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Summary 

Two methods are presemed for computing the information content of the relative 
frequency of an event on its unknown probability. The first method relies on the Shannon 
information theory in Bayes-notion and is based on a method described by Ren),i. The seconrl 
method starts from Kalmar's "qualitative information theory" where the amount of informa­
tion given by the relative frequency computed from a statistical sample is measured by the 
shortening ratio of the confidence interval of probability. It is demonstrated that the amount 
of information in the elements of a sample is not uniformly distributed but decreases in geo­
metrical proportion in the 5ucce5sive experiments. 

RENYI described [2] how to use the Shannon information theory to 
solve a given statistical decision problem. 

The classical methods of parametrical hypothesis analysis in mathema­
tical statistics (parametrical tests) are known to generally concern the decision 
hetween two hypotheses. If X is a continuous random variable with distrihu­
tion function F(x; 6) where e is a parameter of the distribution (e.g. expected 
value) then generally the null hypothesis Ho : 6 = (J'J on the value of param­
eter 6 is tested against an alternative hypothesis HI: 6 = (Jl' 

In many practical problems it has to be decided between several simul­
taneously possible hypotheses, for instance the possible values of parameter 
e al'e supposed to be numbers (Jl' (J2' •.. , (Jk' that is, the hypotheses HI : e = (Jl; 

Hz : 6 = (J2; ••. ; H" : 6 = (J1c are set and it has to be decided for one of them. 
The decision is based on a statistical sample of random variable X such that 

- -
(I) X : Xl' X Z' •• "Xn (X is a vector of n numbers). 

Sample (I) contains all the information to decide which of the values 
el' ez, ' , " 8" is the real value of 6. In order to apply the information theory 
(at least the Shannon theory) for this multi-value decision problem, the stand­
point of Bayes has to be adopted, namely to take parameter e for random 
variable 'with possihle values 81, ()Z, ••• , (Jk assumed by some PI' Pz, ••• , Pk 

" where .:2 Pi = 1. 
i=l 

2* 
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Consequently let 

The finite scheme 

(1) 

REDfANS 

(i = L 2, ... , k). 

e : (Bl e2 ••• ele) 
PI P2 ... PI; 

is called the a priori distribution of e. 
The entropy of the finite 

le 

(2) H(e) - .:2 Pi log!! Pi 
i=1 

is the measure of the uncertainty concerning the distribution of e. 
Knowledge of the statistical sample X permits to calculate the condi­

tional probabilities 

(3) p(e 

and with their help the conditional entropy 
_ le _ 

(4) H(eiX) = - .:2 p(e = e;'X) log2 p(e 
;=1 

The conditional probability distribution (3) is called a posteriori distribu­

tion of e based on the statistical sample X of n observations of the random 
variable X. 

Using the jensen inequality it can be proved that 

(5) H(e) 

i.e. the uncertainty of the distribution of e is by no means increased by any 
knowledge of random variable X. If X is independent of e then its value does 
not inform on the distribution of e. In this case in (5) the sign of equality 
is effective, in any other case unequ~ty is valid. 

The conditional entropy H(e I X) can be interpreted as the amount of 
still missing information on e after the observation of X. 

Let us form the difference 

(6) I(e; X) = H(e) - H(e; X) 
representing the actual amount of information on e given by the observed 
value of X. 

The conditional entropy H(e [X) is a random variable itself, as its value 

depends on the statistical sample X = (Xl' X 2, ••• , xn)' 
The expected value 

(7) R(e[X) = E[H(eIX)] 
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can he calculated, and then the difference 

(8) I(0;S.) = H(0) - R(0IX) 

is the measure of the average information on 0 contained in the statistical 
sample of random variahle X. 

In statistical practice it is often advisahle to calculate a statistics 

t(x l , X 2, ••• , xn) of the sample X = (Xl' X 2' ••• , xn) that is a sufficient statis­
tics for 0 (i.e. statistics t contains all the information in the sample on 0). 
By means of this statistics t the magnitudes H(0It) and R(0[t) = E[H(0It)] 
and the average information gain 

(9) I(0; t) = H(0) - R(0!t) 

can he calculated and as Renyi proved it, if using sufficient statistics, 

(10) 1(0; X) = 1(0; t). 

