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Abstract

By elemental methods it is proved in this paper that the following inequalities are
existing.

If probability variable { is non-negative, has continuous distribution and an expected
value M and its distribution function on section (0, - o) is concave, then

M .
;,)—e—gP(ng_e), e > 0.

In the case if probability variable { has possible values x; > 0(i=0,1,2, ..., n),its
expected value is M, its probability distribution and possible values satisfy conditions
P = xi-1) 2 PC= ), xjz1— x5 2% — 25— (i=1,2,...,n)
then

=Pl =), (i=1,2,...,n)
= Xj-1

1. Below, one of the different special cases will be discussed when the
distribution function F(x) of the non-negative random variable & of expected
value M presents itself concave over the section (0, --oc).

The expected value of the non-negative continuously distributed random
variable £ of expeected value M is as follows:

€

M= i‘ x flx) dx = ﬂ x f(x) dx + g‘ (x—=2¢) f(x) dx + ¢ ff(x) dx

0 0
M= ceP(i>¢e) + fﬂc flx) dx + f (x —¢) flx)dx, & >0, 1
0 €
where f(x) is the density function of the random variable .

Markov’s inequality is yielded from inequality (1) by the omission of the
following function:

G(e) = fx flx) dx + r((’c ~—e) flx) dx =M — (1 —P(e)) & >0 (2)

From the trivial equality

M= eP(§ > &) + M — &(1 — F(s)) )
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the following equality is yielded on the basis of concavity of F(x):

G(e) > M —

IIV

M F(M)E(l_F(M) } M o

—_— M —

FM) M M 4 F(M)

and from inequality (3) the following inequality is yielded using the above
expression:

M
4F(M) &

Y

Pi>e), O<e<M (4)

For further investigations the following equality is used as a starting basis:

[ (M — ) f(x) dx = Af (v — M) flx) dx 5)

0

From equation (5) the following is obtained:
M 2M
(4 — 9 FE@) + [ Fe) de = [ (v— M) fle) dx +
M
j x— M) f(x) dx, 22>1,
2iM
M 2aM

{ Fx)dx = [(s — M)F@)BY [ — F(x) dx + (22 — 1) M(1 — F(22M)),

0 M

2aM

[ Fx) dx > (22— 1) MF@2M) + (22 — 1)M(1 — F(2 M),

0 2M
[ Fmyds>(@i—1) M, 1>1 (6)
0

On the other hand, with the use of concavity the following inequality is yielded:

2iM

2AMF (AM) = | F(x) dx (7
0

This can also be read off from Fig. 1.
From inequalities (6) and (7) it follows that

2iM
2AMF(AM) > | F(x) dx = (24— 1) M,
0

2IMF(2M) > (24 — 1) M, (8)
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Fix)
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Fig. 1
and hence
1
FOM)>1 ——, 9
(AM) = 22 )
1
~——>1— FQM)
22
M .
= P(EziM), izl (19)
2AM

And by means of ¢ = AM the following is yielded:

_21; P(t>¢), &> M. (11)
&

1
From inequality (9), in the case of 4 = 1, the inequality F(M) __>_; is

yielded, and further on, with the use of inequality (4) the following inequality
is got:
M
2—;_>__P(5=>__8), t<e< M » (12)
Thereupon, it can be said: if £ is a non-negative random variable of con-
cave distribution function and of expected value M, then in the case of any
positive &, the inequality

Jz‘f—z P(: > ¢) (13)

applies.
Besides, the following should be noted:
a) If £ is uniformly distributed over the section (0, 2M), then the mini-

1
mum of the function G(¢) is 2 M, and its exponential distribution, in the case of
random variable £, will be represented by the following equality:

Mo pe>e, >0 (14)
ee
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b) Inequality (6) is valid for the case of any arbitrary random variable &.
In the case of a discrete random variable taking the values of x;, x,, ..., x,
and %, %y, ..., %,, ..., respectively with a probability of P({ = x,) =
=P;(i=1,2,...) the above mentioned fact can be seen by imposing a lower
limit on the area T under section (0, x,) of the distribution function, in the fol-
lowing way:

k=1 k—1 £—1

T=3@—x)P=x 3 P— 3P,
=1 =1

i=1

k1

k=1 o
T = x,L.ZP,- -+ kaP,-——Zx[Pi > x,— M
i=1 i=k =1
T>x —M (15)

Inequality (12) is valid for all discrete random variables for which it can
be pointed out that

x F ‘—’i’- >T (16)

in the case of an arbitrary x, = 2M. Then, from inequalities (15) and (16) it is
vielded that

x}-:F :)k g Xy — ‘NI' (17)
F '_”1_) > 1 _M )

2 Xy
;“/f,zp(g}_fﬁ.]. (18)
Xy o ' 2

Thereupon, it seems useful to deal with such random variables that take

the values of x, x,, . . . x, with a probability of P(§ = x)=P;(i = 0,1,....n)
and

Py >2P, xpy—xi2>x—2x,, (E=1L2,....n) (19

Then to the random variables & the function F(x) is assigned, whose dia-
gram is a polygon fitting the points (x; Po+ p; + ... - p;). In case, the con-
ditions in (19) are satisfied, this polygon (the diagram of F(x) is concave), and
the following expressions apply for each x:

