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Summary 

According to the new design standard concerning reinforced concrete structures, the 
examination of the load bearing critical condition has to be undertaken for axial load by 
taking into consideration plastic material features. The critical condition of cross sections 
has to he calculated either by supposing the critical fracture compression of concrete or the 
critical rupture elongation of the drawn reinforcement. In ease of compressed rods the eccen­
tricity increments due to the material inhomogeneity, measurement faults as well as the 
deformation occurring till the critical condition, have to be considered. 

Introduction 

Bending-, compressive- and tensile stress as well as their combinations 
belong to the concept of axial load. The term was first published in the 1971. 
Standard and its use proved to be expedient. The subject matter being rein­
forced concrete and critical bearing capacity the emphasis in the specifications is 
on the compressive- and bending load. The chapter touches upon two problem 
spheres: on the one hand the calculation of the arbitrary axial ultimate load of 
abstract cross sections and, on the other - in case of compressed elements -
the consideration of effects endangering stability. The specifications concern­
ing the examination of cross sections pertain both to compression and traction. 

To begin with it should be stated that the chapter has been changed 
essentially only as regards the method of calculating the eccentricity incre­
ment, as compared to the former standard, other modifications are practi­
cally formal ones and came into being for a more uniform approach as well 
as a more compact construction. Thus the demonstrative character mention 
of the interaction curve and/or surface should be regarded as a formal innova­
tion as the principle and method of their determination was regulated aheady 
earlier, in an implicit form. 

The ultimate limit state of axially loaded cross sections 

2.1. The critical condition 

In our calculations concrete is generally regarded as a rigid-plastic 
material, at the limit of bearing capacity, while reinforced concrete as an 
elastic-plastic one (Figs la, le). Also the elastic-plastic material model (Fig. 
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1b) is permitted in the case of concrete. Based on the above the ultimate 
limit state - while adhering to the principle of plane cross section - has a 
deformation condition: 

(1) 

viz. failure may occur accompanied by the ultimate compressive, strain of 
the most highly compressed fibre strand and/or the elongation at rupture of 
the exterior tensioned steel reinforcement. Figure 2 shows the possible range 
of cross section deformations satisfying the failure condition indicated in 
this way. 

The limit state characterised by the balance of internal forces (pure 
bending) may occur depending on the measure of reinforcement, according to 
the deformation line 1., 2. and 3. shown in Fig. 2 (in case of normal-, slightly­
and/or overreinforced cross sections). 

cl 

f5 (:er.sicn) 

--'---+-----'--.. E 

Fig. 1. Material models for calculation purposes. a. Concrete, rigid-plastic; b. Concrete, elastic­
plastic; c. Reinforced concrete (drawing) 

• E: (:er,s:cr,) ... ------<>----. - f:: (corr:preS5ICr.) 

Fig. 2. Cross section deformations satisfying the conditions of bearing capacity critical state. 
Distribution s through point HA": concrete failures. Distribution s through point "B": steel 

failures 
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2.2. The neutral axis and the compressed flange 

It follows jointly from the condition of limit state and the material 
model concerning calculation of rigid-plastic concrete that the neutral axis 
of the cross section (line 0 of Figure 3) and the boundary of the compressed 
flange do not coincide. 

The proportion of the distance of the two from the exterior compressed 
strand is: 

x' _ 2.5% = 1.25 
x 2.5% -0.5% 

just as in the former Hungarian Standard. This, however, pertains only to 
the critical conditions characterized by the failure of concrete. In the cases 
accompanied by the rupture of steel, the concrete diagram in conformity v{ith 
Figure la is taken as a basis, ratio x'Ix will be a variable value concerning 
'which the follo\v-ing formula can be derived: (Fig. 3) 

x' 2ssu + d/x 1<1"" -= > - .2;:>: 
x 2ssu + 1 . 

[ssul = %0' (2) 

Equation (2) has no too high practical value, thus the standard does not 
take it into consideration. 

2.3. Reduced steel stress 

Follovv-ing from the above, steel reinforcements can be taken into con­
sideration at any critical condition but according to a stress suitable to their 
compatible elongation, at the very most the limiting stress. This condition 
takes to the already known formula of reduced steel stress in the cases char­
acterized by the failure of concrete (Sb max = SbU)' 

400 
as = - . d - 500, [N/mm2 ] as < Rsu (3) 

x 

I a; I ::;: R~u' 
If, \v-ith a slight generalization, measurement d is understood as the 

distance of an arbitrary position steel reinforcement from the compressed 
exterior fibre then relation (3) is valid for both tension and compression 
(Fig. 4). 

'C, < r 

[J~'- ~i F=l~~;,;~ 
;;:',' ,x' :::: ~ 2Sx -- -, 

0, 

Fig. 3. Neutral axis and compressed flange in the critical condition accompanied by steel 
rupture 



104 

11; (tension) 
A 

---lc--

cf! I ~o + I . 
•. ?o., I . 0.6 
cr! 
~.-

I 
V 

~; (compression) 

B.KovAcs 

; :xld 

Fig. 4. Relationship between steel-stress and the relative position of the compressed flange 

Equation (3) changed only in so much as compared to the hitherto 
standard, as necessitated by the introduction of the new measming unit and 
the modification of the steel elasticity factor (Es = 2 . 105 N/nm2). 

