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Summary

Two methods are presented for computing the information content of the relative
frequency of an event on its unknown probability. The first method relies on the Shanpon
information theory in Baves-notion and is based on a method described by Rényi. The second
method starts from Kalmadr’s “qualitative information theory’ where the amount of informa-
tion given by the relative frequency computed from a statistical sample is measured by the
shortening ratio of the confidence interval of probability. It is demonstrated that the amount
of information in the elements of a sample is not uniformly distributed but decreases in geo-
metrical proportion in the successive experiments,

RExvyr described [2] how to use the Shannon information theory to
solve a given statistical decision problem.

The classical methods of parametrical hypothesis analysis in mathema-
tical statistics (parametrical tests) are known to generally concern the decision
between two hypotheses. If X is a continuous random variable with distribu-
tion function F(x; @) where O is a parameter of the distribution (e.g. expected
value) then generally the null hypothesis Hy : @ = €, on the value of param-
eter O is tested against an alternative hypothesis H, : O = 0,.

In many practical problems it has to be decided between several simul-
taneously possible hypotheses, for instance the possible values of parameter
O are supposed to be numbers 6, 0,, ..., §,, that is, the hypotheses H, : O = 8;
Hy,:0 =0,;...; H,:0 = 0§, are set and it has to be decided for one of them.
The decision is based on a statistical sample of random variable X such that

(M .‘ji DXy, Koy v e (i is a vector of n numbers).

Sample (I) contains all the information to decide which of the values
81 0o, . . ., 0, is the real value of O. In order to apply the information theory
(at least the Shannon theory) for this multi-value decision problem, the stand-
point of Bayes has to be adopted, namely to take parameter © for random
variable with possible values 8, 0,,..., 0, assumed by some p;, ps,. ... Py
k
where > p; = 1.

i=1
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Consequently let

P(H)=PO=0)=p, (i=12....k
The finite scheme
1) 0: (61 Gy .. 6;{'
Py P2+ P

is called the a priori distribution of 0.
The entropy of the finite

I3 4

(2) HO) = — Z‘P(O = 0)1log® P(O = 6;) = — Zp,»logi’pi
i=1 i=1

is the measure of the uncertainty concerning the distribution of 0.

Knowledge of the statistical sample X permits to caleulate the condi-

tional probabilities
(3) PO = 6, X), PO = 4,)X). .... P(O = §,1X)

and with their help the conditional entropy

P(O = 6, %) log> PO = 6,1 X).

M

(4) H(O|X) = ~

i

s

The conditional probability distribution (3) is called a posteriori distribu-

tion of @ based on the statistical sample X of n observations of the random
variable X.

Using the Jensen inequality it can be proved that
3) H(©|X) < H(©)
i.e. the uncertainty of the distribution of O is by no means increased by any
knowledge of random variable X. If X is independent of @ then its value does
not inform on the distribution of @. In this case in (5) the sign of equality
is effective, in any other case unequality is valid.

The conditional entropy H(O!X) can be interpreted as the amount of

still missing information on O after the observation of X.
Let us form the difference

(6) 1(0; X) = H(O) — H(OX)

representing the actual amount of information on @ given by the observed
value of X.

The conditional entropy H(O|X) is a random variable itself, as its value
depends on the statistical sample X = (%1: Xas o o0 %)

The expected value

(7 RO|X) = E[H(0X)]
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can be calculated. and then the difference
(8) 1(0; X) = H(O) — k(O] X)
is the measure of the average information on @ contained in the statistical
sample of random variable X.

In statistical practice it is often advisable to calculate a statistics
= (%, X9, . . ., x,,) Of the sample X = (x,, x,, . . ., %,,) that is a sufficient statis-
tics for O (i.e. statisties ¢ contains all the information in the sample on O).
By means of this statistics ¢ the magnitudes H(O!t) and R(O|t) = E[H(O!1)]

and the average information gain

(9) I(@;¢) = HO) — RO'1)
can be caleulated and as Rényi proved it, if using sufficient statistics,
(10) 103 X) = I(@: 1).

