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CRITICAL SURVEY OF THE THEORY OF 
PLASTICITY* 

G. KAZINCZY 

The Author was the first to publish in 1914, in a Hungarian review, the 
idea that the determination of the true load capacity of hyperstatic structures 
had to reckon "with the residual steel strains. This true load capacity exceeding 
that according to the theory of elasticity, the residual strain might be reckoned 
with in the practical design of structures. In the meantime this problem had 
been discussed, expounded from several aspects, and experimentally tested. 
Let us have now a critical survey of the domain as a whole. 

There are different denominations for the new design method. Theory of 
plasticity means a design method taking also residual deformations into consid

eration, as against the theory of elasticity relying on elastic deformations 
alone. It is also called ultimate load method (theory of plastic equilibrium), a 
term other than unambiguous, namely some authors e.g. STUSSI mean by ulti
mate load the maximum load carried by the structure, ,,,-hile others such as F. 
BLEICH, lVlAIER-LEIBNITZ and the Author himself in an earlier publication, 
have meant the maximum load allowed in practice. The approach to this pro
blem depends on certain fundamental principles. What is the goal of design
ing our structures? That is the serviceability in use. Taking uncertainties of 

manufacture, material characteristics and load into consideration, the struc
tures have to be designed ,.,ith a certain "safety" to failure. As stated at the 
Vienna Congress, the safety degree is a question of economy. On one hand, 
construction is expected to be inexpensive, on the other hand, the possible 
damage must not exceed the economy resulting from reduced cross sections. 
Thus, the higher the possible damage, the higher safety is required. These con
siderations make it clear why to be satisfied with a safety factor of 1.6 or 1.8 

in cases where failure is unlikely else than"in an excessive deflection, as against 
about 3 in cases where an excessive strcss in the member would entrain instan
taneous collapse without warning (e.g. buckling). :Members likely to become 
unserviceable if excessively deformed are attempted to be given a satisfactory 
safety to excessive deformation rather than to failure. As a rule on the value of 
the allowable deflection, the load where the deflection is accelerated under 
monotonically increasing load could be considered as limit load (critical load 
or practical ultimate load). In tests by F. STUSSI and C. F. KOLLBRUNNER 
[3] (Fig. 1) 1.71 t rather than 2.35 t should be taken as limit load of simple 
beams. Looked at from this aspect, also the conclusions drawll from these tests 
are slightly different, namely that the limit load (hence not the true load carry-

,. Taken over from the Final Report of the LA.B.s.E. Congress in Berlin, 1936, with the 
kind permission of International Association for Bridge and Structural Engineering. 
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Fig. 1 

f b~:: residual deflection 

Fig. 2 

ing capacity) is the double for elastically restrained beams'" in any, even extreme 
cases. There is an exception for excessively soft restraints, namely then the 
elastic midspan deflections grow so fast at the yield point that the allowable 
values are reached before the beam starts to yield at the intermediate sup
ports. Deflection curves of a uniformly loaded ideal-plastic beam with different 
restraints are seen in Fig. 2. In singular cases also deformations are seen to 
matter. 

There are two means to respect in design the specified safety: either the 
load multiplied by the safety factor is reckoned with, or a limit stress divided 
by the safety factor is admitted, this latter being the common way. Thus, the 
ratio oflimit to admitted stress would be the safety factor. This would be cor
rect if stresses grew linearly up to the limit load but in fact this is often not 
true, in particular for hyperstatic structures (stress redistribution) as a rule. 

,. Simple beam: PT .=l.71 t; P v =2.35 t: 3.46 = 2.02. Continuous beam: [=160-60.120; 
1.71 

PT- = 3.46 t: PI' = 3.82 t: ~::~ = 1.62. PT' = ultimate load, Pv = working load. 

6 
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Entering stresses multiplied by the safety factor into calculation would explain 
the stress redistribution arising anyhow beyond the admitted stress, hence 
critical only for estimating the safety rather than for the real stress. 

