MARKOV'S INEQUALITY IN THE CASE OF RANDOM VARIABLE OF CONCAVE DISTRIBUTION

L. Sebestyén
Department of Civil Engineering Mathematics, Technical University, H-1521 Budapest
Received November 30, 1984
Presented by Prof. Dr. J. Reimann

Abstract

By elemental methods it is proved in this paper that the following inequalities are existing.

If probability variable ζ is non-negative, has continuous distribution and an expected value M and its distribution function on section ($0,+\infty$) is concave, then $$
\frac{M}{2 \varepsilon} \geq P(\zeta \geq \varepsilon), \quad \varepsilon>0
$$

In the case if probability variable ζ has possible values $x_{i}>0(i=0,1,2, \ldots, n)$, its expected value is M, its probability distribution and possible values satisfy conditions

$$
P\left(\zeta=x_{i-1}\right) \geq P\left(\zeta=x_{i}\right), \quad x_{i+1}-x_{i} \geqq x_{i}-x_{i-1}(i=1,2, \ldots, n)
$$

then

$$
\frac{M}{2 x_{i-1}} \geqq P\left(\zeta \geqq x_{i}\right), \quad(i=1,2, \ldots, n)
$$

1. Below, one of the different special cases will be discussed when the distribution function $F(x)$ of the non-negative random variable ξ of expected value M presents itself concave over the section $(0,+\infty)$.

The expected value of the non-negative continuously distributed random variable ξ of expected value M is as follows:

$$
\begin{gather*}
M=\int_{0}^{\infty} x f(x) d x=\int_{0}^{\varepsilon} x f(x) d x+\int_{\varepsilon}^{\infty}(x-\varepsilon) f(x) d x+\varepsilon \int_{\varepsilon}^{\infty} f(x) d x \\
M=\varepsilon P(\xi \geq \varepsilon)+\int_{0}^{\varepsilon} x f(x) d x+\int_{\varepsilon}^{\infty}(x-\varepsilon) f(x) d x, \quad \varepsilon>0 \tag{1}
\end{gather*}
$$

where $f(x)$ is the density function of the random variable ζ.
Markov's inequality is yielded from inequality (1) by the omission of the following function:

$$
\begin{equation*}
G(\varepsilon)=\int_{0}^{\varepsilon} x f(x) d x+\int_{\varepsilon}^{\infty}(x-\varepsilon) f(x) d x=M-\varepsilon(1-P(\varepsilon)) \quad \varepsilon>0 \tag{2}
\end{equation*}
$$

From the trivial equality

$$
\begin{equation*}
M=\varepsilon P(\xi \geqq \varepsilon)+M-\varepsilon(1-F(\varepsilon)) \tag{3}
\end{equation*}
$$

the following equality is yielded on the basis of concavity of $F(x)$:

$$
G(\varepsilon) \geq M-\frac{M}{F(M)} \frac{F(M)}{M} \varepsilon\left(1-\frac{F(M)}{M} \varepsilon\right) \geq M-\frac{M}{4 F(M)} \quad 0<\varepsilon<M
$$

and from inequality (3) the following inequality is yielded using the above expression:

$$
\begin{equation*}
\frac{M}{4 F(M) \varepsilon} \geq P(\xi \geq \varepsilon), \quad 0<\varepsilon<M \tag{4}
\end{equation*}
$$

For further investigations the following equality is used as a starting basis:

$$
\begin{equation*}
\int_{0}^{M}(M-x) f(x) d x=\int_{M}^{\infty}(x-M) f(x) d x \tag{5}
\end{equation*}
$$

From equation (5) the following is obtained:

$$
\begin{gather*}
{[(M-x) F(x)]_{0}^{M}+\int_{0}^{M} F(x) d x=\int_{M}^{2 \lambda M}(x-M) f(x) d x+} \\
+\int_{2 \lambda M}^{\infty}(x-M) f(x) d x, \quad \lambda \geq 1 \\
\int_{0}^{M} F(x) d x \geq[(x-M) F(x)]_{M}^{2 M} \int_{M}^{2 \lambda M}-F(x) d x+(2 \lambda-1) M(1-F(2 \lambda M)), \\
\int_{0}^{2 \lambda M} F(x) d x \geq(2 \lambda-1) M F(2 \lambda M)+(2 \lambda-1) M(1-F(2 \lambda M)) \\
\int_{0}^{2 \lambda M} F(x) d x \geq(2 \lambda-1) M, \quad \lambda \geq 1 \tag{6}
\end{gather*}
$$

