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Ahstract 

The complex of strain hardening of steel, occurring residual stresses, interaction of plate 
and member buckling significantly affects the stability condition of beam-columns. Theoretical 
results obtained by the energy method relying on the theory of plastic deformation match test 
results. 

1. Introduction 

1.1 Plastic methods are increasingly applied for the design of steel struc
tures, still forwarded hy "plastic design codes" issued in a number of countries, 
partly from economical considerations, partly from the consideration that fail
ure safety of structures can only he examined by methods of plastic analysis. 

"Plastic design codes" have been issued in several countries including 
Hungary. 

The Department of Steel Structures, Technical University, Budapest 
had an important share in theoretical and experimental ,·.-ork underlying these 
specifications. 

1.2 Analysis of the plastic load capacity of steel structures requires to 
meet a system of conditions of several subsystems referring either to material 
and geometry of the structure, residual stresses arising in manufacture, or to 
ways of loading, etc. A significant part of the system of conditions refers to 
stability phenomena, to interaction between stability and strength phenomena. 

This study will mainly concern the interaction between plate and lateral
torsional huckling, as well as some factors of significance for the mentioned 
interaction. 

2. Experimental investigations 

2.1 Experimental investigations are essentially expected partly to supply 
physical background (often inspiration) needed to establish models for theoret
ical examinations, and partly to delimit the range of validity. 

Our experiments involved measurements to determine: 
a) plastic material characteristics of steel; 
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b) residual deformations; 
c) load carrying capacities of members in compression, bending and.eccentric 

compression. 

ad a) Plastic material characteristics of steel have been determined in tensile 
tests on a total of 76 standard specimens of different plate thicknesses. Material 
testing results for specimen no. 21 are seen in Fig. 1. 

ad b) Residual strains or stresses of 'welded I-sections have been determined by 
the sectioning method. Residual strains affect both strength and stability 
phenomena. Tests comprised determination of residual deformations of 32 dif
ferent cross sections in all. Distribution of residual stresses in specimen no. 21 
is seen in Fig. 2. 

ad c) Load carrying capacities of memhers in compression, hending and ec
centric compression have been tested by experimental methods. The testing 
program covered I-sections of two different outlines (Bib = 0.6; 0.8). Either of 
the two cases had four different 'web slendernesses, each of them with four 
flange 'widths (Fig. 3). Thereby a series comprised 32 specimens in all, each type 
was exposed to four different distributions of stresses. The experimental pro
gram inyoh-ed testing of 132 specimens. 

2.2 Results of tests and of theoretical analyses will be compared in Chap. 
ter 5. 

3. Phenomena and effects 

3.1 Strain hardening of steel has been determined from the uniaxial state 
of stress condition. UniaxiaI state of stress condition of an elastic-ideally plastic 
material is seen in Fig. 4a, and of an elastic-strain hardening material in Figs 
4·h and c. 

Material equations in the plastic range may hc established either after 
the Hencky's theory of plastic deformation, or the Prandtl-Reuss theory of 
plastic yield [1]. 

For strain-hardening materials, the theol'y of plastic deformation yields 
the material law of a nonlinear elastic solid. The theory of plastic deformation 
cannot be generally considered as perfect, and the relevant results can only be 
accepted as approximations, but in the case of a so-called "simple load", if upon 
loading, stress components at any point of the solid grow in proportion to some 
parameter, material equations hy Hencky yield theoretically exact results [2]. 

3.2 Distribution and value of residual stresses depend on several factors. 
including geometry, material quality, various manufacturing, technology 
processes (rolling, welding, straightening, etc.). 

Distribution and value of residual stresses are mainly accessible to ex
perimental methods [3]. Experimental investigations are bound to technical 
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difficulties, at the same time quantitative and qualitative (distributional) 
characteristics of residual stresses impose statistical analyses. 

3.3 The problem of interactions ""ill be illustrated by analysing the inter
action between plate and lateral-torsional buckling on a simple example in-
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volving the behaviour of the so-called "Shanley model" [4] (Fig. 5). The model 
is that of a rigid member in compression, supporting springs simulate behaviour 
of bar flanges, neglecting the effect of the web plate. 

Spring no. 2 takes post-critical behaviour of the flange plate (after equi
librium bifurcation) by taking the characteristic curve of the spring into con
sideration. For a sufficiently high force P L at flange buckling, both springs 
behave identically up to a relatively high force value, and the critical load of 
the model is: 

PE = - C ( 
b2 ) 
2h 

the so-called Euler (critical) load. However, for P L < PE' at a force P = Pv 
.J will continuously increase, and the force-displacement curve of the perfect 
model tends to the force described by spring factors C and Cl: 

P * _ ( b2 ) 2 . C • Cl 
E- - . 

2h C + Cl 
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At force P L = P;, an indifferent state of equilibrium develops (Enges
ser-Karm{m's critical load). 