In order to determine the theoretical value of the ultimate load of hyper
static structures and to avoid the mathematical difficulties, a material 'with 
ideal characteristics, i.e. an idealized stress-strain diagram is introduced. 
Again, the cross section was assumed to remain plane in course of deformations, 
and the y-ield process to propagate from extreme fibres to the beam interior. 
According to this theory, a flexural cross section can undergo further defor
mation without moment increase if it has become plastic up to the neutral 
axis. To the plastic hinge effect an infinite deflection value belongs. This is 
impossible for mild steel because of strain hardening. This is why recently 
some researchers wanted a closer look into the process of plastic deformation, 
especially for cases with non-uniform stress field and yield phenomenon, when 
parts under lower stress delay the deformation of members in the plastic range 
(see recent theories of elasticity by W. KUNTZE [4], W. PRAGER [5] and J. 
FRITSCHE [6]). Observations, however, did not confirm this theory. Yield 
patterns are not delayed to the degree to cause the beam to y-ield at once up 
to the neutral axis. It is seen also in Fig. 230, p. 127 of "Plasticity of Structural 
Materials" by N_ti.DAI: yield was steadily spreading inwards. 

Though, for I-beams, yield patterns are seen to appear at once on the 
flange. On the other hand, RmAGL [7] states the delay of y-ield to be erroneous 
in this concept, and to be attributed to an upper y-ield point, always manifest 
in bending, while in a tensile test it is negligible. The Author disagrees with 
Prof. RINAGL, namely he himself could observe yield delay for an uneven stress 
field in truss bars, to be discussed below. In all these, reckoning ,vith real mate
rial characteristics leads to difficult computations. Since, however, the final 
goal is structural design rather than theoretical demonstration of test results, 
a simple computation method has to be found. This is possible by assuming 
a sharp transition from the elastic to the plastic range also in bending. ~LUER
LEIBNITZ [8] showed how to solve simple problems by means of the true lllO-

Theory and observot:on 

: To be used in practice 

Fig. 3 
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ment-deformation method; a practical method has to rely on a simplified inter
pretation (Fig. 3). MAIER-LEIBNITZ suggests to consider as ultimate moment 
that where the curvature of the deformation-moment diagram has a maximum. 
The Author suggests to consider as ultimate moment that where the residual 
deformation is twenty times the elastic one. For a deeper insight, the Author 
loaded an I-beam of about NP 24 (W = 399 cm), lackered to exhibit yield phe
nomena beyond the yield point. The bending curve remained about linear up 
to about (J = 2250 kgjcm2 (Fig. 4). The flange in tension exhibited yield pat
terns at 2500 kgjcm2 while the same appeared on the compressed flange -
partly due to a local fault - already at (J = MjW = 2120 kg/cm2 • For 
NljW = 2800 kgjcm2 that deformation rate was achieved, which was considered 
by the Author as the characteristic sign of the ultimate moment. The beam was 
removed from the bending tester, carefully inspected and photographed (Fig. 5). 
About half of the flange at the beam cross section exposed to a constant maxi
mum moment exhibited yield patterns. Contrary to theoretical considerations, 
the yield pattern approached the neutral axis. The yield stress obtained on a 
tensile specimen cut out after the test from a load-free beam end was found to 
be 2300 kg/cm2 "\tith a very short yield deformation. This test argues for empiri
cal rather than theoretical determination of the yield point. lTItimate moment 
and yield point seem to be else than simply related because of the effect8 of 

6* 
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Fig. 5 

the shape of the cross section and of material characteristics. Empirical deter
mination of these ultimate moments for certain cross sections and steel types 
would eliminate difficulties of the assertion of the new design approach. * 
Having made up one's mind to calculate by using the idealized bending line 
(iV1-rp diagram), the rules of structural analysis are as below. 

1. Statically determinate structures in hending 

The ultimate load capacity is exhausted only when the "beam" starts 
yielding, rather than at reaching the yield stress in the extreme fibre. The ulti
mate moment is not 11,;1 = W.aF but 11,;1 = T.aF, T exceeding W by about 6 
to 20% and has yet to be determined experimentally. 

