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Summary 

Instead of the usual correlation eo efficient for determining the closeness and mono
tony of stochastic relationship between random variables, the indicator correlation is suggested. 
of numerical values easy to calculate at quantile curve points. 

The quantile curve is suggested for approximating the functional relationship betweeu 
the two random variables. Certain optimum properties of the quantile curve are pointed out. 

For a monotonous functional relationship between two random variables of exponential 
distribution, the ql1antile curve representing tbc relationship ,dll he shown to coincide ,,-it h 
the line of orthogonal regression. 

Hydrology is often facing the need of easy and fast information on the 
stochastic connection of random variables in order to foresee and forecast 
certain phenomena and to make correct decisions. 

Quantity and quality characteristics of rivers and lakes are random 
variables. Some pairs of random variables are in functional relation, ·while 
other pairs have some tendencies in common, are in stochastic relationship. 
so-called correlation (in a ,dde sense). The theoretical and practical importance 
of the analysis of stochastic dependence of pairs of random variables is seen 
hy the great many relevant publications in the last decades. 

The examination of the independence-dependence conditions between 
two or more random variables has a particular importance, when 

l. the values of one variable are easier to measure than those of the 
other; 

2. the values of one variable can be observed earlier in time than those 
of the others. 

Case I could be exemplified by the water stage/discharge relation. 
Obviously, stage is much simpler to measure than is discharge. 

Another example for case I is to examine the relationship between 
water quality characteristics. Certain quality characteristics are easy and 
fast to measure instrumentally, others being accessible to laboratory chemical 
analysis. 

For instance, an eventual close relation between electrical conducth-ity 
and the quantity of solved mineral salts permits to assess the total quantity 
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of solved mineral salts from conductometry indication prior to laboratory 
analysis, etc. 

The reader is thought to be able to give as many similar examples as 
can the author. 

As an example for case 2, an eventual close relationship between flood 
levels and runoff times of a given river permits to conclude from the peak 
value on the approximate duration of the runoff. 

The majority of sequences of basic hydrologic variables are discrete 
sequences, obtained by observations at discrete times. These time series 
consist of dependent random variables. With increasing time interval the 
dependence between the members of time series generally much decreases. 
It is of interest to determine the greatest interval where data are still depen
dent, decisive for the time range of reliable for~casting from the time series. 
In other words the memory of the time series is as long as the elements of 
the time series are dependent, as far a forecast is possible. In simulating a 
given hydrological time series hy means of a lVIarkov-chain, the order of the 
chain is determined hy the memory of the time series. The memory of the 
time series is just as important for the application of other models e.g. auto
regressive processes. 

Now let us see ho'w to measure the closeness of the relation hetween two 
random variables X and Y. 

B. SCHWEITZER and E. F. WOLF [5] specify the following conditions for 
a reasonable set of desiderata for a symmetric, nonparametric measure of 
dependence R(X. Y) for two continuously distributed random variahles X 
and Y. 

(A) R(X, Y) is defined for any X and Y; 
(B) R(X, Y) = R(Y, X); 
(C) 0 < R(X, Y) 1; 
(D) R(X. Y) = 0 if and only if X and Y are independent; 
(E) R(X, Y) 1 if and only if each of X, Y is a strictly monotonous func-

tion of the other; 
(F) if f and g are strictly monotonous in ranges X and Y. respectively, then 

R[f(X). g(Y)] = R(X. Y); 
(G) if the distribution of X and Y is bivariate normal, with correlation coeffi

cient T, then R(X, Y) is a strictly increasing function of iTi; 
(H) if (X. Y) and (Xn' Yn ) (n = 1,2, ... ) are pairs of random variahles with 

joint distrihutions Hand Hn, respecth-ely, and if the sequence Hn 
com-erges "weakly to H, then lim R(Xn Yn ) = R (X, Y). 

TIH'se conditions are some modifications of the axiom of RENYI [4] which 
s(~cms to be too strong at least for nonparametric measures of dependence. 
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E. L. LEHMAN [2] pointed out certain nC\I- directions in the domain of 
stochastic dependence, introducing the quadrant dependence between random 
variables X and Y in the following way. 

Let us compare the probability of any quadrant X /' X, Y < y under 
the distribution H(x, y) of eX, Y) with the corresponding probability in the 
case of independence. The pair (X, Y) is positively quadrant dependent if 

P(X < x, Y< y) > P(X < x)P(Y <y) (1) 
for all x,y. 

