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Summary

A simple method has been presented for producing macro-elements for solving plane
stress problems, as well as a method for existence testing, emerging in the finite element method,

after (1).
Intreduction

Generalization of the application of the finite element method has the
strive to develop possibly simple but efficient element types as concomitant.
Simple is understood as simplicity of relationships for the elements, possible
to be produced in closed form, while efficiency, as adequate accuracy in case
of division into rather few elements. Simultaneous fulfilment of both require-
ments usually fails. Element complexity is fudamentally determined by the
complexity of the assumed displacement function (in case of a polynomial,
by its number of degrees), and the relation between degrees of freedom of the
displacement function and the element (sub-, iso- and superparametric ele-
ments). Plane elasticity problems are mostly solved by means of triangular
elements, having — besides of known advantages (such as simple relationships
for the element, and close approximation of an arbitrary domain) — the
disadvantage that, assigning a different triangle network to a given node
system of a domain, a different final result is obtained.

Now, a rectangular macro-element composed of triangles will be pre-
sented, likely of eliminating these inconvenients, and to meet in limiting
case the basic relationships of elasticity.

For the sake of lucidity, the emerging relationships will be presented
for rectangular triangle elements of a homogeneous isotropic material, but
they can be extended to more general cases.

Basic relationships

Fundamental equations of plane elasticity in matrix form are:
equations of equilibrium:
Bo+p=20 1)
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strain-displacement equations:

e = B*z (2)
stress/strain equations
o= De 3)
where:
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in case of a linear elastic material and plane stress problem:
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Elimination of stresses and strains leads to the Lamé equation of elasticity.
In matrix form:

BD-1B*z+p=0

or, in particular:
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Stiffness matrix of the rectangular triangle element in Fig. 1 for a linear
displacement function becomes (see e.g. p. 185 in (1)):
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where § = — and Fk is the thickness of the plate.
a

~ Simple macro-elements and stiffness matrices
Selecting the element types

Four possible triangular divisions in the neighbourhood of plate point
i are seen in Fig. 2. In the following, cases in Figs 2¢ and 2d will be ignored
since they a priori fail symmetry conditions hence are meaningless for us.
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Discussions will be restricted to divisions in Figs 2a and 2b. They are composed
of macro-elements I and II in Fig. 3 with no special transformation, hence
stiffness matrices of these two macro-elements have to be established, to be
used for writing equilibrium equations at point i. By the time, stiffness matrix
(6) will only be applied in its symbolic notation. Stiffness matrix of uncoupled
elements in hypermatrix form:

K=[K 0 7
0 K
or, in particular:

K= -ku ko kg Ry ks Ry ] (8)

k21 k26

Stiffness matrix of macro-element I

Using Eq. (8), stiffness matrix of element I is obtained as:

K, = Lf KL, (9)

where — taking “global” and “local” element numbering, and the need to
transform displacements of the triangle given by nodes @, @, @ into consid-
eration -

L =1 . (10)
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Stiffness mairix of macro-element 11
Using Eq. (8), stiffness matrix of element II is obtained as:
Ky = Ly Ky (12)

Here, taking “local” and “global” numbering according to Fig. 3b, as well
as element displacements relative to Fig. 1 into consideration, matrices Lig
and K;; become:

L“=- '_1 7] (13)
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Equilibrium equations at plate point 7

Examination of the arrangement in Fig. 2a

In knowledge of stiffness matrices Ky and Ky, equilibrium equations
for point 7 can be written. Displacement vectors at i = 1, 2, .. ., 8 are denoted
as % %3, . » +» 75. Lheir coefficients are composed of the proper 2X2 blocks of
matrices K; and K|; in conformity with Fig. 2a, presented in Table 1 like for
difference operators.

Table 1
| Kif=0 |— Ef+Ef — E'=0 |
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+ (K - Ef) 5 + 05+ p=0.

Displacements of points 1,...,8 are written by expanding function z
taken as continuous into Taylor series in the neighbourhood of point 7, illustrat-
ed in Table 2 like for differential operators (indicating approximations of the

Table 2
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function at the proper point in each tetragon). Here subscripts of vector z
refer to partial differentiation with respect to the given variable, that is:
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Detailed writing of block matrices in Table I using Eqs (11), (14) and
(6) yields Table 3 (of elements each to be multiplied by Eh 12 (1 — p2). Inter-
multiplying Tables 2 and 3 (multiplying block counterparts) and taking (17)

Table 3
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into consideration, all coefficients but those of z
(16) is transformed to:

« and z,, will be zero, and
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Here, reckoning with g = Z—‘X, after matrix multiplications, we obtain:
x

92 2 ;
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[-—(1 — 1) . Axdy]—}—py Ax Ay - b + O(4) = 0.
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After simplification in limiting case (where 0(4%) — 0):

(20)

Confrontation with (5) shows the mixed derivative to be absent, and
the other terms to agree, that is, for such a network (element division), funda-
mental equations of elasticity are not recovered, thus! in limiting case,
the selected macro-element or the triangle element yields no correct solution.

Examination of the arrangement in Fig. 2b

Similar as in the previous chapter equilibrium in the neighbourhood of
point i is expressed by:

2*u 29 l—po?u 1 —p°
—+(L+p) b i =0
O dx 9y 2 9y? E
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2 ox? ( #)Gxay—r yQT E Py

The suggested macro-element

The above raise the idea to compose the rectangular element from four
trangular elements by forming its stiffness matrix as mean of stiffness matrices
of elements I and II:

1
K= '2"(KI + Ky). (22)
In these case, even without detailed analyses, the final result is seen to be

average from Eqs (20) and (21) agreeing with Eqs (5). Thereby an element
meeting relationships of elasticity in boundary transition has been created.
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Numerical analyses

Numerical analyses have been made using the suggested element type
to be compared with other results found in publications. Experience shows
“fitness” of the stiffness matrix (of any element type) to be highly dependent
on the Poisson’s ratio. For usual p values (g = 0.2—0.3) the suggested element:
type yields practically satisfactory solution with a quite low number of ele-
ments. The effect of varying p needs further, detailed analyses.

Conclusions

The statements above let cocnlude on

— the superiority of the macro-element composed of simple elements
over their components;

— the advisability of exacter analyses than convergence examinations
usual for finite elements (independence of deformations, exemptness from
deformations in rigid-body displacements, ete.).

Analyses above refer to rectangular networks alone, but a network of
general tetragonal elements joining four in a node can be aptly transformed
to rectangular. Relevant analyses would have a prohibitive extension for
a paper, only it is mentioned that relative numerical analyses have led to
favourable conclusions.
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