Taking various forces P L in the relationship above into consideration, 
load-displacement curves can be determined. 

For PL < P~, equilibrium bifurcation of the perfect model is at R. 
For an imperfect model, this condition involves a curve reaching to peak R'. 
This is the case of "thin" plates. Imperfect characteristics are due to geometric 

·imperfections, to the occurrence of residual stresses. 
For P; < P L < PE' the post-critical state is of unstable character, 

"\\ith the possibility of significant differences between load carrying capacity 
values of perfect and imperfect models. For PE = Pv member and (plate 
bucklings are simultaneous. Points 5 and 5' greatly differ, giving rise to the 
so-called "optimum erosion" [5]. 

Provided PE < P v plate buckling affects only the condition of the per
fect model after equilibrium bifurcation due to "lateral-torsional" bar buckling. 
Duly selecting the proportions, points T and T' may be made to belong to 
nearly identical load carrying capacities, and the imperfect model endowed 
with deformation capacity; this is the case of "thick" plates. Thereby in plastic 
design, the effect of plate buckling on the deformation capacity of a structural 
part or of the complete structure prevails. 

4. Interaction between plate and lateral-torsional buckling 

4.1 Recently, interaction between plate and lateral-torsional buckling 
has come to the foreground of interest. Analyses have been made using different 
models and methods. One solution of the problem applied folded plates [6], 
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[7]. The most current methods are the energy and the variational methods [8], 
[9]. Early in the '70s, the finite element method [10], [ll], then the finite strip 
method [12], [13] have been introduced for the analysis of the interaction 
between plate and lateral-torsional buckling. 

This paper will present an analysis based on the energy method, taking 
also the plastic state of the steel material into consideration. The bar is exposed 
to normal force and to constant bending moment, the procedure takes also the 
effect of residual stresses in the bar, due to the manufacturing technology, into 
consideration. 

4.2 Geometry of the tested member is seen in Fig. 6. The member is simply 
supported at each end with regard to both bending and twisting. 

The member material is assumed to be strain-hardening (Fig. 7); provided 
residual stresses aT are lower than the yield point ay, relationship in Fig. 7 a, 
otherwise that in Fig. 7b, will be applied. The transition between the elastic and 
the strain hardening ranges may be written in terms of a polynomial - assum
ing the residual strains to be of linear distribution. 

Distribution of residual strains and stresses due to technology processes 
over the cross section is accounted for according to Fig. 8. Residual strains are 
assumed to be of linear distribution both in the flanges and the web, residual 
stresses arising in the cross section will be referred to this strain diagram accord
ing to the a-s diagram of the elastic-strain-hardening material. 

Until the development of the critical state, strains due to loading will be 
considered to be of constant distribution in the flanges, and linearly varying in 
the web (Fig. 9a), thereby the loading can be described in terms of the strain 
in an extreme fibre and parameter 0:, and residual strains added, making up 
the load seen in the cumulative diagram in Fig. 9b. 

Taking the 0: value constant in an actual analysis, a so-called "simple 
load" is obtained: axial load for 0: = 0, bending for 0: = 2, while 0 < 0: < 2 
means combined effect of compression and bending. 

<5 

Fig. 8 
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4,3 Analysis of the examined phenomenon will make use of the theory 
of plastic deformation, 

Taking the so-called Shanley phenomenon into consideration (i,e, in
existence of unloading parts, regions of equilibrium bifurcation in the plastic 
range), potential energy of the member can be written, 

Relying on results by Bijlaard and Ilyushin, Stowell [14] has established 
the potential energy of the web plate: 

b 
a "2 

Uw =} J J {D'[C1(w")2 + (W"')2 -!-- (w")(w") + (W")2]) dx dy 

o b 
2 

b 
a 2 

VU' =-} f f t[aw(w')2] dx dy 

o b 
2 

where all' = E ' cy , Sw 
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The potential energy of flanges can also be "\Hitten: if at 

b 

2 
cp = -(w') 

a 

Vj = ~ J f Esec W5(tp")2 dAf dx-+-

o (A;) 

a 

V f = -~ S (afl - af2) S {(wDZ - 2y(wf:)(cp') -+- r(tp'F + z2(cp'}2} dx dA, 

(AI) 0 

where afl = E· 8y . SI 

G _ Esec 
sec - 2(1 -+- v) 3 

(~' = 0.5) 

Overall potential energy of the member: 

4.4 A general shape of a cross section is seen in Fig. 10: K (centroid), 
o (torsion centre). 

For a bisymmetrical cross section in the elastic range, centroid and tor
sion centre are coincident. 

