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Summary 

The classical convergence theorem of Haar (1909) yields an example of a non-trigono
metric Fourier expansion which converges at any point of eontinuity to the basic function. 
(As it is well-known, the trigonometric F071rier series of a continuous function may bc divergent 
at some points.) Considering the fact that in the last decades the importance of systems and 
"eries of Haar's type has increased to a large extent in the theory and practice alike, the author 
has investigated since several years, how such systems and expansions can be characterized 
and generalized in the simplest and "most natural" manner. The present paper aims at briefly 
summarizing the obtained results. 

1. 

As it is 'well-known, the trigonometric Foltrier expansion of a Lebesglle 
integrable function or, in particular, of a continuous function can he divergent 
at some points. L. Fejer's classical summation theorem and its extensions 
aim to remedy this situation by considering other limiting processes than the 
CauchJ convergence. 

On the other hand, A. HA.A.R has shown in [5] that the insufficiency in 
question can be eliminated also by taking another suitable basic orthogonal 
system instead of the trigonomctric one. In fact, the so-called Haar system 
which is defined in the interval (0, I), apart from its points of discontinuity, by 

(I) 1-:::: for 

for 

l ° for other 

with )' = I, 2, .. , and I < ;. < 2", yields an example of a complete ortho
normal system of functions having two remarkahle properties; I) each function 
f(t) E L(O, I) is the sum almost everywhere of its Fourier expansion formed 
, .. 1.th the system (I); 2) this so-called Haar expansion converges to f(t) at all 
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points of continuity, and the convergence is uniform in each closed interval 
where fis continuous. At the end of [5], Haar has mentioned still the possibil
ity of constructing analogous further examples arising by other dyadic or 
triadic etc. divisions. 

2. 

The systems and series of Haar's type are known to play an important 
role in the theory and applications of orthogonal series, especially by their 
close relation to the Rademacher and the ordinary or generalized W-alsh sys
tems (cf. [1]). In recent decades, however, these systems became useful expe
dients also in the numerical analysis and computing, furthermore in the 
theory of certain stochastic processes, with special regard to martingalei3. 
(Cf. e.g. [2], [4], [11], [12), [19], [21].) So it is understandable that several 
new theoretical statements on Haar systems and expansions have been pub
lished just since the beginning of the sixties, showing e.g. how far they can be 
characterized by the non-negativity of their Dirichlet kernels or by certain 
algebraic properties, further considering the sets on which a given subsystem 
of such a system is complete and some sets of uniqueness, or the convergence 
features of certain related "multiplicatively orthogonal" series, in the sense 
of ALEXITS, etc. (See [13] through [18] and [20].) 

The present paper aims to give a brief survey of some pertinent results 
of the author which have been found since the sixties, motivated, on the one 
hand, by the rather sophisticated character of (1), and on the other hand, by 
the fact that all usual proofs of Ham"s convergence theorem are fairly com
plicated. (Cf. e.g. [5], 363-368 and [1], 47-50, where the properties of 
Haar's kernel function are applied; or see [6], 120-122 where an "ad hoc" 
verification of three parts is given.) Next a characterization of (1) will be 
formulated by orthogonalization of some characteristic functions, which 
seems to be the "most natural" one, and the representation of (1) by means 
of characteristic functions will be sho"wn to be of use for deducing Haar's 
results in a few lines. (Cf. Theorems 1-11.) 

Thereafter the question ·will. be dealt with how to construct the largest 
class of orthogonal systems of Haar's type for which the premised simplest 
treatment of (1) - based upon the connection "With characteristic functions 
- can be extended. It will be given a new complete orthogonal system {ft~! .,. I:,.(t)} 
which 10 is associated with the most general system of partitions of a finite 
interval into (equal or unequal) suhintervals; 2° has also a quite simple exp
licit representation and geometrical interpretation; 3° alIo'vs of a suitahle 
"natural" characterization by means of characteristic functions; 4° enables 
to prove easily a strong generalization of Haar's convergence theorem. (Cf. 
Theorems HI-IV.) 
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Remark that the results at issue are discussed in the papers [7J - [9] 
and in the book [10J by the author partly within a wider framework, namely 
they are closely interlinked with some problems of approximation in the Hilbert 
space and LP-spaces, respectively. 