The dependence is strict if inequality holds for at least some pair (x, y). 
Similarly (X, Y) is negatively quadrant dependent if (1) holds with the 

inequality sign reversed. 
Have a closer look at the meanjng of quadrant dependence. 
On the basjs of (1) 

--'------"--"- = P(Y < y: X < x) > P(Y < y). 
P(X < x) 

(2) 

This means that the conditional probability of (Y < y) provided (X < x) 
exceeds the unconditional one of event (Y < y), i.e. small values of X tend to 
be associated with small values of Y and large values of X tend to be associated 
with large values of Y. In case of negative dependence, large values of one 
variable tend to be associated ·with small values of the other. 

The set of inequalities (1) is equivalent to each of the follo\ving: 

P(X < x, Y> y) < P(X < x) . P(Y> .y) 

P(X > x, Y < y} < P(X x). P( Y < y) (3) 

P(X x, Y > y) > P(X > x) . P( Y ?: y). 

If a statistical sample is available for the related values (Xl' Y I ), (X2' Y 2), ••• 

. • • (XI1' Y I1) of random variables X and Y to be plotted as a set of points 
in the plane, then in case of positive quadrant dependence the follo\ving pat
tern of points is obtained (Fig. 1). Let the continuous distribution functions 
of X and Y be F(x) and G(y), resp., and the joint distribution function H(x, y) 

y ::::':/'; :~ ..... ':-; .' 
...... 

x x 

Fig. 1. Typical shape of the point pattern in the ca~e of positive qnadrant dependence 
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then the posltrve quadrant dependence 
distribution fnnctions is expressed hy 

according to (1) - between tIll' 

H(x, y) > F(x)G(y). (4) 

Similarly, the negati\-e quadrant dependence: 

H(x, y) :::;: F(x)G(y). (5) 

Knowledge of a positive (or negative) quadrant dependence between 
random variahles X and Y offers some information on the connection hetween 
the two variahles. In practice, the question arises whether there is a positi\-e 
or negative quadrant dependence between X and Y or no!' and if the answer 
is yes, how this dependence can be measured and how close it is. 

Practical analyses start from the t'wo-dimensional sampl.. (Xl' Y I ), 

(X 2: Y 2): •••• (Xn , Y n ) to he plotted as a set of points in the plane, then median::: 

(m c' m 2) of the distributions of X and Yare calculated by dra'wing the follo'w
ing fig-me: 

.<.~~.(.:.::. I . . .. " .. 
" 'A" - ".' B 

•• : 0" : .". 

m, x 

Fi;:.. 2. Diyisioll into four field, of the ndue range of the two-dimensioned ,ample 
(Xl' Xl)' (X,. Xc), .... (Xw Xn) by medians n1l and me 

In case of positive quadrant dependence, mOTe points are found in quad
rants A and C than in Band D. In case of independence, about equal numbers 

of points fall into each quadrant, for P(X /' JJ1) = ! ' P(Y / i\l12) = ! ' 
and thus peA) = P(B) = p(e) = P(D) ~. where XvII and ;11., are theoreti-4 ' -
cal medians. 

To measure the closeness of positive association, the following measure 
is formed: 

peA + C) - P(B -;- C) = peA + C) - 1 - P(A 

= 2P(A -'- C) 1. 

Since peA) P(B) = ~ (by definition of ]\12), furthermore: P(B) 

(by definition of )\;11) therefore peA) = p(e), i.e. 

4P(A) - 1. 

C) = 

p(e) 
1 

2 

(6) 
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The practical approximate determination of the measure (All' lY!~) is rather 
simple in possession of empirical medians 1\;11' 1\;12. All to be done is to COUllt 

the points falling in set A. For a number k, the statistical estimate of b(N!l' l\L~) 
is: 

4 k _ l. 
n 

j,10STELLER was the first to measure 0(1\11' M"2) defined by Eq. (6) statistical 
features of which were investigated by BLOl\IQVIST [1]. 

It certainly did not escape the attentive reader that the measur8 
Jl1, Jl!I2) does not measure the quadrant dependence in general hut only a 

spt"cial case, the median dependence. For practical applications it is generally 
sufficient to get a fast look at the dependence conditions, namely the quadrant 
dependence cannot he tested at every point (x, y) of the plane. It is, however, 

more satisfactory to check the dependence in several, rather than in a single 

To this end the measure defined by Eq. (6) will be generalized and the 
derived mesure will he seen to he easy to calculate along points of a properly 
;,:elected plane curve. 