In the plastic range, the two points do not coincide, for an I-section 
(Fig. 11): 

S a£l dAf = cp" .\ Esec Wo dAf = 0; cv = 0 
(AI) (AI) 

.---,.. Vc =-"'c-l.p{::w-::)=·.'~,·t.p.: 
'// 

O{ZW)Yw) 0 

Fig. 10 
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Effect of torsion centre migrating in the plastic range as a function of 
plastic deformation has been reckoned ,~ith in writing potential energies of 
flanges. 

4.5 The critical state will be determined by varying function w(x, y) as 
minimum of functional II. The problem will be solved by the Ritz method. 
Let the deformed shape be: 

w(x, y) = X(x) . Y(y). 

Taking boundary conditions of the member into consideration: 
a) for a member with "pinned" end with regard to t"wisting: 

X-() "'. pnx x = ~sln--
p a 

b) for a member with "fixed" end with regard to twisting: 

X(x) = ~ ~ (cos (p -1) nx -cos (p + 1) nx) 
2 p a a 
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Cross-sectional deformation is seen in Fig. 12, thus: 
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Also, according to Fig. 12, the cases of plate buckling and of lateral
torsional buckling may be separately analyzed by means of coefficients A pq' 

Bp and Cp. 
Substituting derivatives of function w(x, y) into the term of potential 

energy Il, specific strain value e1 leading to critical state for a preassumed IX can 
be found. This problem has been solved on a computer PDP 11/34. The pro
gram selects as many terms from the series of function w(x, y) as needed for 
a deviation below 2% between values for nand n + 1 terms in the final result. 
In the examined cases, nine terms always sufficed. 

. 8, (Case I) (Case 11) 

\ r-I '---I~~ -{f if "I ' ~- .- .-
..l- ._. 

!l~= ~; Af=BT; Aw=bt 
rJy! 

Ar = 2Aj + 'l"Aw 

Ow='l" AA
w 

j CZoj+ow=l) 
. r 

Normal force: Nt = Ar · rJy! Sending moment: MI= 2 - o.w NI'.!? 
2 2 

Casei (neutral axis in the flange) 

M\N =(Nt-N)~ 

Casell (neutral axis in the web) 

[
1 1 1 N 2J MtN = - --a --(-) b·N 
2 4 w 4a.w Nt t 

Fig. 13 



INTERACTION BETWEEN PLATE AND LATERAL-TORSIONAL BUCKLING 219 

5. Theoretical and experimental investigation results 

5.1 In theoretical computations, geometrical imperfections and yield 
stress differences due to different plate thicknesses have been taken into con
sideration. Test results have been compared to load carrying capacities ob
tained on a rigid-ideally plastic material model (Fig. 13). 

Series "N" 

Fig. 14 
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Fig. 15 
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5.2 Residual strains of welded I-sections have been determined, and mea
sured values utilized in theoretical analyses. 

In the plastic range, structural steel exhibits a yield "plateau" and strain 
hardening, approximated by a single, substitutive strain hardening modulus 
in the analysis. 

5.3 Results are seen to agree in Figs 14 and 15 recapitulating results on 
specimens in pure compression and in pure bending for a ratio Bib = 0.8 of 
flange width to web depth. A similar agreement was found between experimen
tal and theoretical results on specimens under eccentric load. 



INTERACTION BETWEEN PLATE AND LATERAL-TORSIONAL BUCKLnSG 221 

5.4 Load carrying capacity ratios depending on component plate slender
nesses (BIT and bit being width to thickness ratios of flange and web, respec
tively) are seen in Figs 16 and 17, pointing out plate proportions where the load 
carrying capacity determined from buckling coincides with that for the rigid
ideally plastic state. For an axial load, the flange slenderness prevails over the 
web plate slenderness (Fig. 16), while in pure bending (Fig. 17), both slender
nesses act equally. 

6. Examination of influences on the interaction 

6.1 This theoretical method, experimentally qualifying as adequate, has 
been applied to examine plate buckling, lateral-torsional buckling, and their 
interaction, for a bar of typical cross section (Fig. 18). 

The tested membCl' was supported hinged for bending, and "fixed-end" 
for twisting. Residual strains have been assumed to be distributed as seen in 
the diagram, with values referred to the yield strain (er = cr/ Cy). 
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The load has been described in terms of the relative strain of the extreme 
fibre in compression (e l = El/Ey) and of parameter 0: = 1 - e2/e l to be deter
mined from extreme fibre strains (0: = 0 in pure compression, 0: = 2 in pure 
bending). 

6.2 Analyses referred to the effects of member length, strain hardening 
modulus of steel material, residual strains, stresses and cross-sectional deforma
tions (web buckling (A ~ ~ 0; C, D = 0), lateral-torsional buckling (A = 0; 
C, D ~' 0), and combined (A, C, DO». 