3. 

Let us consider the simplest complete system of characteristic functions 
belonging to a dyadic partition of the interval [0, 1 J, i.e. the sequence 

where 

x~·)(t) = 7.li'~ I i. '"Ct) 
21:- I 21') 

(1 <-" '. <" _'l".', 0 1 2 ) '- r _. l' = , , , .... 

These functions are clearly not linearly independent (we hay;; xY)(t) = 
= -X(2;'·-I)(t) -X(2,i,)(t»). but so is the svstem obtained by remoying all terms ",viI .. 1!,1 / J ....... 

of the form X~::'? (t).l 
It is easy to yerify by induction: 

Theorem I. 

Submitting the sequence 

to the Gram-Schmidt orthogonalization process yields just Haur's system 
(1) in the form: 

(2) (v > 0, i. 1), 

where 

d;.v = [(i. 1)'l-V I'/:' _!..)?-v) d" -[(/:' _~}?-v ~.?-vJi - .,. ,.,.., ).v-· .. ,''''''''. 
2 2 

Let now be J(t) E L(O, 1) and 'wTite for the Haar expansion of this func
tion at a point x: 

(3) 
~m 

oJ(O)./O)(x) -L i: ~ _J( k)·i {'lex) 
I () 1 .. 0 ,.;.,; ..:;,; I m I .. m 

m=O /(=1 

J Observe that thi; systel1l (like the original Qne) is not orthogonal in [0. 1]. 

:3 
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1 

[y;;;l J f(t)Z;;;-I(t)dt]; 
o 

the partial sum of (3) up to the term Y~;')X?')(x) ",-ill be denoted hy S~·)(x). 
As an almost immediate consequence of (2) we deduce: 

Theorem H. 

The Haar expansion (3) converges to function f at each 
point x E [0, 1] where f equals the derivative f of its indefinite integraU 

Proof. Transforming S~;')(x) by means of (2) into a linear combination 
of characteristic functions, a simple calculation y-ields: 

r S~i·)(X) = 2v
+l i: [Xd' (x) 1 f(t)dt + 

I Xd" (x) S ;;~~t]: (dk..) 

!cv (dZ-v) 
')v 

l 2VI:=1dl Xdkv(X) (dl/(t)dt (1 <}.<2
V

), 

(4) 

where dl:v = d~vU dZv [(k - 1)2-V, k . 2-"), and the last term is to be re-
placed hy 0 in the case I. = 2". 

Denoting by dx the only subinterval figuring in (4) for which x E dx' 

we have3 

S~')(X) =-= :dx -1 J f(t)dt. 
(d:) 

Hence the assertion follows for )I -4 = at once. 
We add that our expression for S~i·)(X) implies ohviously also its uniform 

convergence to f(x) in any interval [Xl' x2 ] C [0, 1] where f is continuous. 

4. 

As far as the question on generalization is concerned, in [7]- [8] the 
foUo'wing family of orthogonal systems has been investigated.4 

Starting from any finite basic interval 10 = [a, b], consider a partition 
of 10 into mutually disjoint (not necessarily equal) subintervals, say 

N 

10 = U h· 
1:=1 

2 As well-known, this condition is·fulfilled almost everywhere and in particular at 
any point of continuity. For details, see [10], 3()9-310. 

3 Here and later, we use the notation 1.1 for the length of an interval. 
4 The system (12) in [7] differs from the system (3.1). in [8] only by notation. 
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Then divide each If< further into union of some disjoint I kl , each sub interval 
I"z into union of some disjoint I k1m , etc.; in formulae: 

N" ""1:1 
U Il;l (1 k N), 1hz = U Il:/m (1 k lV, 1 <l NJ, ... 

1=1 m=l 

Let us assume that the number of subintervals is always> 1, and that the 
partitions 

Nkl' •. l::. 

I", ... kv = U I", . .. 1;" I:v+l 
kV+1=! 

(1 r ]V - 1) 

(
1 < k::;:: "~ \ 
,1 <r< N,: 1 J 

Plainly, in general: 

for 

for 

for other t. 