Another measure for the relationship closeness 

hetween random yariahles 

As a measure of the stochastic dependence between two random variables 
X, Y the concept of indicator correlation 'vill be introduced. Let the distri
bution functions of random variables X and Y he F(x), and G(y), respectively. 
Both are assumed to he strictly monotonic, continuous functions. The joint 

distribution function of X and Y is denoted H(x, y). 
Let us introduce the indicator variables ~x and 1}y for the fixed pair of 

values (x, y). 

t _ {I if X~x 
"x - 0 if X x 

1}y = {~ if Y<y 
if Y:?: y. 

Correlation coefficient of indicator variables ~x and })y is obtained as 

E(;:o 1}y) E(UE(1}y) 

D( ;x) D(i]y) 

H(x,y) - F(x)G(y) 

V F(x)[l - F(x)]G(y)[1 - G()')] 
Q(x, y). 

(3) 
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Correlation coefficient Q(x, y) is called the indicator correlation of random 
variables X and Y with respect to the pair of values (x, y). As i2(x, y) may have 
a different value in every point (x, y) of the plane, it cannot be directly applied 
to measure the closeness of relationship between variables X and Y. 

Calculating, however, the i?(x, y) values at certain points along a pro
perly selected plane curve, a rather informative measure for the relationship 
hetween the two variables will be seen to result. 

Be x~ thex-quantile of distribution of variable X such that: 

Again, be :v ~ the x-quantile of distribution of variable Y such that: 

In particular xt ' and x:i; are lower, and upper quantiles of the distribution 
of X, respectively, and Xi is the median. Remind that knowledge of the quan
tiles is rather informative of the distribution. 

y 

~~ +--:-~ ~-~ .-:' ~-:::-::·-{.:~:r";';;:";'~:-R: ::~\ ~. 
-r~~~~~~--~-x 

Fig. 3. Empirical quantile curve connecting the identical quantile values (x~i' y~) 

The concept to be introduced will often be referred to in the following. 
Let us consider the set of points defined by quantile point pairs ~;~~, y",) travelling 
x through interval (0,1) to be called quantiIe curve. In practice this curve 
can be approximately imaged by assuming to have a two-dimensional sample 
(Xl' Y1), (Xz' Y 2), ••• , (Xm Y n) for associated values of random variables X 
and Y, to he represented hy a cluster of points. 

Theoretical quantile values X" and y" are approximated by empirical 
quantiles from the sample and points (X~iY~.) belonging to the same rxi value 
connected. (The resulting curve is only a statistical approximation of the 
quantile curve, hut in practical analysis it is current and generally sufficient.) 
By the time, distributions F(x) and G(y) of variahles X and Y are assumed 
to he known, and so are quantiles X,,, Y~' In this case, equation of the quantile 
curve is easy to estahlish using distribution functions F(x) and G(y), namely: 

F(x,,) = G(yJ =x 

5'" = G-I(rx) = G-l[F(x,,)] 
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yielding for the quantile curve 

y = G-l[F(x)]. (9) 

Let us point out a rather important feature of the quantile curve. If there 
exists a strictly monotonous increasing continuous functional relationship 
between X and Y: Y = (p(X), then Y: = q;(x~). Thus, with the given stipula
tions for a monotonous increasing functional relationship between two random 
variables the curve of the function and the quantile curve are identical. To 
prove this statement is rather simple, namely 

'" = P(Y < y~) = P(qy(X) / y~) P(X < qy-l(y~») 
as P(X / x,) '" and thus, with the stipulations: 

(10) is of importance for finding the functional relationship between two 
random variahles. 

Let the value of the indicator correlation g(x, y) he calculated at points 
of the quantile curve: 

_( __ ) H(.i:"y,) - F(x:)G(y:) 
Q x" y, = YF(x,)[l _ F(xJ]G(y,)[I _ G(y,)] 

H(x" ).,) _ ",2. 

'" ",2 

(ll) 

Note that the quantile curve in the form ahove holds for a positive association. 
In case of a negative association, quantile values (x~, Yl-,) are connected, 
and then 

(12) 

Practical utility of indicator correlation g, can he appreciated hy examining 
some characteristics. 