2. Statically determinate trusses 

The computation remains unaltered. Secondary stresses resulting from 
the rigid connections of the bars at the nodes may be neglected. In compres
sion, however, also in the plane of the truss, the theoretical bar length has to 
he considered as buckling length. Compressed bars have to be designed with a 
higher safety than have tensile bars, namely exceeding the buckling load may 
entrain collapse of the structure . 

.. KAzINCZY [9]. KIST [10]. FRITSCHE [11] and KUNTZE [4] have suggested methods to 
calculate the ultimate moments, which provide, however, lower ultimate moment value than 
the Author's tests did. 
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3. Calculation of rivet connections 

lust as hitherto, the total bar force is assumed to be uniformly distrib
uted among all the connecting rivets. Practice and experience have perfectly 
confirmed the theory of plasticity. The connecting rivets or 'welded joints 
should, however, be designed for the maximum admissihle rather than for the 
calculated bar force in order to have bars rather than joints yielded due to a 
higher than ultimate stress. To distribute secondary stresses in the hars them
selves, rigid connections are advisahle. 

4·. Analysis of continuous heams 

For heams with a constant rolled cross section, moments ~,"Io in each span 
have to be determined as for simple heams, and the closing line has to he loc
ated to equalize negative and positive moments. Then the beam has to he 
designed for the maximum moment calculated in such a manner. 

For heams with cross sections adapted to the course of moments hy means 
of flange plates, calculation according to the theory of plasticity is essentially 
meaninglcss. If, hO'wever, economical reasons argue for the new method, the 
closing line can he deliherately located so as to minimize production costs. It 
has to be considered as a rule that negative moments may arbitrarily he reduced, 
while yield at mid-heam is associated with large deflections. For live loads, the 
maximum moments have first to he determined according to the theory of 
elasticity, then the closing line may he arbitrarily shifted in order to equalize 
the maximum moments [12, 13]. 

A major achievement of the theory of plasticity is the pOf:'sihility to ignore 
Tesidual support subsidence;;. On the other hand, effects of displacements of 
the elastic supports have to he taken into consideration. 

Rolling and shrinkage stresses may he neglected, as against stresses 

arising from uneven heating in use [13]. 
Calculating ,\ ... ith a more significant moment redistribution, in particular, 

'when the middle cross section is in yield, the compressed flange is advisahly 
made the stronger, to have the yield process in the tensile flange. 

5. Structures of hars 'vith hending stiffness (frames) 

Several Authors stated that yield of n cross sections of a statically indeter
minate framework with n redundancies does not cause failure. The problem 
may be considered as if having hinges at these sections, acted upon hy constant 
moments. Earlier the Author was of the same opinion [14] but now he suggests 
a modification. To cause instability of a structure, as many hinges have to 
arise as to produce a kinematic chain. During the displacement of the structure 
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these hinges turn only in a given sense. Thereby the plastic hinge acts as a hinge 
only in one direction, while in the other direction it behaves as a perfectly 
elastic member. Thus, plastic hinges turning in the opposite direction as those in 
the kinematic chain do not act as hinges. This is why in a hyperstatic structure 
with n redundancies the yield point will be exceeded at more than n spots 
before becoming unstable. A framework can safely support a given load when 
a possible moment line satisfying the condition of equilibrium with external 
forces nowhere exceeds the value ,LVI = Taadm • An exacter procedure may be 
established by analogy to the Cross method. First, moments are determined 
according to the theory of elasticity. At sections where moments have to he 
reduced, the structure has to be considered as cut through, balanced by intro
ducing additional unloading moments. At sections 'with reduced moments, and 
expected to develop moments, hinges are introduced (Fig. 6). The main ad
vantage of the theory of plasticity is the possibility to control the moments, 
protecting thereby delicate cross sections from excessive stresses. In general, 
the most important member of a framework is the column. Weakening the 
beams at the joints may spare the column, namely thereby, after having reach
ed the ultimate moment at the joint, the beam cannot transfer additional 
moments to the column. Thus, a harmless yield of the beam at the joint may 
save the column from hazardeous deflections. 

