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Summary

The applied model for earthquake action analysis of composite building struetures —
containing rigid floor platforms and the vertical load bearing structure substituted by visco-
elastic bar connections between these platforms — is considered under the effect of stochastic
horizontal dynamic loads replacing earthquake action. The components of this replacing
force-system as instationary stochastic processes, are described by produects of a periodic
deterministie function and a non-stationary, stepwise stochastic process, latter can be given
in each halfperiod by a in vicinity correlated Gauss-type random variable. The differential
equation-system describing the linear elastic dynamic system with damping is solved with
the aid of a linear transformation resulting in a set of equations for unknowns independent,
so we can get formulas for mean value and covariance-functions of the displacement compo-
nents of the rigid platforms corresponding to each floor-level of the structure. The elementary
force components differing form each other in frequencies of excitation can be weighted with
their probability and so we can follow the real earthquake spectra. In case of a simple excita-
tion with 3 elementary components we illustrate our numerical results, which has been obtained
by a computer program under development.

Introduction

In the actual civil engineering practice most buildings to be exposed to
horizontal dynamic loads (replacing effect of earthquake) have vertical load-
bearing structures of non-symmetrical floor plan. Structurally it means that
the vertical load-bearing structures of the building are frameworks, columns,
independent or connected bearing walls or combinations thereof. Determin-
istic analysis of such structures can be simplified by using the linear visco-
elastic structural model suggested by the first author, which consists of rigid
horizontal floor planes and of bar-connections substituting the vertical load-
bearing elements [1].

Numeriecal method in case of deterministic loads

The behaviour of the previously described modelled structure can be
characterised by the matrix differential equation of motion [2] (notations
see at the end of the paper)

Mf -+ Cf + Kf = p(¢) (1)
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Here f represents a hypervector of 3 times n dimensions (n is number of floor
planes) containing displacements in direction of floor plane axes and rotations
in the plane of rigid floor platforms, p(¢) contains the (in work expressions
to f corresponding) time-dependent generalized forces. Time-dependence of
coefficient matrices is neglected. The numerical method of solution [3] is
based on the assumption €= o K on a linear transformation in the form
f = Zq and upon a multiplication of (1) by Z* from the left side, respectively.
It is possible to perform these after determination of eigenvalues and eigen-
vectors of the problem without damping. (Z contains these eigenvectors in
a reduced form.) The obtained 3 times n, unconnected differential equations
for the transformed generalized displacements can be solved and the last
step of the algorithm needs a re-transformation to the originally unknown
functions.

Invesiigaiion of the siructure under effect of
earthquake-like stochastic loads

Random excitation of a structure due to earthquake can be described
mathematically by the aid of stochastic processes [4], [5], [6]. The solution
of the problem was sought first for stationary parts of earthquake motion
by the spectral method [6], [7]. The use of this method was extended for
special instationary cases by use of envelope functions [8], [9]. [10]. In the
following we shall deal only with the solution of one differential equation of
the previously described transformed system in case of stochastic loads:

g+ dg + ofq=G(t). (2)
Herewith we omit to give indices, so the problem is treated as a one-dimension-
al case, but experiences of matrix solution for static random loads given in
[11] might be used. According to the nature of loading the reduced random
function G(t) can be built up as the sum of produets of a deterministic sinusoid
function g,(f) and a stepwise random function g,{t). (See Fig. 1.)

If Q; are chosen as mean values, then &, are Gaussian variables with
mean value 1,0 and covariance matrix B, which generally is of banded
nature. The principle of linear superposition is taken as valid and for one
load component history as represented on Fig. 1. mean values and covariance
functions of ¢(t) can be evaluated as follows (g, and g, are taken as normal
variables independent of each other and of &, values)

-1
Efq(1)] = b()E[go] — h(t)E(go] + 2 ai(t) E[2/]
=
here ¢, <t <t ., (formulas of b(¢), h(t) and a;(t) are given in Appendix)
By(tr: t11) = b(t1) - b(t1) 0°[g0) + h(t1) - h(tn) 0*[g,] + 2%(ts), Begaltn)
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here t,, <t; <tme1 and tp, <ty < im,s1 order of vector a and of qua-
dratic matrix B, is max [m, + 1, m, + 1].