Provided randem variable X is of binomial distribution with parameter
O, then in sample (I), x; = 1 or x; = 0 depending on whether event A4 occurs
or not in the i trial (i = 1,2, ..., n). In this case, relative frequency k of

n
event 4 is a sufficient statistics for @, and (9) yields the measure of information
on the unknown probability P{4) = O given by the relative frequency of an
event.These statements will be illustrated in practice by a hydrological example.

In course of the last 30 floods of the river Tisza at Szeged it happenad
5 times in the second quarter of the year (I1st April to 30th June) that the peak
value exceeded the level ¢ = 650 ¢cm by more than 180 em. The difference
between the peak value and the c-level is called “excess”. Let random variable
X express the excess value. Now, what is the probability of theevent X > 180 em
at the gauge station of Szeged in the second quarter of the year? During the
last 70 years 30 excesses over the level ¢ = 650 em were recorded in the se-

cond quarters, the arithmetic mean of the excesses being X = 90 em.

Let us consider X = 90 cm as the expected value of random variable X.
According to the Markov inequality:

(11) P(X > JE(X)) < -
/.
Choosing 4 = 2
(12) P@QEZHX»zZIX21%cmh;%.

Thus. considering Eq. (12) as starting information,

0= P(X>180cm) 1
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may be taken as granted. Establishing hypotheses H,:0 =0, = 0.1;
H,:0=0,=02H,:0=0;,=03,H,:0 = 0, = 0.4 and deciding among
them, the probable value of unknown @ is approximated at about 109,.

Let us regard the finite scheme

(13) O:1 1

as a priort distribution of @ (O is considered as random variable aceording
to Baves) and let’s compute the entropy

_ 1, 1 1
14) HO) = —4 - —log?— = —log>~
(14 ©) PR

that is, the uncertainty concerning the distribution of @. In the last 30 floods
(during the period in question) the relative frequency of event {X > 180 cm}
k 5 1
[=—=—==0166...~~ 017
n 30 6
obviously contains information on the unknown random variable @, informa-
tion to be quantified.
As in this case the relative frequency approaches O = 0, = 0.2, the
assumption on the distribution of @ is changed. It is not presumed any more
that it takes any value with the same probability. Let us compute the condi-

. e . .. k - . .
tional distribution of @ under the condition t = — = 0.17, that is, determine

the conditional probability

(15) Plezelff], P(@:@zlﬁ}, P(@:@Jﬁ, P{@:—-Gi k
n) ln \n in)
Since
P[G:Bi{tz——li P(t:ﬁ =P(t:—li’O:6,} PO=06) (@=1,23,4)
n n \ n
according to the Bayes-formula:
L P(z:ﬁiezeilp(eze,-)
P[@:()fit:—): ol
‘ n : k!
ZP(»::—@:@)P(@:@,)
J=1 "'k

where
ko n) . r 1.
P(t = _!@ = 61} S { ]9,—‘(1 — ) PO =6) =—, 1=1,2,3,4.
n k 4
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N
8

From the table of binomial distribution:

| 30

Pli==10 = 01| = 0.15 - 0.9% — 0.1023
30 | 5
Ple == 10 = 02] = (3% 0.2 0.8 — 0.1723
30 5
Pli=-=0 =03 =[3 03 . 0.2 — 0.0464
0 5
5 2
Ple=210 = 04 = [39) 0.45. 0.5 — 20042
S 30 5 0.3252