F) = Fx),  T(w) = T) (20)

On the other hand, due to the concavity in the case of any x,

5 F {—‘f-)é—) > T(x) > T(x). 1)

-
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From inequalities (17) and (18) it follows that

X

£g1~ﬁ(ﬁ’f—J. (22)

~ . X,
From the definition of F(x) it follows that in casex; ; < —;‘—g Z;then

T < F(x;) and x; > 2x;_;. With the use of this, from inequality (22) the

b}

=

F

following inequality is vielded:

M~ Pz (23)

22

It should be noted that the conditions in (19) are satisfied by the random

variable taking, e.g., values (k — np)* with a probability of [Z Pl — p)*-*

(k=10,1,2,..., n). This can be seen immediately in the caseof p = 5 And
1
in the case of p ;—45, it is yielded that the probabilities

. in} ;.
PE—k) = {LJ P —p)y* (k=0,1,2,...,n)
are the increasing functions of k over the section 0 <L k <{ np, and those are
decreasing functions over the section np <{ k <{ n and the superposition of the
two concave plane-figures is also concave. This involves that on the basis of

inequality (23), 5 experiments are sufficient for the accuracy and reliability

<

ensured by the Bernoulli’s inequality in the case of n measurements.

2. And now, the problem will he dealt with: what can be asserted if the
condition of concavity is omitted ?

If the degenerated random variable of the distribution function

Flx) = 0, if x> a,
1, if x >a

(1)

is considered, then it can be seen immediately that Markov’s inequality cannot
generally be satisfied. This can be represented by Fig. 2.



230 L. SEBESTYEN

Fix)

e o e e e g
[
T
E 4
- #
1
wf—

(=]
)
L
~

x

-
Y
)

5 .

For further investigations, the equality valid for the case of any arbitrary
positive A:

M -
M = IMP(§ = M) + { = f(x) dx + § (x — 2M) f(x)dx (2)
0 iM
will be used for any arbitrary non-negative random variable of expected

value M.
From this the followings are obtained:

M %M
M = IMP(& > AM) -+ j' x f(x) dx + f (x — AM) f(x) dx +
0 M
- f (x — AM) f(x) dx,
2M
MM  um
M > IMP(§ > IM) + [xF(x)] ———f F(x) ax + [(x — AM) F(x)] —
o 0 M
22M
— [ F(x) ax + AM(1 — F(24 M)),
M

M > JMP(£ > AM) + AMF(AM) + AF(2AM) + 2M(1 — F(22M)) —
22M

— [ — F(x) dx,

22M
M > AMP(£ = AM) + AMF(AM) + AM — | F(x) dx,
0
2iM
M = AMP(& = AM) + AM(1 — F(AM)) + 2AMF(AM) — { F(x) dx
0
20M
M >2 AMP(§ > AM) + 2AMF(AM) — | F(x) ax, 4>0 (3)
0
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In this way, another proof of point 1 of inequality (13) has been gained.
Since it has already been demonstrated that in the case of a concave distribu-

tion function
2:M

2AMF(AM) — | F(z)dx >0, (4)

If without the use of the condition of concavity, it can be proved in some
way (e.g. In a particular case, with the help of the empirical distribution func-
tion with some fixed 1 (that inequality (4) is valid), then in this special case,
the inequality:

M

— > P(E > AM 5
2 P2 AM) )
can also be applied.
Starting from equality (2), an inequality a bit more meaningful than
inequality (3) can be yielded:
M M

M= AMP( = 1M) + f x f(x) ax + j (x — AM) f(x) dx +
0 M

+ {j (x — AM) f(x) d=x,
aim
M

M > 2MP(E = 2M) + [xF(®) " — | F(x) dx +
0

4iM

+ [z — AM) F(x)]%f{}f—— j F(x) dx + 3AM(1 — F(42M)),

M > JMP(£ > M) + IMF(AM) + 3AMF(41.M) +

4AM

+ 3AM(Q — F(4iM)) — | F(x) ax,
0

4iM
M > AMP(¢ = 2M) + 2MF(2M) + 32M — | F(x) dx,
[t]
42?4
M > AMP(¢ = iM) + AM — AMF(AM) + 22MF(2M) + 22M — | F(z) dx
]

42M

M > 22MP(E > ¢) + 2AMF(AM) + 22M — | F(x) ax. (6)
0

Y

After this, for the inequality (5) to be applied, it should be proved that

4iM

22MF(AM) + 22M — | F(%) dx > 0. (7)
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Fix)

This problem can be illustrated as in Fig. 3.
At last, let A(e) be written as follows:

Sfxf(x) dx ¢ F(s)——f€ F(x) dx
Me) =5 = 0 . , €>0.
§ x flx) dx ,M—EF(e)—Fd(F(x)dx

Funetion A(e) is a monotonic increasing one, A(0) = 0, lim A(g) = oo,
B oa

and obviously
M .
(Me) + )&

¥re

v

P(§ > e).
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