As various harmonic functions have different rates of occurrence we
can use the method of weighted realizations [12], [13] to obtain final values of
Elq], Bq(tl7 tr1). We shall use the assumptions that series values of £; belonging
to different harmonics are independent, that the domain of frequency field
of excitation is finite and width of it is rather small for active parts respee-

tively. As earthquake excitation has been substituted in our research work
[3], [4] by one random horizontal force in the height of the ground floor of
the building, so when solving equations of type (2) for various elements of
matrix, although appropriate additional indices must be used for values g,
9o ds g, Q;, the values &, are common. Applying similar formulas as expression
for E[q(t)], B.(t1, t1i1) (the above mentioned additional indices must be used
in computations of results which can be found in our Appendix and instead
of ¢%[gy] and ¢%[gy] Bgy, and Bgg, must appear) the matrix B,, and vector
E[q(z)] be constructed, which contains all B -s and the cross-covariance func-
tions, too. The covariance matrix and the expected values of the real displace-
ments f can be gained by the following formulas in matrix form (see e.g. [14])

E[f#)] = ZE[q(1)]
By/(tr, th) = Z B,(t1, t1) Z* .

Numerical example

A structure considered as particle with mass 10 t on a subgrade charac-
terised with spring coefficient 31047 t/s> and damping coefficient 120 tfs
(Fig. 2/a) shall be investigated numerically, if f, = 0, fo = 0. Excitation is
assumed as deterministically added of 3 random harmonies (w; = 20, 40,
80 s—*) each given in manner of Fig. 1. for ® = 80 s~ with different starting
point on time axis with E[{;] = 1.0 and various values of ¢*[£;] and Q; for
the different random processes. Correlation of &, (i = 1, 2, 3) is neglected.
Only one degree of freedom motion is considered, the mean value diagram of

the resulting displacement field (Gaussian stochastic process) is drawn on
Fig. 2/b too.
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Our numerical results have been achieved with the aid of a computer
program written in language FORTRAN for the CDC 3300 machine of the
Hungarian Academy of Science. Double precision arithmeties has been used,
the computer time for our example amounted to 5.5 minutes, so our method
adopted here combined with the method of weighted realizations shall need
rational computer times using our reduced-degree of freedom model of com-
posite buildings for the case of earthquakes.
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Conclusions

Our results proved that the method for modelling earthquake caused
excitations proposed in [15] is efficient. If vertical seismic loads must be taken
also into account [16] our method can be extended without significant diffi-
culties for this case. Computer time demand in real cases is rather high, so
the possibility of extension given in [17] for treating problems of Level II
of design for reliability does not seem realistic yet.
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Notations

a(z) auxiliary vector-function
b(t) auxiliary funection

Bq(tx, t;;)) covariance function of g
qu(tl, t;1) covariance matrix of g

B,. covariance matrix of random variable £, .. ;...

c damping coefficient

C damping matrix of the structure

d damping coefficient after reduction

E[.] expected value of random expression in the brackets

5 f,f displacement hypervector, first, second time derivatives, respec-
tively

g(t), G(z) given time dependent function

h(t) auxiliary function

i, j. k integer numbers (indices)

K stiffness matrix of the structure

M generalized mass matrix of the structure

max [ ] maximum value of constants in the brackets

n number of floor planes of the structure

p(t) hypervector of time dependent generalized forces

q(t) generalized displacement after transformation

q(z) generalized displacement vector

9o initial value of q

o initial value of first time derivate of g

0, absolute value of reduced amplitudes (generally mean value)

£ time parameter

£o starting time of loading

Z transformation matrix built up of reduced natural mode shapes
of the structure

@, constant

& correlated sequence of normally distributed random numbers

o[ ] standard deviation of random expression in the brackets

P summation convention

g associated natural frequency

changing frequency of force system of excitation in period i

(i< 0)
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Appendix
Computation of a(t), b(z), h(t)

Ift = t,,m = myand¢, <t <t ., respectivelythen fori=1,....m
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