Taking into consideration, that

. P(t _Elo_ 6,-]
P[@:r?,t:—):: . ”LI
n ]
ZP{z:-i@:@-)
i n
eonsequently
P (O — 01t =2 = 0.3146
] i 30
! 5
P (E)ZO.Zt = i = (.5228
C 30
P(@ — 03t =] = 01427
30
P (@=0.4lt _ %) __G0oos
T 30]  0.9814 ~ 1
Let us compute the conditional entropy
;o 3 4 ' x )
(16) Ht@gz: -’”—] —— >p (9 —,]s :i) 1og2P{@ .y (t: i] 143,
] n =1 n nj
The gain of information
(17) 10:t) = HO) — H|0]: — _’”l] _ 2143 =057
n/

shows, how much of information on the distribution of ©® was given by the

-

relative frequency ¢ = ;—0 Knowled‘ge of the relative frequency reduced the

uncertainty about the actual value of O (at least for the rounded value above)
by more than a quarter. The relative gain of information is:
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1{O;1t) 1 1.43

(18) H(O) 2

takes ever different values de-

5 .
The conditional entropy H ‘@ }t _k
| n

is a random variable itself,

P —= —

n
Hence to answer the question, how much information is given by the

pending on the k value, that is, H (O

relative frequency — for the probability of parameter ©. the event, then the
n

expected value of conditional entropy H ‘Q r :iJ
n

(19) R(O) = %H(Q\t —_—'7‘_] Pl :l"
=0 s } n \ n|

is to he computed, and the difference
(20) 1(0) = H(©) - R(O)

vields the information on the probability of the event in question, generally
given by the relative frequency.

To compute the expected value R(O) is rather cumbersome, not to be
discussed here.

As for the decision problem described by Rényi, among hypotheses
H, :0=0,;H,:0=20,,...; H,: 0 = §, it is advisable to accept hypothesis

@:Qit:}i‘

H, with the maximal conditional probability P

1n

Rényi called this decision standard decision and showed not te be other
decision of smaller error than the standard decision.

According to Bayes, no error of first or second kind of the decision can
be spoken of. A decision is wrong if not the true hypothesis H,is accepted.
In the example, the hypothesis H, : @ = 6, = 0.2 is accepted. In this example,
the probability of a standard decision to be wrong is:

e = PO = 6,) = 0.3142 -+ 0.1427 =+ 0.0013 = 0.46.

It is a surprisingly high probability of error, as nearly every second case could
be erroneous. In statistical practice, in testing hypotheses an error of 5% is
accepted in general. The question arises, in case of a standard decision relying
on information theory what a number of elements in a sample would ensure
a decision error of about 5%. The question can be simply answered in the casc

of only two hypotheses: H, : 0 = 0, and H, : O = 0,.
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In this case either

(1) PO =0,1%) > 095 and PO =6, %) < 0.05
or
(22) PO = 6,1%) < 005 and PO = 0,|%) > 0.95

must be true. Any of (21) or (22) is true:
(23) H(O %) < —(0.9510g? 0.95 -+ 0.05 log? 0.05) =~ 0.25.

0, @2] las the « priori distribution of
1/2 2]

Considering distribution O : [
O, in case (21) is true
PO = 0,7) _ PEIOPO =0) _ P(E6)
PO = 0,z)  PR|6)PO =6,)  P([0,)

(24) ~ 19

(the same holds if (22) is true), that is, sampling has to be continued until the
conditional probability of the sample (or the satisfactory statistics computed
of it) for one hypothesis is about 19 times that of the other one. This result
is known from the sequential probability ratio test. From this point, Eqgs
(23) and (24) can be regarded as equivalent.

The result shows that it is possible to decide between two hypotheses
with 959, confidence even if nearly one third of the starting (maximal) uncer-
tainty persists. In case k£ > 2 the answer is complicated, at least according to
the considerations described above. This problem will be referred to later.

Another question arises, whether the amount of information on the un-
known probability contained in the statistical sample can only be measured
by the Shannon-entropy or by other means. too.

L. Kanuir described another possible way of setting up the information
theory — he called it qualitative information theory —, unfortunately his
work got discontinued, so it awaits to be completed. To set up qualitative
information theory, Kalmdr started from analysing the information offered
by one symbol when writing down a number with the digits 0.1, 2, 3,4, 5, 6,
7.8, 9 (each digit is a symbol).