The relationships of compressed flange critical condition so important 
in practice for cross sections of simple- and/or double reinforcement can be 
derived from equation (3), (Fig. 5) 

a) from the point of tensile reinforcement 

'f ~/' 1: _ 400 
1 .:::::" So - , 

d 500 + Rsu 
then (4a) 

b) from the point of compressed reinforcement 

if x, > ~o = 400 then O'~ = R;u' 
a 500 -Rsu 

(4b) 

If necessary, in rather seldom cases, the reduced steel tension in the 
critical condition characterized by the ruptme of the exterior compressed 
steel has to be calculated in a different way. Though the standard does not 
mention the problem, the mode of calculation can be derived from the basic 
principles. 

Over and above the stress reduction regulation following from the 
mentioned compatibility principle, also the empirically indicated limitation 
is valid according to which no higher force should be supposed in the compressed 
steel reinforcement than taken into consideration in the compressed concrete 
flange. 

2.4. Determination of load 

For calculating the axial ultimate load the standard contains no speci­
fication by formula, and that for two reasons. On the one hand as, after clari­
fying the science of material and compatibility principles the task is essen­
tially limited to determine the internal forces, and the pertaining formulae 
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and algorithms belong to a basic engineering knowledge and are valid without 
any change. On the other, the high number of concentric compression through 
pure bending to concentrie tension would not make a detailed discussion 
possible in the given limit. Here we only have the possibility to refer in short 
to the fact that determination of some axial ultimate load of a given cross 
section actually means determination of the given point determining the given 

Fig. 5 

(ten~i~nlk 

L.G(e=constl 

N=const ~ t)'Ru(N=const) 

N' 
(COlT'pression) 'I 

Fig. 6. Interpretation of the axial critical load on basis of interaction curve 

condition of the interaction curve belonging to the cross section where the 
condition mostly is the fixed value of the size of force or of its eccentricity 
(Fig. 6). All this is true for the internal forces acting in a median plane. In 
a general, spatial case the load bearing capacity, the reference basis and the 
given conditions are all possible in a higher number of variations. 

Over and above the methods accurate in principle, which can be char­
acterized in the mentioned way, the Hungarian Standard also permits the 
approximating method that applies an approximate interaction line consisting 
of broken, straight phases and the one ,.,ith an approximate interaction surface 
consisting of broken plains. This enables an important simplification especially 
in the range of small eccentricities where one would otherwise have to calcu­
late ,vith a reduced tension in case of tensioned (or less compressed) bars. 
Along the low eccentricity phase linear approximation leads to the following 
simple relations (Fig. 7): 
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Fig. 7 

a) if the limit moment is sought to a given compressive force 

,~ lVo Nw 
.:vI Rll = --''-----''-' 

tg :x 

b) if the limit compressive force is sought to a given eccentricity: 

N Ru = respectively. 
1 + eSll • tg:x 

In these equations: 

No - the concentric limit compressive force, 
tg:x - the incline of the linear interaction span, concerning which the 

approximation 

Where: 

3,3 
tg:x 9¥T 
is generally accepted and which can be calculated more accurately 
in the knowledge of the reinforcement data. Concerning a symmetric 
reinforcement square cross section: 

1 
tg:x = 

d 

d - the useful height of the cross section 
As 

f.L = -- the ratio of reinforcement 
b·d 

Xo 
~ 0 = d the limit position of the height of the compressed flange 

h 
{3 =d' 

d' 
Y = d the measurement parameters according to Fig. 7. 
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cn 

Fig. 8 

In case of spatial eccentrICIty several stages of linear approximation 
of the load hearing smface are possihle. The control-equation suggested hy us: 

r 

.LvlxRu( N SlJ T 1vI XRu( N Su) 
1 (5) 

IS hased on the linear approximation of the N = NS1! plane section of the 
surface, where the x and y direction limit moment pertaining to given 
normal force Nsu can he determined with an accurate method or, according 
to the ahove ,v-ith a linear approximation. Latter possihility leads, e.g. in the 
range of low eccentricity to the following control-equation: 

_~Ixsl! tg CCx T Nlysu tg ccy 

No -Nsu 
1 (6) 

where tg CCx and tg ccy means the incline of plain section 1Vly = 0, or NIx = ° 
of the load hearing capacity approached hy a straight line (Fig. 8). Both of 
the ahove methods give a better approximation than the eqnation suggested 
in the former Hungarian Standard: 

Calculation of the eccentricity increment in case of 
compressed elements 

3.1. Basic principles 

Concerning the specifications of eccentricity increments of compressed 
elements, the draft of the standard follows the concept of the previous stan­
dard form 1971. Accordingly: 

- Due to the inhomogeneity of the cross section and imperfections 
in form, the compressive force always has some original eccentricity. It would, 
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however, be unjustified to make a difference between concentric and eccentric 
pressure. 