Provided random variahle X is of hinomial distrihution with paramcter 
0, then in sample (I), Xi = 1 or Xi = 0 depending on whether event A occurs 

. I ·tlz .' I (. 1" ) I h' I . f k r-or not In tIe L tna .1, = ,L, ... , n. n t IS case, re atlve requency -- OI 
11 

event A is a sufficient statistics for 0, and (9) yields the measure of information 
on the unknown prohahility P(A) = 0 given hy the relative frequency of an 
event. These statements ,vill bc illustrated in practice hy a hydrological example. 

In course of the last 30 floods of the river Tisza at Szeged it happelli-d 
.5 times in the second quarter of the year (1st April to 30th June) that the p{'ak 
value exceeded the level c = 650 cm hy more than 180 cm. The difference 
hetween the peak value and the c-level is called "excess". Let random variable 
X express the excess value. Now, what is the prohability of the event X 180 cm 
at the gauge station of Szeged in the second quarter of the year? During the 
last iO years 30 excesses over the level c = 650 cm 'were recorded in the se-

cond quarters, the arithmetic mean of the excesses heing X = 90 cm. 

Let us consider X = 90 cm as the expected value of random variahle X. 
According to the lvIarkov inequality: 

(ll) P(X ~ ;.E(X») 
I 

I. 

Choosing ;. = 2 

(12) P(X ~ 2E(X») P(X ~ 130 cm) 
I 

2 
Thus, considering Eq. (12) as starting information, 

e = P(X~ 180 cm) I 
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may be taken as granted. Establishing hypotheses HI: 0 = fJt = 0.1; 
H2 : 0 fJ 2 = 0.2; H3 : 6 = fJ 3 = 0.3; H 4 : 6 = fJ 4 0.4 and deciding among 
them, the probable value of unkno·wn 0 is approximated at about 10%. 

Let us regard the finite scheme 

(13) I
fJ I fJ2 fJ 3 fJ 4 ] 

0: 1 1 I 1 
-- -

4. 4 4 4 

as a priori distribution of 0 (0 is considered as random variable according 
to Bayes) and let's compute the entropy 

H(6) 4 . ~10a2~ 
4 '" 4 

, 1 
-loa" = 2 

'" 4 

that is, the uncertainty concerning the distribution of 0. In the last 30 floods 
(during the periocl in question) the relative frequency of event {X 180 cm} 

k 5 1 
t = - = = - = 0.166 ... /'8 0.17 

n 30 6 

ohyiously contains information on the unknown random variable 0, informa­
tion to be quantified. 

As in this case the relative frequency approaches 0 = fJ 2 = 0.2, the 
assumption on the distribution of 0 is changed. It is not presumed any more 
that it takes any value with the same probability. Let us compute the condi-

tional distribution of 0 under the condition t = k = 0.17, that is, determine 
n 

the conditional probability 

(15) 

Since 

p(0=fJ;i t = :) p(t= :)=p(t= :16 (i = 1,2,3,4) 

according to the Bayes-formula: 

P (t = k 0 = P( 0 = fJ;) 
P (0 = 8

i 
[ t = k) = __ , __ n--'-_----' ___ _ 

, nip (t = k :\ 6 = fJj) P(6 = 8j) 
J=1 n 

where 

i = 1,2,3,4. 
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From the table of binomial distribution: 

Taking into consideration, that 

( 

i k) P 6 = 9i t =-;; 
p(t k 16 ()ll 

nl 
-'-----'-------

k I ) -;;1 6 ()j 

consequently 

P !'6 = 0.11 t = ~l = 0.3146 
'. i 30 

P (6 = 0.2 I t = 3~) = 0.5228 

P (6 = 0.3 it = 3
5
0) = 0.1427 

P (6 = 0.41 t = ~) = 0.0013 . 
I 30 0.9814 ?¥ 1 

Let us compute the conditional entropy 

1.43. 