Fig. 4. Independence test by indicator correlation for the annual highest stages on the 
Tisza River 
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a) Evidently, - 1 < Q~ 1 as it is a special correlation coefficient. 

Thus le,' :s;:: 1; 
b) Q", 0 if and only if H(x"y,) = F(xJG<Y,J x 2, that is, iff X and Y 

are independent along the quantile curve. Thereby the indicator 
correlation is superior to the usual correlation coefficient; 

. c) for an arbitrary, monotonous functional relationship between X 
and Y, I eGlI = 1. Namely, let Y q;(X), then Eq. (10) leads to; 

H(x", yJ P(X /' X~, Y ./' yJ = P(X /' x~. q;(X) ./' q;(xJ) P(X "< xJ x. 

Also the inverse of the statement is valid, as the value is 1 only if H(x"" yJ =:x. 
d) The indicator correlation is invariant against the concordant mono

tonous transformation (either both monotonous increasing or both 
monotonous decreasing) of yariables. 

Let U = !(X), V g(Y), where! and g are strict monotonous functions. 

Then u, = !(x,J, v'" = g(y",) 

P( U /' U" V < v,) = P(F(x) < !(x",)g(Y) .. g(yJ) p(X / X"" Y < 5",) 

P(U < it,) P(J(X) / !(;",,,,) ~= 

= P(X < xJ; P(V <:v,) = P(g(Y) /" g(y,)) P(Y /' y,). 

The values in Eq. (11) can only be calculated if joint distribution function 
H(x, y) of variables X and Y is known. In practice it is seldom known, there
fore it should be estimated by statistic means 

n 
Q~ = x-

where k is the relative frequency of points within quadrant (x=, y",). 
n 

(13) 

A statistical value of about zero hints to the independence of variables 
X and Y, while a value close to 1 predicts some monotonous functional relation
ship. The question arises, at what numerical value of e", can X and Y be con
sidered to be independent. Remind that in the case of independence 

From the lVIoivre--Laplace limit distribution theorem, in the case of indepen
dence: 

f

"lk 2:x C-) 
P 1-;; - x2 "?: n 1, 1 -- x2 ~ 0.05. (H) 
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Hence from Eq. (13): 

k 0 - x-
n 2x 
-----pt, ) pi 

\f;;-0 x(I - x) x - x-
2 1! 1 xl. (15) 

V-;:; V 1 - x) 

For 
1 x =C~ _. 

q 

features. In case of x = 

k 1 

n 4 k 
Q± 4-

1 1 71 

q 4 

in (7) examim'd 
1 

according to (15): 
') 

(16) 

for statistical 

As a practical application of the ahove, let the independence of stage 
maxima of the River Tisza measured at Szeged in the period 1876 to 1975 be 
examined by means of the empirical indicator correlation, Eq. (13). 

Be the sequence of yearly maxima at Szeged: 

Forming continuous pairs (Xl' X~); (Xz' X3): (X;l' Xi); ... ; (Xfif)' X 100) and 
plotting them as a set of in-plane points yields in final account: 

The median of the time sequence x.\- = 648 cm. The numhers of points 
in each quadrant are seen in Fig. 5. Based- on Eq. (16): 

97 o = 4 --- - 1 = 0.08. 
-1 100 

y Y='f [x 1 

Fig. 5. Approximate determination of the monotonous functional relatio!bhio between 
random variables with the help of the quantile curve 
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The critical value in Eq. (14) - ahout corresponding to the level 0.05 is: 

2 VI + a; 2V"3 
--ss 0.346. 

nI-a; 10 

Since the ohserved value of e~ is far helow the critical level, there is no reason 
to reject the hypothesis of independence. 

cm cm 

1876 786 1900 525 1924 870 1948 i14 1972 606 
1877 795 1901 680 1925 681 1949 495 1973 

i 
475 

1878 720 1902 668 1926 759 1950 517 1974 807 
1879 806 1903 508 1927 477 1951 550 1975 692 
1880 627 1904 450 1928 542 1952 648 
1881 845 1905 518 1929 I 458 1953 706 
1882 691 1906 550 1930 496 1954 454 
1883 728 1907 758 1931 603 1955 657 
1884 613 1908 595 1932 923 I 1956 689 
1885 565 1909 642 1933 660 1957 604 
1886 534 1910 496 1934 526 1958 730 
1887 660 1911 563 1935 594 1959 436 
1888 847 1912 753 1936 472 1960 582 
1889 805 1913 802 1937 703 1961 394 
1890 566 1914 778 1938 638 1962 820 
1891 668 1915 791 1939 579 1963 587 
1892 630 1916 791 1940 847 1964 764 
1893 726 1917 514 1941 855 1965 748 
1894 568 1918 349 1942 780 1966 799 
1895 884 1919 916 1943 366 1967 790 
1896 525 1920 708 1944, 654 1968 600 
1897 730 1921 325 1945 560 1969 626 
1898 604 1922 774 1946 525 1970 961 
1899 460 1923 637 1947 602 1971 521 