On the other hand, with the use of concavity the following inequality is yielded:

$$
\begin{equation*}
2 \lambda M F(\lambda M) \geq \int_{0}^{2 \lambda M} F(x) d x \tag{7}
\end{equation*}
$$

This can also be read off from Fig. 1.
From inequalities (6) and (7) it follows that

$$
\begin{gather*}
2 \lambda M F(\lambda M) \geq \int_{0}^{2 \lambda M} F(x) d x \geq(2 \lambda-1) M \\
2 \lambda M F(\lambda M) \geq(2 \lambda-1) M \tag{8}
\end{gather*}
$$

Fig. 1
and hence

$$
\begin{align*}
& F(\lambda M) \geqq 1-\frac{1}{2 \lambda} \tag{9}\\
& \frac{1}{2 \lambda} \geqq 1-F(\lambda M) \\
& \frac{M}{2 \lambda M} \geqq P(\xi \geqq \lambda M), \quad \lambda \geqq 1 \tag{10}
\end{align*}
$$

And by means of $\varepsilon=\lambda M$ the following is yielded:

$$
\begin{equation*}
\frac{M}{2 \varepsilon} \geq P(\xi \geq \varepsilon), \quad \varepsilon \geq M \tag{11}
\end{equation*}
$$

From inequality (9), in the case of $\lambda=1$, the inequality $F(M) \geqq \frac{1}{2}$ is yielded, and further on, with the use of inequality (4) the following inequality is got:

$$
\begin{equation*}
\frac{M}{2 \varepsilon} \geq P(\xi \geqq \varepsilon), \quad 0<\varepsilon \leqq M \tag{12}
\end{equation*}
$$

Thereupon, it can be said: if ξ is a non-negative random variable of concave distribution function and of expected value M, then in the case of any positive ε, the inequality

$$
\begin{equation*}
\frac{M}{2 \varepsilon} \geq P(\xi \geqq \varepsilon) \tag{13}
\end{equation*}
$$

applies.
Besides, the following should be noted:
a) If $\boldsymbol{\xi}$ is uniformly distributed over the section ($0,2 M$), then the minimum of the function $G(\varepsilon)$ is $\frac{1}{2} M$, and its exponential distribution, in the case of random variable ξ, will be represented by the following equality:

$$
\begin{equation*}
\frac{M}{e \varepsilon} \geq P(\xi \geq \varepsilon), \quad \varepsilon>0 \tag{14}
\end{equation*}
$$

b) Inequality (6) is valid for the case of any arbitrary random variable ξ. In the case of a discrete random variable taking the values of $x_{1}, x_{2}, \ldots, x_{n}$ and $x_{1}, x_{2}, \ldots, x_{n}, \ldots$, respectively with a probability of $P\left(\xi=x_{i}\right)=$ $=P_{i}(i=1,2, \ldots)$ the above mentioned fact can be seen by imposing a lower limit on the area T under section $\left(0, x_{k}\right)$ of the distribution function, in the following way:

$$
\begin{gather*}
T=\sum_{i=1}^{k-1}\left(x_{k}-x_{i}\right) P_{i}=x_{k} \sum_{i=1}^{k-1} P_{i}-\sum_{i=1}^{k-1} x_{i} P_{i} \\
T=x_{k} \sum_{i=1}^{k-1} P_{i}+x_{k} \sum_{i=k}^{\infty} P_{i}-\sum_{i=1}^{k-1} x_{i} P_{i} \geq x_{k}-M \\
T \geq x_{k}-M \tag{15}
\end{gather*}
$$

Inequality (12) is valid for all discrete random variables for which it can be pointed out that

$$
\begin{equation*}
x_{k} F\left(\frac{x_{k}}{2}\right) \geq T \tag{16}
\end{equation*}
$$

in the case of an arbitrary $x_{k} \geq 2 M$. Then, from inequalities (15) and (16) it is yielded that

$$
\begin{align*}
& x_{k} F\left(\frac{x_{k}}{2}\right) \geq x_{k}-M \tag{17}\\
& F\left(\frac{x_{k}}{2}\right) \geq 1-\frac{M}{x_{k}} \\
& \frac{M}{x_{k}} \geq P\left(\xi \geq \frac{x_{k}}{2}\right) \tag{18}
\end{align*}
$$

Thereupon, it seems useful to deal with such random variables that take the values of $x_{0}, x_{1}, \ldots x_{n}$ with a probability of $P\left(\xi=x_{i}\right)=P_{i}(i=0,1, \ldots, n)$ and

$$
\begin{equation*}
P_{i-1} \geqq P_{i}, x_{i+1}-x_{i} \geq x_{i}-x_{i-1}, \quad(i=1,2, \ldots, n) \tag{19}
\end{equation*}
$$