6. Trusses 

Externally hyperstatic trusses are designed as beams and frameworks. 
Yield phenomena are restricted to a part of a bar. Redistribution cannot, 
however, be made else than with tensile bars, namely the resistance of a com
pressed bar abruptly drops after buckling, as stated by the Author in Liege 
[9]. Recently, E. CHWALLA [15] has reconsidered this problem and experimen-
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taUy confirmed the drop of the compressive strength. For internally hypersta
tic trusses, according to the theory of elasticity, often not all the bars can be 
fully stressed such as for that in Fig. 7 where, according to the theory of elastic
ity, part system B cannot be fully utilized. In this respect, the theory of plas
ticity is economically more advantageous by permitting full use of all the bars. 
Normally, such structures are easy to design. The static ally superfluous tensile 
bars are omitted and replaced by knov,-n forces F· aadm' Hence tensile bars 
with the highest stresses, ",,·hich start to yield the first, have to be omitted, 

~ c~c 

! p= 2{)t 

Fig,7 

either by simple consideration or involving the theory of elasticity. The cross 
sections have to be adjusted to let always tensile bars yield, and never com
pressed bars buckle. 

Live loads require special methods such as that by E. lVIELAN [16], with 
the comment that no plastic deformation in compressed bars is admissible. 

To check theoretical considerations on the theory of plasticity 'for trusses, 
some tests have been made, to be briefly outlined belo·w. Two kinds of internally 
hyperstatic trusses, namely welded and riveted, have been tested, while tests 
by G. GRUNING and E. KOHL [17] concerned externally hyperstatic trusses, 
where the tensile bars with the maximum stresses were made to eye bars, 
inhibiting to draw conclusions on usual nodal joints. The form of the tested 
truss specimens with sizes and results is seen in Fig. 8. The truss may be con
sidered as consisting of two basic systems A and B. Resistances of systems A 

Fig. 8 
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and B each have been plotted in terms of the imposed elongations. PI and Pu 
are indicated as "first" and "second" ultimate load (= ultimate load capacity), 
respectively. After unloading, in the systems remained residual stresses (resi
dual forces in Fig. 9). 

Strength test of the applied structural material showed the band steel 
to be excessively soft, and to have a very wide yield range "\vith increasing 
stresses. The yield point was first reached in the vertical tensile bar (first 
ultimate load). Under additional loads, stresses in this vertical bar remained 
constant and grew only in the other bars until the yield point (second ultimate 
load). Theoretical secondary stresses indicated in Fig. 8 are actually considered 
to vanish in yield. In unloading, the truss behaved as perfectly elastic, residual 
stresses are seen in Fig. 8. But the vertical har does not cope with the residual 
stresses of 830 kg/cm2, it being made of band steel buckling already at 530 
kg/m2

• 

This buckling appeared also in the specimen. The first yield lines neal
the middle of the vertical bar appeared at P = 14 t, but actually it began to 
yield only at 17 t. The specimen suffered a significant deformation while only 
small bar portions yielded (Fig. 10). Hence plastic strain is restricted to certain 
spots where a certain value of strain is reached. Elongation of a mild steel har 
has to be realized according to Fig. 11, where KI and KIl are different imposed 
elongations. Lines e and p represent elastic and plastic strains, respectively. 
The ultimate load (second ultimate load) agrees "ith the theoretical value, 
pointing to the inelevance of welding shrinkage stresses to the load capacity. 
They only affect the beginning of the force redistribution. 

Shrinkage stress values have been determined by the Author on speci
mens observed for elongations at different spots during welding and cooling, 
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exhibiting shrinkage stresses of900 kgjcm2.:No delay of yield phenomena, hence 
an upper yield point, could be obseryed: skew bars with significant secondary 
stresses yielded where mean stresses reached the yield point. Hence, these 
tests seem to confirm the recent theory of plasticity. On the other hand, no 
test performed gave hint to thepreyious yield condition. These kinds of tests 
will he puhlished hy the Author in a detailed report. 