First of zll, some starting information is needed, namely what kind of
number is in question. Generally this starting information is at disposal,
trivially. If e.g. the probability P(A4) = p of an event A is to be given as
decimal fraction then it is known to be one point in the interval I, = [0.1],
the integer part of the number is 0, it can be written down immediately without
any other symbol. If the first decimal digit of the probability P(4) = p in
a question is 2. then the point is in the interval I, = [0.2; 0.3) closed from
the left side. As I, is a real subset of I,. by giving the digit 2 (or any other
digit), information is obtained. as point p is to be found in a shorter interval,
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a smaller set. Now the pair of sets [I,, I,) represents the information gain
from digit 2. If the following digit of the decimal fraction is given, let it be
e.g. 1, then point p is known to be in the interval I, = [0.27; 0.28) closed
from the left. I, is seen to be a real subset of I}, consequently there is a gain
of information obtained by being given the next symbol, digit 7, and borne
by the pair of sets [I;, I,). The same is true for giving subsequent digits.
Upon giving each digit (symbol) the interval containing point p becomes ten
times smaller. The number of symbols for indicating a point must exceed
that of the digits 0,1,2,...,9 imposing to introduce symbol ¥/ indicating
that no more digits are needed to give the decimal fraction wanted. Without
further precisions of KaLMAR’s considerations [1], only the idea is used here that
the information on a wanted point of interval [0.1] is borne by a pair of sets
1, 4. 1,) when a symbol is given (it may but needs not be a digit).

No publication has been found on how to measure the amount of infor-
mation in this pair of sets if to measure at all. One possible way is to introduce
a set-function u in the interval [0.1] to be valued y(I) = 1 for I, < I, _, then
obviously u(I )< u(I,_;) and the information in the interval [I,_,, 1)) is
expressed by the quotient—:(%@? showing how many times the interval

e
including point p is smaller. '

If this measure p is the Lebesgue measure then the measure of interval

w(1,)

I, equals its length. In this case the quotient ——-(I———)—~represents how many times
MLy
the interval on the number axis inecluding point p becomes shorter with

the n'" digit given than it was previously, when only digits 0, a,, a5, ..., @,
were known. This quotient seems to be a natural measure for the information
gain. In certain cases it may be advisable to choose a measure different from
that by Lebesgue in the interval (0.1) for measuring information in the way
described above.

Further in this paper an attempt is made to analyse the outlined prob-
lem in a similar way as Kalmdr’s idea.

In the presented hydrologic example the starting information is that
— according to the Markov inequality — the probability P(X > 180 cm)

does not exceed%, that is, © is a point in the interval {0—21—) . The relative

frequency of the event {X > 180 cm} was found to be k_ -3—56 A 0.17. Accord-
n

ing to the Moivre—Laplace limit theorem, binomial distribution can be appro-

ximated by normal distribution; as V 61 — 0) < 1/2, choosing 1 = 2 yields:

(25) P(f%‘ lzﬁ. ~ 0.05.
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]
~t

In conformity with (25):
k 1 k 1

Vo' Va) 130 730 30 R0
== (—0.0125; 0.3525) ~ (0; 0.35)

_[5 1 5 1

A

is a confidence interval of about 959, for the unknown probability 0.
The starting information located the unknown point @ in interval

I,= [0;0.5]; knowledge of the relative frequency E = —-3—5-6 located it in the
n

shorter interval I, = (0;0.35) namely I, c I,.

