Displacements of points 1, ' , ,,8 are wTitten hy expanding function z 
taken as continuous into TayIor series in the neighhomhood of point i, illustrat
ed in Tahle 2 like for differential operators (indicating approximations of the 

=xy L1x .ay + Zyy 

Table 2 

z + =y.dy -7-

-\- =n' + O(:.:J3) 

Ll2 X 

zxx 2 -=- -~ 

Ll2 X " = -;- =xL1x + =xxT + O(.d) 

=y - =yLly + = X =x L1x - =yLly =xx 
i I _ Ll2 y, 3 -
iT~yYT -;-O(Ll 
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function at the proper point in each tetragon). Here subscripts of vector z 
refer to partial differentiation \\'ith respect to the given variable, that is: 

(17) 

[ 

82U 1 Zxy = Zyx= 8;2: 

8x8y . 

Detailed \vTiting of block matrices in Table I using Eqs (ll), (14) and 
(6) yields Table 3 (of elements each to be multiplied by Eh 12 (1 - p2). Inter
multiplying Tables 2 and 3 (multiplying block counterparts) and taking (17) 

Table 3 

- 6(1 - fl)(J-l 0 

o 12 (J-l 

24(J + 12(1- fl)(J-l 

24(J-l + 12(1- fl)(J 

-6(1 - fl)(J-l 

o 
o 

-12(J-l 

into consideration, all coefficients but those of zxx and Zyy will be zero, and 
(16) is transformed to: 

_Eh 1[_24f3 

12(1 - p)2 

(18) 

+ [~:] Llx Lly . h O(Ll3) = o. 

6* 
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H k · . h f3 Lly f '.1 • 1" b . ere, rec 'ornng "nt = Llx' a ter matnx mlutlp IcatlOns, we 0 taIn: 

---9 --9 LlxLly -(1 -[1)- -- + PxLlxLly' h + O(Ll3) = 0 Eh [ 82 
U 82 

U Llx Lly] 
(1 - [1)~ 8x~ 8y 2 2 

After simplification in limiting case (where 0(Ll3) ~ 0): 

1 - fl 82 v 

2 8x2 

1 _[12 
---Px= 0 

E 

O. 

(19) 

O(Ll3) = O. 

(20) 

Confrontation 'v-ith (5) shows the mixed derivative to be absent, and 
the other terms to agree, that is, for such a network (element division), funda
mental equations of elasticity are not recovered, thus,! in limiting case, 
the selected macro-element or the triangle eiement yields n'o correct solution. 

Examination of the arrangement in Fig. 2b 

Similar as in the previous chapter equilibrium in the neighbourhood of 
point i is expressed by: 

1- fl 82 v 

2 8x2 
(1 

1 _[12 
--p =0 E x 

The suggested macroaelement 

(21) 

The above raise the idea to compose the rectangular element from four 
trangular elements by forming its stiffness matrix as mean of stiffness matrices 
of elements I and II: 

1 
K = -(Kr 

2 
(22) 

In these case, even without detailed analyses, the final result is seen to be 
average from Eqs (20) and (21) agreeing with Eqs (5). Thereby an element 
meeting relationships of elasticity in boundary transition has been created. 
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Numerical analyses 

Numerical analyses have been made using the suggested element type 
to be compared with other results found in publications. Experience shows 
"fitness" of the stiffness matrix (of any element type) to be highly dependent 
on the Poisson's ratio. For usual p. values (p. = 0.2-0.3) the suggested element 
type yields practically satisfactory solution with a quite low number of ele
ments. The effect of varying p. needs further, detailed analyses. 

Conclusions 

The statements above let cocnlude on 
- the superiority of the macro-element composed of simple elements 

over their components; 
- the advisability of exacter analyses than convergence examinations 

usual for finite elements (independence of deformations, exemptness from 
deformations in rigid-body displacements, etc.). 

Analyses above refer to rectangular networks alone, but a network of 
general tetragonal elements joining four in a node can be aptly transformed 
to rectangular. Relevant analyses would have a prohibitive extension for 
a paper, only it is mentioned that relative numerical analyses have led to 
favourable conclusions. 
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