- The deformation of the compressed element till the ultimate state 
has to he taken into consideration as a further, additive eccentricity-plus. 

Latter effect was regarded by the previous standard as completely 
independent from the original (calculated and accidental) eccentricities SllppOS­
ing uniformly for each case that the yield of the tensioned reinforcement 
occurs in the critical condition always in the cross section of the highest bend. 
This supposition is in contradiction with both theory and practice (3), (4), (5). 
The new draft enables to take the relation between the original eccentricity 
and the failure increment into consideration 'with a simple correction factor. 

When determining the buckling lengths and selecting the competent 
cross sections the former regulations are valid. 

3.2. Eccentricity increment because of cross section inhomogeneity 

As till now, its value is: 

Llel = 0.03 d 

where d is the useful height of the cross section. 

3.3. The effect of form imperfection 

This surplus eccentricity has to be taken into consideration with 1/300 
of the buckling length 

The till now usual formula 

Lle2 = 0.01 (~)2 . d 
10 d 

viz. that L1e 2 depends quadratically from the slimness was to be explained 
with formal causes, only. It should be noted that the new value is, in general, 
not more favourable under lold = 33 than the one according to the old for­
mula. Despite this, the change is indicated by in principle suitability and the 
example of competent foreign specifications (2). 

3.4. Effect of axis skewing 

In the absence of more accurate data it can be supposed that the axis 
of the columns has a 1% ske,ving. A surplus load results, however, only in 
the columns of unbraced (sway) frames, that has to be considered when 
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Fig. 9. Deformation at rupture of an eccentrically compressed road 
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determining the clearance of force. Thus the effect of axis skewing cannot be 
considered as an eccentricity increment only in case of the most simple sway 
structure, a column fixed at the bottom and free at the top. In case of groups 
of columns \v-ith identical measurement - and load data, there is a possibiliy 
to diminish the supposed skewness, starting from the supposition that it is 
50% accidental and 50% a regular fault. 

3.5. Failure eccentricity increment 

According to the Hungarian Standard from 1971 the eccentricity incre­
ment developing in a compressed column till the point of critical condition can 
be calculated \v-ith the formula 

Llel = 0.04 (~)2 d (7) 
10 d 

where the symbols are to be interpreted according to Fig. 9. This supposition 
leads to the curvature size developing in the middle cross section of a bar 
with an lo buckling length, in the critical condition heing: 

.syield ....L .srupturing 0.004 
Qu = sib ?8--

d d 

and the curvature changes according to the sinus curve. 
Because of the causes mentioned in point 3.1 it was indicated to modify 

formula (7) in a way that it enahle the assumption of a steel deformation less 
than the elongation due to y-ielding, depending on the initial eccentricity 
and/or such a limit curvature. Basing on Hungarian research results as well 
as on pertinent publications of CEB relation of critical condition curvature 
and initial eccentricity can be wTitten with the follo,.,,-ing equation (3), (4): 

.syield .srupturing 
(}" = C _~S_----.:_.::.b ___ , where 

d 

c = (1 + 0.15 l~od) 0.25 + 0.67 V eo + Llj + Lle z < 1 
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and the notations are to be understood according to the former. In this way 
eccentricity increment Llet can be modified with factor c: 

From the check-calculations it turned out that with the above reduction 
of member Llet = Lle3 the effect of increment in member Je 2 is generally 
balanced in case of the most often occurring column slimnesses (10 < lold < 35). 

3.6. The case of calculated eccentricity eo = 0 

If the calculated load of the column is a concentric compression, viz. 
eccentricity is made up from increments Je only, the more simple "rp factor" 
calculation can be applied. The changes in calculating terms' Lle made a 
slight modification necessary in the formula of factor rp, for a better harmony 
with the more accurate calculation method. In the new standard draft therefore: 

1 
(P.Y = 

1.1 0.11 [~ -L O.8l·~J2J . 
10 d' 10 d 

3.7. Complementary checks 

According to the standard draft, esu competent eccentricity is, in general 
a vectorial resultant of eo, the calculated eccentricity, as well as the sum of 
Lle increments. The vectorial summation comes up actually if the calculated 
eccentricity is outside the symmetry plane (Fig. 10.b, 10.c) or in the symmetry 
plane pertaining to the smaller lold slimness (Fig. 10.a). In such a case the 
possibility of increments evolving in the direction of the bigger slenderness 
has to be investigated (Fig. 10). Following this investigation the cross section 
has to be controlled as to spatial eccentricity pressure, taking into considera­
tion what has been said in point 2.4. 

L_~e.: 
/-- ---" .. / 

'-,---'- r--?-
//:t', 

~--;,?/' 

~".'/~ I/' c. / . ~ 

\ 

Fig. 10. Cases of vectorial summation of eccentricity increments 
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