Derivation of functional relationship from measurements 

The relation between two random variables X and Y is usually character
ized hy the conditional expected value curves E(X! Y) or E(YIX), the so-called 
regression curves. In practice often linear regression is made up with, that is, 
finding the straight line hest fitting the two-dimensional set of points 

(Xl' Y j ), (Xz' Y 2), ••• ,(XI1 , Y n ) 

by means of the least squares' method. 
To discover the relevant structural relationship, WALD suggests to 

draw a straight across the centroids of two half parts of the two-dimensional 
sample. 

The method presented below for examining regression in a ,vider sense 
(termed hy Wald "structural relationship") has the advantages over Wald's 
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method, partly of being applicable in case of other than linear regression and 
even to give the approximate shape of the regression curve, and partly, of 
requiring little computing work. 

Our procedure gives the structural relationship between random variables 

X and Y by the curve connecting the quantile points (x~, yJ and (x~, Yl-~) in 
case of positive, and negative as;:ociation, respectively (quantile curve). As 
we have seen, if there is a strictly monotonous functional relationship Y = cp(X) 
between X and Y, then the curve y q;(x) coincides with the quantile curve, 
provided distribution functions of the random variables are strictly mono
tonous continuous functions. 

Knowledge of the marginal distribution functions F(x) and G(y) of the 

pair (X, Y) permits to compute quantile values x"" x"" ... ,x"l: and Y"" y"" ... 
. , , , Y",. for variables X and Y, respectively, . 

I~ case of positive association forming pairs (X"" y,J (.~"" y J. ' . , , (:~'l" Y,,!) 
and connecting them by straight sections results in the approximation of the 
quantile curve (Fig. 5). 

The procedure is the same for negative association where the quantile 

curve crosses points (X"i' )'j-,J. Provided neither single-variable distribution 
functions F(x) and G(y) of random variables X and Y are known. the corre
sponding sample quantiles, that is, the empirical quantiles of ordered samp
les arC:': 

As the sample quantiles are unbiased estimates of theoretical quantiles, thC:' 
curve constructed as above from empirical quantiles of a sufficiently high 
sample number is a good approximation of the theoretical quantile curve. 

One may wonder how the defined quantile curve can fit the two-dimen
sional set of sample points. Is there some optimal property of the quantilc 
curve similar to that of the regression curve? Regression curve E(YiX = x) of 
variable Y on X is known to be a conditional expected value curve with the 
optimal property of minimum variance of corresponding Y values in case 
of X = x with the same abscissa. The regression curve E(XI Y = ~y) has a 
similar property, Also the quantile curve has a certain optimal property for 
both random variables X and Y simultaneously, resulting from its construc
tion principle. The quantile curve, set of points (;~~, y") where 0: is passing 
through the interval (0, 1) is a curve 'where points of the two-dimensional 

sample exhibit a minimum 'weighted average of absolute deviation. For a 

given point (x~, )'"), relationships 
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and 
Yet 

(1 - IX) S ly - .y~ !g(y)dy -+- 0: S Iy Y• i (7(v) dv = min 
Ctt~./ ./ 

(17) 

y" 

are simultaneously met. 
To prove (17) let us find the number z such that 

z 

(1 - 0:) J (z x)J(x)dx 0: S (x - z)J(x)dx = min. 

Hence 
z Z z 

S zJ(x)dx - S xf(x)dx - x S ::f(x)dx + 0: S xf(x)dx + 
z 

-
- IX .\ xJ(x)dx - IX S zf(x)dx mm 

that is 
-

zF(z) - :xzF(z) o:m - S xf(x)dx - x J zJ(x)dx = 

:F(z) -xzF(z) - o:z -'- o:zF(:;) + xm -
. 

- J Jx(x)dx = min (where m = E(X»). 