Then to the random variables ξ the function $\widetilde{F}(x)$ is assigned, whose diagram is a polygon fitting the points $\left(x_{i} ; P_{0}+p_{1}+\ldots+p_{i}\right)$. In case, the conditions in (19) are satisfied, this polygon (the diagram of $\widetilde{F}(x)$ is concave), and the following expressions apply for each x :

$$
\begin{equation*}
\widetilde{F}(x) \geq F(x), \quad \widetilde{T}(x) \geq T(x) \tag{20}
\end{equation*}
$$

On the other hand, due to the concavity in the case of any x_{k}

$$
\begin{equation*}
x_{k} \widetilde{F}\left(\frac{x_{k}}{2}\right) \geq \widetilde{T}\left(x_{k}\right) \geq T\left(x_{k}\right) \tag{21}
\end{equation*}
$$

From inequalities (17) and (18) it follows that

$$
\begin{gather*}
x_{k} \widetilde{F}\left(\frac{x_{k}}{2}\right) \geq x_{k}-M \\
\widetilde{F}\left(\frac{x_{k}}{2}\right) \geq 1-\frac{M}{x_{k}} \\
\frac{M}{x_{k}} \geq 1-\widetilde{F}\left(\frac{x_{k}}{2}\right) . \tag{22}
\end{gather*}
$$

From the definition of $\widetilde{F}(x)$ it follows that in case $x_{i-1}<\frac{x_{k}}{2} \leqq x_{i}$ then $\widetilde{F}\left(\frac{x_{k}}{2}\right)<F\left(x_{i}\right)$ and $x_{k}>2 x_{i-1}$. With the use of this, from inequality (22) the following inequality is yielded:

$$
\begin{equation*}
\frac{M}{2 \cdot x_{i-1}} \geq P\left(\xi \geq x_{i}\right) \tag{23}
\end{equation*}
$$

It should be noted that the conditions in (19) are satisfied by the random variable taking, e.g., values $(k-n p)^{2}$ with a probability of $\binom{n}{k} p^{k}(1-p)^{n-k}$ $(k=0,1,2, \ldots, n)$. This can be seen immediately in the case of $p=\frac{1}{2}$. And in the case of $p \neq \frac{1}{2}$, it is yielded that the probabilities

$$
P(\xi=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad(k=0,1,2, \ldots, n)
$$

are the increasing functions of k over the section $0 \leq k \leq n p$, and those are decreasing functions over the section $n p \leqq k \leq n$ and the superposition of the two concave plane-figures is also concave. This involves that on the basis of inequality (23), $\frac{n}{2}$ experiments are sufficient for the accuracy and reliability ensured by the Bernoulli's inequality in the case of n measurements.
2. And now, the problem will be dealt with: what can be asserted if the condition of concavity is omitted?

If the degenerated random variable of the distribution function

$$
F(x)=\left\{\begin{array}{l}
0, \text { if } x \geq a \tag{1}\\
1, \text { if } x>a
\end{array}\right.
$$

is considered, then it can be seen immediately that Markov's inequality cannot generally be satisfied. This can be represented by Fig. 2.

Fig. 2

For further investigations, the equality valid for the case of any arbitrary positive λ :

$$
\begin{equation*}
M=\lambda M P(\xi \geqq \lambda M)+\int_{0}^{\lambda M} x f(x) d x+\int_{\lambda M}^{\infty}(x-\lambda M) f(x) d x \tag{2}
\end{equation*}
$$

will be used for any arbitrary non-negative random variable of expected value M.

From this the followings are obtained:

$$
\begin{gather*}
M=\lambda M P(\xi \geq \lambda M)+\int_{0}^{\lambda M} x f(x) d x+\int_{\lambda M}^{2 \lambda M}(x-\lambda M) f(x) d x+ \\
+\int_{2 M}^{\infty}(x-\lambda M) f(x) d x, \\
M \geq \lambda M P(\xi \geq \lambda M)+[x F(x)]-\int_{0}^{2 M} F(x) a x+[(x-\lambda M) F(x)]- \\
-\int_{2 M}^{2 \lambda M} F(x) a x+\lambda M(1-F(2 \lambda M)) \\
M \geq \lambda M P(\xi \geq \lambda M)+\lambda M F(\lambda M)+\lambda F(2 \lambda M)+\lambda M(1-F(2 \lambda M))- \\
\quad-\int_{0}^{2 \lambda M}-F(x) d x, \\
M \geq \lambda M P(\xi \geq \lambda M)+\lambda M F(\lambda M)+\lambda M-\int_{0}^{2 \lambda M} F(x) d x, \\
M \geq \lambda M P(\xi \geq \lambda M)+\lambda M(1-F(\lambda M))+2 \lambda M F(\lambda M)-\int_{0}^{2 \lambda M} F(x) d x \\
M \tag{3}
\end{gather*}
$$