Therefore, each term of (5) has a very simple geometrical meaning: 
.u~;:' .. k" (t) (r>-: 1) is a step function with at most three intervals of con
stancy and with a zero-valued integral on 10 , (See Figure 1; the rectangles 
over and below the t-axis are congruent.) 

It can be shown that the normed version at (5) is such a generalization 
of Haar' s orthonormal system, which is complete on L(Io) and yields a "natural" 

.--, 
1 I 
I I 
I I 
I I 
I I 
I I I I a I b I I 

0 'i 
I 
I 

-I k , ... k. r 

Fig. 1 

3" 
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extension in the sense that also the counterpart of Theorem I (with the above 
most general interval partition instead of the dyadic one) holds. Namely, 
introducing the notation Cgl! g2' ... , gn) for the system of functions which 
issues from (gl' g2' ... , gn) hy orthogonalization and after by discarding the 
first term Ilglll-1gl' we obtain 

Theorem III. 

The sequence of functions 

XI,; (xI,lxI,' ... , XIS-,); (xhlx1k." ... , Xh.'Yk-J (1 < k < N); ... 

is identical ",.-jth (5), apart from order and eventual constant factors. More 
precisely: this system is the normed variant of (5). 

The verification is based on a new property of the Gram determinant 
of certain characteristic functions and some general facts on orthogonalized 
systems. (Cf. [8], 245-248.) 

Finally, the Fourier series associated with (5) will be shown to have 
the same outstanding convergence properties as the original Haar expansion. 
Namely. 

Theorem IV. 

The Foltrier expansion of any function f E L(1o) in terms of 
the E'ystem (5) represents f at every point x E 1 0, where the function is equal 
to the derivative of its indefinite integral. So this expansion converges to 
f(x) almost everywhere and, in particular, in all points of continuity; the 
convergence is, besides, uniform in any closed subinterval of 10 where f is 
continuous. 

Proof. (Cf. [7], 311, (HI).) Let SM = SM(x) be the partial sum of the 
FOllrier series in question and let i 1, i2, •.. , i" denote the subintervals of 10 
in which Si\1(x) is constant. Then SA! (as a step function) can be written clearly 
in tJ1f~ form 

" 
(6) S M(X) = :s cnXin(x), 

n=1 

wherE' coefficients e" depend on function f. 
If f E V(1o)' the minimum property of the partial sums of an arbitrary 

FOllrier series yields immediately 

(7) CIl = ii"I-1 S f(t)dt (n = 1, 2, ... , x); 
(in) 
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and this holds also in case of f E L(I o)~ f E V(Io), because any such funetion 
is the L(Io)-limit of snitably chosen functions {fq} c V(Io) , so that each 
Fourier coefficient of f is the limit for q -> cc of the corresponding Fourier 
coefficient of fq. 

(6)-(7) imply that there is a (uniquely determined) subinterval ix 
among the ill for which x E ix and 

,ixi -1 Jf(t)dt. 
(iz) 

Therefore, SM(;';) -+ f(x) for maxi [k, ... 1:, .. ,., : -+ 0 (J' = 2, 3, ... ), provided that 

x+h 

lim [h -1 J f(t)dt] = f(x) (h ~ 0), 
h-.. O x 

which is just the main point of the aboye assertion. 
The remaining part of the theorem can be gotten in the same manner 

as its analogue for the classic Haar expansion. 

5. 

Remark that a further extension of the definition of (5) to arbitrary 
measurable sets instead of intervals is easy to realize. Note also that the gene
ralizations indicated by Haur himself in [5] are contained in the construction 
of (5), but Haar's processes allow of no simple explicit representations for the 
resulting systems. 

We remind still of the fact: Franklin [3] has altered the definition of (1) 
in such a way that the system obtained there consists of everywhere continuous 
(linear) functions. A similar procedure can be given for the system (5), too. 

As mentioned succintly in the introduction, the essential backgwund 
of the above results is the deeper use of a (recently detected) close connection 
between some complete systems of characteristic functions and orthogonal 
expansions of Haar's type. This connection is just the source of some applica
tions in the theory of L"(p > 1) spaces ([7], [9]). Additional results on the 
topic, in particular, about a new class oflinear metric spaces, will he published 
elsewhere. 
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