Consequently the pair of sets (I, I,) contains information on 8. Now
the question is how to measure it. It seems to be useful to measure the amount
of information with the factor of shortening theinterval containing the unknown
point @, In our example this factor is

1, 035

(26, = 0.7.
=0) i1, 0.5
In this way the relative gain of information:
I — i ;
(27) — 0‘:;—————'511‘ =1 ——————Ul’ = 0.3
o o

is about the same (a little bit more) than the relative information obtained
by Shannon-entropy. It would be useful to measure the amount of information
in identical units, i.e. bits. (The numerical value of the Shannon entropy is
in bits.)
The value
I(@;t) = HO) — HOn)

in (17) amounts to 0.57 bit. Now the question is, how many bits of information

Ll _ g1
| Lol

It can be answered by thinking over the following. If a point O of interval
(05 1) is given in diadic decimal fraction form:

correspond to shortening factor

@:0.0011101...:o+0.%+0.

then giving each digit (0 or 1) halves the length of the interval containing
the O value:
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If the digit following the decimal point is 0, then O is in the interval

1
(O, T] ; if the next digitis 0 again, then it is in the interval {O, —}L-} If the next

. . .. . 1 1 . . .
digitis 1, then O is in the interval (—g ik ete. Going from one digit to the next

one, the interval is halved; in case of digit 0 the point is in the next left-side
half-interval, in case of digit 1, it is in the right-side half-interval. It means
that giving one bit (binary signal) halves the interval containing the point

in question, that is, by giving one bit: gli = % = 0.5.
o 2
Obviously, the more the information, the smaller the ratio of the next
to the preceding interval% . In our example (Z?; = (.7 means that the rela-
- {
5 0 0

tive frequency—?)—ﬂ- contains less than 1 bit of information on the unknown

probability O. Its exact amount can he computed by inverse proportionality
from the proportion:
x:1=05:07; x= &1: 0.71 bit.

0.
This numerical result shows that somewhat more information is obtained on
the unknown probability by using the method described above, than by com-
puting conditional entropy, likely to result from not having rounded the
possible values of ©. Applying the “qualitative” information measurement
yields a somewhat more detailed insight into the dependence of the amount
of information on the probability of an event contained in a statistical sample
on the number of elements in the sample. Let 4 be a certain event of an
unknown probability © to be approximated through n independent experi-
ments. A random variable X is assigned to each experiment so that X; =1
or X, = 0 depending on whether 4 happened in the i experiment or not.
(X, is the indicator variable of event A in the i experiment.) A number n
of experiments yield the statistical sample X,, X,,..., X, to compute the
relative frequency

~3

n n

As a starting information, @ is a point in the interval (0;1).
Acecording to (25):

A !
Pl;]»___@;}_._lj - 0.05
in | In
. : k1 k1), i i ;
that is, in case n = 16, interval ‘_ — —J is the confidence interval of
in 4 ' n 4

about 959, for the unknown probability. Thus, a relative frequency computed
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after n = 16 experiments permits to find @ in an interval half that before
the experiments, that is, 16 experiments give 1 bit of information on 0. If

k 1 k7). , ; - .

n = 64 then |— — 5 o E] is a confidence interval of 959, that is, further
in n

48 experiments give one more bit of information on the value of ©. If n = 256

E 1 &k

then interval ——J contains @ with a confidence of 959, that is,

k1
n 16 n ' 16
192 new experiments are necessary to one more bit of information. To halve
this interval, 1024 = 32> experiments, that is, further 768 experiments are

needed. Thus. to successively halve the intervals, samples of

16 64 256 1024 4096
42 8 167 322 642

elements are needed. The series of differences, that is, the number of further
experiments necessary for one more bit of information:

48 192 768 3072

These differences form a geometrical progression of quotient 4. It means
that the information on the unknown probability € decreases in geometrical
proportion in the elements of the sample. The “closer” the value of & is known,
the more experiments are necessary to further refinements. The number of
elements of the sample needed for one further bit of information increases
very fast. New information is given very ungenerously, to get some more
knowledge costs high in terms of number of elements in the sample.

References

1. KAarMAR, I.: Problems of the Qualitative Information Theory. (In Hungarian) MTA. IIL
Oszt. Kozl. I11/4. 1962

2. Réxyr, A.: Statistics and Information Theory. Studia Scientiarum Math. Hung. 2 (1967)
249—256

Prof. Dr. Jézsef ReEmmany, H-1521, Budapest.