In this way, another proof of point 1 of inequality (13) has been gained. Since it has already been demonstrated that in the case of a concave distribution function

$$
\begin{equation*}
2 \lambda M F(\lambda M)-\int_{0}^{2 \lambda M} F(x) d x \geqq 0 \tag{4}
\end{equation*}
$$

If without the use of the condition of concavity, it can be proved in some way (e.g. in a particular case, with the help of the empirical distribution function with some fixed λ (that inequality (4) is valid), then in this special case, the inequality:

$$
\begin{equation*}
\frac{M}{2 \cdot \lambda M} \geqq P(\xi \geqq \lambda M) \tag{5}
\end{equation*}
$$

can also be applied.
Starting from equality (2), an inequality a bit more meaningful than inequality (3) can be yielded:

$$
\begin{aligned}
& M=\lambda M P(\xi \geq \lambda M)+\int_{0}^{\lambda M} x f(x) a x+\int_{\lambda M}^{4 \lambda M}(x-\lambda M) f(x) d x+ \\
& +\int_{4 \lambda M}^{\infty}(x-\lambda M) f(x) d x \\
& M \geq \lambda M P(\xi \geq \lambda M)+[x F(x)]_{0}^{2 M}-\int_{0}^{\lambda M} F(x) d x+ \\
& +[(x-\lambda M) F(x)]_{\lambda M}^{4 \lambda M}-\int_{\lambda M}^{4 \lambda M} F(x) d x+3 \lambda M(1-F(4 \lambda M)) \\
& M \geq \lambda M P(\xi \geq \lambda M)+\lambda M F(\lambda M)+3 \lambda M F(4 \lambda M)+ \\
& \quad+3 \lambda M(1-F(4 \lambda M))-\int_{0}^{4 \lambda M} F(x) a x, \\
& M \geq \lambda M P(\xi \geq \lambda M)+\lambda M F(\lambda M)+3 \lambda M-\int_{0}^{4 \lambda M} F(x) d x
\end{aligned}
$$

$$
M \geqq \lambda M P(\xi \geqq \lambda M)+\lambda M-\lambda M F(\lambda M)+2 \lambda M F(\lambda M)+2 \lambda M-\int_{0}^{4 \lambda M} F(x) d x
$$

$$
\begin{equation*}
M \geq 2 \lambda M P(\xi \geq \varepsilon)+2 \lambda M F(\lambda M)+2 \lambda M-\int_{0}^{4 \lambda M} F(x) a x \tag{6}
\end{equation*}
$$

After this, for the inequality (5) to be applied, it should be proved that

$$
\begin{equation*}
2 \lambda M F(\lambda M)+2 \lambda M-\int^{4 \lambda M} F(x) d x \geq 0 \tag{7}
\end{equation*}
$$

Fig. 3

This problem can be illustrated as in Fig. 3.
At last, let $\hat{\lambda}(\varepsilon)$ be written as follows:

$$
\lambda(\varepsilon)=\frac{\int_{0}^{\varepsilon} x f(x) d x}{\int_{\varepsilon}^{\infty} x f(x) d x}=\frac{\varepsilon F(\varepsilon)-\int_{0}^{\varepsilon} F(x) d x}{M-\varepsilon F(\varepsilon)+\int_{0}^{\varepsilon} F(x) d x}, \quad \varepsilon>0 .
$$

Function $\lambda(\varepsilon)$ is a monotonic increasing one, $\hat{\lambda}(0)=0, \lim _{\varepsilon \rightarrow \infty} \lambda(\varepsilon)=+\infty$, and obviously

$$
\frac{M}{(\lambda \cdot(\varepsilon)+1) \varepsilon}: \geq P(\xi \geqq \varepsilon)
$$

References

1. Prekora, A.: Probability Theory with Technical Application*. Müszaki Könyvkiadó, Budapest, 1972.
2. RéNyr, A.: Theory of Probability*. Tankönyvkiadó, Budapest, 1954.

Dr. Lukács Sebestyén H-1521 Budapest

* In Hungarian.