The gain of information 

(17) 1(6;t) = H(6) - H(6Jt = ~) = 2 -1.43 = 0.57 

shows, how much of information on the distribution of 6 was given by the 

relative frequency t = ~. Knowled'ge of the relative frequency reduced the 
90 

uncertainty about the actual value of 6 (at least for the rounded value above) 
by more than a quarter. The relative gain of information is: 



(18) J(6; t) = 1 _ 1.43 = 0.285. 
H(6) 2 

The conditional entropy H (6 I t = ~ 1 takes ever different values de­

pending on the k value, that is, H (6 I t = ~ 1 is a random variable itself. 

Hence to answer the question, how much information is given by the 

relative frequency k for the probability of parameter 6, the event, then the 
n 

expected value of conditional entropy H l6: t = ~) 

(19) R(6) = y H(6it 
~ I 
k=O . I 

is to be computed, and the difference 

(20) J(6) = H(6) -- R(6) 

yields the information on the probability of the event in question, generally 
given hy the relative frequency. 

To compute the expected value R(6) is rather cumbersome, not to be 
discussed here. 

As for the decision problem described by Renyi, among hypotheses 
HI : 6 = 81 ; H2 : 6 = 82, ••• ; H" : 6 = 8k it is advisable to accept hypothesis 

Hi with the maximal conditional probability P l6 = 6 I t ~) • 

Renyi called this decision standard decision and showed not to he other 
decision of smaller error than the standard dec.ision. 

According to Bayes, no error of first or second kind of the decision can 
be spoken of. A decision is "wrong if not the true hypothesis Hi is accepted. 
In the example, the hypothesis H z : 6 82 = 0.2 is accepted. In this example, 
the prohability of a standard decision to be wrong is: 

e = P(6 c-~ 82) = 0.3142 + 0.1427 -;- 0.0013 ~. 0.46. 

It is a surprisingly high probability of error, as nearly every second case could 
be erroneous. 'In statistical practice, in testing hy"}Jotheses an error of 5~,~ is 
accepted in general. The question arises, in case of a standard decision relying 
on information theory what a numher of elements in a sample would ensure 
a decision error of ahout 5%. The question can be simply answered in the case 
of only two hypotheses: H] : 6 = 81 and H2 : 6 8z. 
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In this case either 

(21) P(G = 01 i x) > (J,95 and P(G = O2 ! x) < 0.05 

or 

(22) P(G = 01 i, x) < 0.05 and P(G = O2 \ x) 0.95 

must be true. Any of (21) or (22) is true: 

(23) H(G: x) -(0.95 log2 0.95 -, 0.05 log2 0.05) :"8 0.29. 

C 'd' d' 'b' G (G1 G.) ') I 1 .. d' 'b' f onSl .enno- lstn utlon • : -as t le a przorz lstn utlOn 0 
'" 1/2 1/2 I 

G, in case (21) is true 

(24) 
P(X i 01)P(G = OJ 
P(xI02)P(G fJz) 

(the same holds if (22) is true), that is, sampling has to be continued until the 
conditional probability of the sample (or the satisfactory statistics computed 
of it) for one hypothesis is about 19 times that of the other one. This result 
is known from the sequential probability ratio test. From this point, Eqs 
(23) and (24) can be regarded as equivalent. 

The result shows that it is possible to decide between two hypotheses 
with 95% confidence even if nearly one third of the starting (maximal) uncer­
tainty persists. In case k > 2 the ans,',-er is complicated, at least according to 
the considerations described above. This problem ·will be referred to later. 

Another question arises, whether the amount of information on the un­
known probability contained in the statistical sample can only be measured 
by the Shannon-entropy or by other means, too. 

L. KAL1IL-tR described another possible way of setting up the information 
theory - he called it qualitative information theory -, unfortunately his 
work got discontinued, so it awaits to be completed. To set up qualitative 
information theory, Kalmdr started from analysing the information offered 
by one symbol when ,..-riting down a number with the digits O. 1, 2, 3, 4, 5, 6, 
7,8,9 (each digit is a symhol). 