Granting the simultaneous possibility of weh buckling and lateral-tor
sional huckling, specific strain values e1 typical of the indifferent state have 
been sought for preassumed values of load parameter 0: (0: = 0; 2/3; 4/3; 2). 
Variation of e1 values vs. 0: and the a/b (span to weh depth) ratio are seen in 
Fig. 19 for negligible residual strains (er = 0) and those corresponding to the 
yield stress (er = 1). 

In knowledge of the stress/strain relationship, this diagram can be trans
formed into the function of specific values of member-end compressive and 
hending stresses (Fig. 20). 
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6.3 The effect of the strain hardening modulus value has been examined 
utilizing results for ratios 'E/E = 1/420 and 1/42. For the assumed geometries, 
at a span/depth ratio a/b = 15, the strain hardening modulus value practically 
did not affect the load capacity but below that it may be overwhelming. 

6.4 Residual strains have the greatest effect at about a ratio a/b = 15, 
in the so-called "medium" slenderness range (-with the assumed data, ). = 87). 

6.5 Excluding the possibility of lateral-torsional buckling, relationship 
in Fig. 21 is obtained, where, -with the geometry assumed, the minimum of the 
load carrying capacity is at a ratio a/b = 7 (assuming a length-"wise wave). 
Excluding the possibility of web buckling, a diagram rather similar to Fig. 20 
results, "\\ith a deviation distinct near a/b = 7. 

6.6 As concerns the effect of bar geometry on load carrying capacity, for 
a ratio a/b = 20 usual in construction, and in pure bending, the ratio B/b of 
flange width to -w-eb depth was seen to markedly affect the load capacity (Fig. 
22). The greatest load capacity decrease due to residual deformation was found 
at about Bib = 0.7. 

References 

1. K_A.LISZKY, S.: Theory of Plasticity. (In Hungarian). Akademiai Kiad6, 1975 Budapest. 
2. KACEL~'OV, L. :M.: Foundations of the theory of plasticity. North-Holland Pub!. Co., 

Amsterdam-London, 1971. 
3. PEITER, A.: Eigenspannungen I. _!\It. nIichael Triltsch Verlag, 1966, Diisseldorf. 
4. CROLL, 1. G. A.- WALKER, A. C.: Elements of structural stability. Wiley, 1972, London. 
5. THoMPsoN, J. M. T.-HuNT, G. W.: A general theory of elastic stability. WHey, 1973, 

London. 
6. SUZUlU, Y.-OKUMUR.-I., T.: Influence of cross-sectional distorsion on flexural-torsional 

buckling. Final Report IABSE, 1968, New York. 
7. KOLLBRUNNER, C. F.-HAJDIN, N.: Die Verschiebungsmethode in der Theorie der diinn

wandigen Stabe und ein neues Berechnungsmodell des Stabes mit seinen ebenen de
formierbaren Querschnitten. Publications, IABSE, 28, n. 87 (1968). 

8 



224 L. HEGEDUS-M. IV AiSYI 

8. FISCHER, M.: Das Kipp-Problem querbelasteter exzentrisch durch Normalkraft bean
spruchter I-Trager bei Yerzicht auf die Yoraussetzung der Querschnittstreue. Der 
Stahlbau, 36, 77 (1967). 

9. SCHMIED, R.: Die Gesamtstabilitat yon zweiachsig auBermittig gedriickten diinnwandi
gen I-Staben unter Beriicksichtigung der Querschnittsyerformung nach der nichtlineare 
Plattentheorie. Der Stahlbau, 36, 1 (1967). 

10. R~JASEKARAN, S.-MtJRRAY, D. V.: Coupled local buckling in wide-flange beam-columns. 
Jrl. of Struct. Diy. ASCE, 99, No. ST6. 1003 (1973). 

11. JOHNSON, C. P.-YILL, K. M.: Beam buckling by finite element procedure. Jrl. of Struct. 
Diy. ASCE. 100, No. ST3. 669 (1974). 

1" HANcocK, G. J.: Local, distortional and lateral buckling of I-beams. Jrl. of Struct. Diy. 
ASCE. 104, No. STll. 1787 (1978). 

13. HANcocK, G. J.-BRADFORD, M. A.-TRAHAIR, N. S.: Web distortional and flexural-tor
sional buckling. Jr!. of Struct. Div. ASCE. 106. No. ST7. 1557 (1980). 

14. STOWELL, E. Z.: A unified theory of plastic buckling of columns and plates. NACA Techni
cal Note, No. 1556 (1948). 

15. IV . .\.NYI, M.: Interaction of Stability and Strength Phenomena in the Load Carrying Ca
pacity of Steel Structures. Role of Plate Buckling. (In Hungarian.) Doctor Techn. Sci. 
Thesis, Hung. Ac. Sci., Budapest, 1983. 

Dr. Llszl6 HEGEDUS } H 1"')1 B d . , -;)~ u apest 
Prof. Dr. lVhkl6s IVANYI 