A similar truss 'was made with rivets (Fig. 12). The somewhat higher yield 
point of the applied band steel resulted in a higher maximum load than that 
of the welded heam (20.4 t compared to 19.1 t). At the first loading, rivets got 
somewhat loosened. Further loads elicited elastic behaviour. In spite of rivet 
holes, the yield point was achieyed in the entire cross section. 
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These tests lead to the following conclusions. Shrinkage stresses in hyper
static "welded trusses affect only the beginning of force redistribution rather 
than the critical load yalue. Remind that shrinkage stresses add to the primary 
stresses in tensile bars and reduce those in compressed hars (option of the tech
nology process). 

In riycted hyperstatic trusses the plastic strain starts at joints, friction 
some·what increases the force eliciting this phenomenon. A similar influence 
·would arise from the increase of the yield point at riyet hole edges or from 
strain hardening due to the mode of riyeting. For small bar lengths eyen a 
slight flexibility of the joint may bring ahout force redistribution. Bar connec
tions have to bc strong enough to have the ·whole har yielding hefore they fail. 
Ultimate load of a riyeted truss is that ohtained according to the theory of 
plasticity, considering cross sections not to he ·weakened by riYet holes, pro
yided no compressed bar huckles. In view of the high residual deformations, 
the practically applicable ultimate load is obtained by deducing the rivet holes, 
and reckoning ·with force redistribution. Then the safety ·will always exceed 
that for ·welded trusses calculated ·with full cross sections. 

In addition to trusse5, also riveted steel beams have heen tested by the 
Author. Simply supported beams ·were loaded at third points, and deflection 
angles of central heam parts under a constant moment determined. The results 
have been plotted in Fig. 13. In determining the moment of inertia, the rivet 
holes were not deduced. The measured deflection somewhat exceeded that 
ohtained hy the use of the value E 2100 t!cm~, ·while the deflection at un
loading (elastic recovery) ·was in good agreement. After two days of rest, the 
yield point increased by 6° () and the beam behaved purely elastically. For the 
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suggested assumption dajds = (lf20)E, the critical load was found to be 14 t. 
Compar~son of this test value ,dth different concepts has been plotted in Fig. 
13 'where the lowest yield point was taken as 2500 kgjcm2 resulting in a corre
sponding maximum stress of 2720 kgjcm2 in the extreme fibre of the flange. 
The ultimate moment T . aadm was determined from the condition of the flange 
at yield (Fig. 13). In this test another unknown is the value to be assumed for 

Welded I-beam 

Cross section mm 

2680 
2620 
2750 
4280 

1513000 

Tension 
1 180000 

152.6 . 13 
155 . 7.7 
60 . 60 . 6.1 
182 . 8.2 

Compression 
1420000 

Table 1 

Compressed flange 
Tensile flange 
4L 
Web 

Critical moment kgcm 
according to the test 

WaF (aF = flange) 

Riveted I-beam d = 16 mm 

152 . 12.8 
154, . 7.7 
60 . 60 ·6.1 
183 . 8.6 

2680 
2590 
2780 
4060 

1266000 

Tension Compression 
1 170 000 1 140 000 

-------------------------------------------

1644000 

Wap rivet holes deduced 

WaF rivet holes deduced 
also in the web 

965 000 1135 000 

906 000 1 087 000 

Tap overall cross section 1 632 000 

Tap rivet holes deduced 1387000 
------------------------------------

1513000 

Tap rivet holes deduced 1 266400 
also in the web 

Tap of flanges and angle 
steel = Wap of web 

rivet holes deduced 
1259000 
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rivet holes. To clarify this problem, comparative tests haye been made by the 
Author on riveted and welded beams of the same section and material. Results 
have been compiled in Table l. 

Also a riveted beam continuous over three supports has been tested 
(Fig. 15). Deflections exceeded the calculated values, even after unloading. 
The web yielded in shear between the central support and the loading point 
(Fig. 14), experimentally confirming the theoretical statement by STUSSI [18] 
that shear stresses definitely increase upon the propagation of yield from the 
beam edge to a certain depth, e,en if to a some'l-hat lower degree. 

It may he ascribed to the rapid moment decrease endangering only a 
short portion of the beam restrained in displacement by the adjacent beam 
parts. In final account, the maximum load upon perfect moment redistribu
tion was characterized ~)v the ultimate moment T' . up. 
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