First of all, some starting information is needed, namely what kind of 
numher is in question. Generally this starting information is at disposal, 
trh-ially. If e.g. the probability peA) = p of an event A is to he given as 
decimal fraction then it is known to he one point in the interval 10 = [0.1], 
the integer part of the numher is 0, it can be written down immediately without 
any other symhol. If the first decimal digit of the prohahility peA) p in 
a question is 2, then the point is in the inten·al 11 = [0.2; 0.3) closed from 
the left side. As 11 is a real suhset of 10' hy giving the digit 2 (or any other 
digit), information is ohtained, as point p is to he found in a shorter interval, 
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a smaller set. Now the pair of sets [Io, 11) represents the information gain 
from digit 2. If the following digit of the decimal fraction is given, let it be 
e.g. 7, then point p is known to be in the interval 12 = [0.27; 0.28) closed 
from the left. 12 is seen to be a real subset of 11, consequently there is a gain 
of information obtained by being given the next symbol, digit 7, and borne 
by the pair of sets [11' 12), The same is true for giving subsequent digits. 
Upon giving each digit (symbol) the interval containing point p becomes ten 
times smaller. The number of symbols for indicating a point must exceed 
that of the digi.ts 0, 1, 2, ... , 9 imposing to introduce symbol V indicating 
that no more digits are needed to giye the decimal fraction ·wanted. Without 
further precisions of KALftL,(R'S considerations [1], only the idea is used here that 
the information on a wanted point of interval [0.1] is borne by a pair of sets 
(In-I. I,) when a symbol is given (it may but needs not be a digit). 

No publication has been found on how to measure the amount of infor­
mation in this pair of sets if to measure at all. One possible way is to introduce 
a set-function ,Lt in the interval [O.lJ to be valued p(I) 1 for I" C 1,,-1 then 
obviously p(In) < ,u(In-I) and the information in the interval [In-I' In) is 

expressed by the quotient {l(Ill) showing how many times the interval 
. {l(Ill-I) 

including point p is smaller. 
If this measure .u is the Lebesgue measure then the measure of interval 

I" equals its length. In this ease the quotient {l(I n) represents how man y times 
{l(In-I) . 

the interval on the number axis including point p hecomes shorter 'with 
the nth digit given than it was previously, when only digits 0, aI' a2, ••• , a'n-l 

were known. This quotient seems to be a natural measure for the information 
gain. In certain cases it may be advisable to choose a measure different from 
that by Lebesgue in the interval (0.1) for measuring information in the way 
described above. 

Further in this paper an attempt is made to analyse the outlined prob­
lem in a similar way as Kalmur's idea. 

In the presented hydrologic example the starting information is that 
- according to the Markov inequality - the probability P(X > 180 cm) 

does not exceed ! ' that is, 6 is a point in the interval [0, ~) . The relative 

k 5 
frequency of the event {X 180 cm} was found to be - = ~ 0.17. Accord-

n 30 
ing to the Nloivre-Laplace limit theorem, binomial distribution can be appro-

ximated by normal distribution; as V 6(1 - 6) ~ 1/2, choosing I. = 2 yields: 

(25) 
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In conformity with (25): 

(
k 1 k 1 J f 5 1 5 --;; - y;- ; --;; + V;- = 30 - V30 ; 30 _1 )?'" 

V30 

"'~, (-0.0125; 0.3525) ~ (0; 0.35) 

is a confidence interval of about 95% for the unknown probability 0. 
The starting information located the unkno\\l-n point 0 in interval 

f 0 = [0; 0.5]; knowledge of the relative frequency k 5 located it in the 
n 30 

shorter interval f1 = (0; 0.35) namely f1 C Io' 
Consequently the pair of sets (Io, I 1) contains information on 0. No'w 

the question is how to measure it. It seems to be useful to measure the amount 
of information with the factor of shortening the interval containing the unknown 
point 0. In our example this factor is 

(26) 
'f I 
i 0, 

0.35 ~ 
= == 0.1. 

0.5 

In this way the relative gain of information: 

(27) 

is ahout the same (a little bit more) than the relative information obtained 
hy Shannon-entropy. It would he useful to measure the amount of information 
in identical units, i.e. hits. (The numerical value of the Shannon entropy is 
in hits.) 