Introducing function 

z 

q;(z) = zF(z) x(z - rn) - J xf(x)dx 

there may be a minimum only where 

q/(z) F(z) +- zJ(z) - x - zJ(z) = 0 

F(z) = x, z = F-l(o:) = x~. 

Of course, an analog relationship results for y,,-, x-quantile of random vari
able Y. 

Monotonous relationship between random variables of exponential 
distribution 

For certain hydl'ological applications functional relationship between 
exponentially distributed random variables is of special interest. 

For example, in flood hydrology the excess over a given (sufficiently 
high) difference between peak and c-Ievel is exponentially distributed, and so 
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is the runoff time (Fig. 6). 

Xlt)l 
. In 

c 17' !--Y--f"O::: 

Fig. 6. An (approximately) linear correlation exists within a given flood wave between the 
magnitude X of exceeding the ·warning level c and the length X of the flood wav€, 

Be X and Y random variables of exponential distribution, with distribu
tion functions: 

X: F(x) 1 - e~X 

Y : G(y) = 1 - e,'!y. 

Assume a monotonous (increasing) relationship Y cp(X) between X and Y, 
where tp(x) is a continuous function. In this case function y q;(x) can only be 
linear: 

E(Y) 
v = q:(x) = --x 
~ E(X) 

x. (13) 
D 
jJ 

This statement, however surprising at the first glance, is easy to understand 
because in case of exponentially distributed random variables a monotonous 
relationship is necessarily rectilinear represented by a line passing through 
the origin with a slope equal to the ratio of the expected values. 

In conformity 'with (10), a monotonous increasing relationship existing 
between two random variables is coincident with the quantile curve, hence 

from Eq. (9): 
(((x) = G-l[F(x)]. 

If 
z G(y) 

then 

y = G-l(Z) == 
1 
-In (1 
f3 

Z) 

y 

(Note: if distribution medians of X and Y are xt and JP resp., then 

E(Y) 5'* 
Y· = --- x = -"'-x. 

E(X) x* 



Namely for F(x) = 1 

i.e. 

ex the .¥± value becomes: 

e~X = ~ 
') 

In ~ _ In:2 
similarly y± = 

f3 

In :2 1 

/3 f3 x 

x_} In :2 1 {J 
Cl( Cl( 

Orthogonal regression for exponentiaHy distributed random variables 

Be (X, Y) an arbitrary in-plane point of joint values of random variab
les X and Y. 

Let us find a line L for which the expected value of the square normal 
distance d of random point (X, Y) is minimum (Fig. 7). 

L d 

(X,YJ 

x 
Xsjnf 

Fig. 7. Determination of the orthogonal regression straight line L 

For points (X, Y) on a line L at a distance c from the origin including 
angle rr with the positive X-axis: 

Y cos er - X sin er = c. (19) 

In general, an arhitrary point (X, Y) is not on line L, so values rr and care 
wanted for solving the prohlem 

E(Y cos (p X sin (F c? = mIll. 

Let 

f(rp. c) 

-- 2E(Y)c cos T 2E(X) c ,in (f ~- c~ 
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- 2E( Y) cos rp --'- 2E(X) sin (r -:- 2c o 

that is 

E(Y) cos rp E(X) sin rp c. 

Line L passes through point E(x) = 1n l , E(y) = 1n 2, that is, from (19): 

L = (Y - m~) cosrp - (X - m l ) sinrp = o. 

The minimum problem to be solved is: 

E[(Y - 1n 2) cos rp - (X - 1nl ) sin rp]2 = min 

i.e., 

oaf = vi sin 2(t - 2Q(J(J2 cos 2rp - 2(J~ sin 2cp 0 
rp 

that is: 

yielding the slope; hence the equation for line Lis: 

y- In = 
J 2 (20) 

If random variables X and Y are exponentially distributed with distribution 
functions F(x) = 1 - ~x and G(y) = 1 - -ei3Y , resp., furthermore there is a 
monotonic functional relationship between them, then Y = rp(X) is linear i.e. 
Eq. (20) becomes: 

that is, 

exactly the quantile curve. 

2~~ 
x p {I . 
V( I? + ~'12 X - ~J 

x~ ,32 , 

x 
y=-x 
~ D' 

P 

As a conclusion, the line of orthogonal regression between exponentially 
distributed random variables needs not be computed since the quantile curve 
equation can be directly obtained in knowledge of expected values, or the 
empirical quantile curve is simply produced from the sample. 

2 
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