The value 

I(0; t) = H(0) - H(0jt) 

in (17) amounts to 0.57 bit. Now the question is, how many bits of information 

. f 1111 07 correspond to shortenmg actor -- = . . 
1101 

It can he answered by thinking over the following. If a point 0 of interval 
(0; 1) is given in diadic decimal fraction form: 

1 1 1 1 , o = 0.0011101 ... = 0 + 0 . - + 0 . - + 1 . - + 1 . - -;- ... 
2 22 23 24 

then giving each digit (0 or 1) halves the length of the interval containing 
the 0 value: 

o 1 1 1 
8 4 2 
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If the digit following the decimal point is 0, then e is in the interval 

(0, ~ ) ; if the ne:x-t digit is 0 again, then it is in the interval (0, ~). If the next 

digit is 1, then e is in the interval f ~ , ~,), etc. Going from one digit to the next 

one, the interval is halved; in case of digit 0 the point is in the next left-side 
half-interval, in case of digit 1, it is in the right-side half-interval. It means 
that giving one bit (binary signal) halves the interval containing the point 

. . h' b .. b' (11) 1 0 • m questIOn, t at IS, y grvmg one It: (10) = 2 .:J . 

Obviously, the more the information, the smaller the ratio of the next 

to the preceding interval (I1) . In our example (11) = 0.7 means that the rela-
• (Io) (Io) 

tive frequency ~ contains less than 1 bit of information on the unknown 
30 

probability e. Its exact amount can be computed hy inverse proportionality 
from the proportion: 

1 ,. 0 .. 5 ~ l' x: = 0.;): 0.7; x = = 0.11 )It. 
0.7 

This numerical result shows that somewhat more information is ohtained on 
the unknown probability by using the method described above, than by com­
puting conditional entropy, likely to result from not having rounded the 
possible values of e. Applying the "qualitative" information measurement 
yields a somewhat more detailed insight into the dependence of the amount 
of information on the probability of an event contained in a statistical sample 
on the number of elements in the sample. Let A be a certain event of an 
unknown probability e to be approximated through n independent experi­
ments. A random variable }( is assigned to each experiment so that Xi = 1 
or Xi = 0 depending on whether A happened in the ith experiment or not. 
(Xi is the indicator variable of event A in the ith experiment.) A number n 
of experiments yield the statistical sample Xl' X 2, ••• , X" to compute the 
relatiye frequency 

X = _X--,I,--_X-='2_-_: _. _. _._: _x_n k 

n n 

As a starting information, e is a point in the interval (0;1). 
According to (25): 

l i. k P, 
!n 

t::\ : 1) 0 O· oi>--:::::::::- ~-6 .~ 
I -- Y n 

that is, In case n = , Interva - ; + - IS t e con I ence mterva o' . 16 . 1\ k 1 k 1 J" h f'd . 1 f 
,n 4 n 4 

about 95% for the unknown probability. Thus, a relative frequency computed 
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after n = 16 experiments permits to find e in an interval half that before 
the experiments, that is, 16 experiments give 1 bit of information on e. If 

n = 64 then r k - J:. ; k -+- ~) is a confidence interval of 95 %, that is, further 
. n 8 n 8 

48 experiments give one more bit of information on the value of e. If n 256 

then interval I k - _L; k + ~) contains e with a confidence of 95%, that is, 
n 16 n 16 

192 new experiments are necessary to one more bit of information. To halve 
this interval, 1024 322 experiments, that is, further 768 experiments are 
needed. Thus, to successively halve the intervals, samples of 

64 
82 

256 
162 

1024 
322 

4096 
642 

elements are needed. The series of differences, that is, the number of further 
experiments necessary for one more bit of information: 

48 192 768 3072 

These differences form a geometrical progression of quotient 4. It means 
that the information on the unknown probability e decreases in geometrical 
proportion in the elements of the sample. The "closer" the value of e is known, 
the more experiments are necessary to further refinements. The number of 
elements of the sample needed for one further bit of information increases 
very fast. New information is given very ungenerously, to get some more 
knowledge costs high in terms of number of elements in the sample. 
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