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Summary

The classical convergence theorem of Haar (1909) yields an example of a non-trigono-
metric Fourier expansion which converges at any point of continuity to the basic funection.
As it is well-known, the trigonometric Fourier series of a continuous function may be divergent
t some points.) Considering the fact that in the last decades the importance of systems and
series of Haar’s type has increased to a large extent in the theory and practice alike, the author
has investigated since several years., how such systems and expansions can be characterized
and generalized in the simplest and “most natural” manner. The present paper aims at briefly
summarizing the obtained results.

1.

As it is well-known, the trigonometric Fourier expansion of a Lebesgue
integrable function or, in particular, of a continuous function can be divergent
at some points. L. Fejér's classical summation theorem and its extensions
aim to remedy this situation by considering other limiting processes than the
Cauchy convergence.

On the other hand, A. HaaRr has shown in [5] that the insufficiency in
question can be eliminated also by taking another suitable basic orthogonal
system instead of the trigonometric one. In fact, the so-called Haar system
which is defined in the interval (0, 1), apart from its points of discontinuity, by
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with y=1,2,... and 1 < 2 < 2", yvields an example of a complete ortho-

normal system of functions having two remarkable properties; 1) each function
f(¢) €L(0. 1) is the sum almost everywhere of its Fourier expansion formed
with the system (1); 2) this so-called Haar expansion converges to f(t) at all
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points of continuity, and the convergence is uniform in each closed interval
where fis continuous. At the end of [5], Haar has mentioned still the possibil-
ity of constructing analogous further examples arising by other dyadic or
triadic etc. divisions.
2.

The systems and series of Haar’s type are known to play an important
role in the theory and applications of orthogonal series, especially by their
close relation to the Rademacher and the ordinary or generalized Walsh sys-
tems (ef. [1]). In recent decades. however, these systems became useful expe-
dients also in the numerical analysis and computing. furthermore in the
theory of certain stochastic processes, with speeial regard to martingales.
(Cf. e.g. [2]. [4]. [11], {123, [19], [21].) So it is understandable that several
new theoretical statements on Haar systems and expansions have been pub-
lished just since the beginning of the sixties, showing e.g. how far they can be
characterized by the non-negativity of their Dirichlet kernels or by certain
algebraic properties, further considering the seis on which a given subsystem
of such a system is complete and some sets of uniqueness, or the convergence
features of certain related “multiplicatively orthogonal™ series, in the sense
of ALEXITS, etc. (See [13] through [18] and [20].)

The present paper aims to give a brief survey of some pertinent results
of the author which have been found since the sixties, motivated, on the one
hand, by the rather sophisticated character of (1), and on the other hand, by
the fact that all usual proofs of Haar’s convergence theorem are fairly com-
plicated. (Cf. e.g. [5], 363—368 and [1], 47—50, where the properties of
Haar’s kernel function are applied; or see [6]. 120—122 where an “ad hoc”
verification of three parts is given.) Next a characterization of (1)} will be
formulated by orthogonalization of some characteristic functions, which

seems to be the ¢

‘most natural’” one, and the representation of (1) by means
of characteristic funetions will be shown to be of use for deducing Haar’s
results in a few lines. (Cf. Theorems I—II.)

Thereafter the question will be dealt with how to construct the largest
class of orthogonal systems of Haar’s type for which the premised simplest
treatment of (1) — based upon the connection with characteristic functions
— can be extended. It will be given a new complete orthogonal system {uf .., (1)}
which 1° is associated with the most general system of partitions of a finite
interval into (equal or unequal) subintervals; 2° has also a quite simple exp-
licit representation and geometrical interpretation; 3° allows of a suitable
“patural” characterization by means of characteristic functions; 4° enables
to prove easily a strong generalization of Haar’s convergence theorem. (Cf.
Theorems ITI—1V.)
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Remark that the results at issue are discussed in the papers [7]—[9]
and in the book {10] by the author partly within a wider framework, namely
they are closely interlinked with some problems of approximation in the Hilbers
space and LP-spaces, respectively.

3.

Let us consider the simplest complete system of characteristic functions
belonging to a dyadic partition of the interval [0, 1], i.e. the sequence

1 70 78; 79, 79, 780, 70 ..
where

ig‘.)(t) = /!\/4 ! (t) (1 < 4 < 2% r=20, 19 2,.. )

IR T ,
These functions are clearly not linearly independent (we have 7P(1) =
= 7Z0(1) 4+ ¥2t)), but so is the system obtained by removing all terms

of the form (%) (¢).!
It is easy to verify by induction:

Theorem 1.

Submitting the sequence

L),

1; 71

=(1)

75 —(3) ‘—(1 {3y T3
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to the Gram—Schmidt orthogonalization process yields just Haar’'s system
(1) in the form:

@ WO =1 A0 = 2% 0 — ] =021,

5 ~l]2‘v), d7, — [(/ _L
2 2

Let now be f{t) € L(0, 1) and write for the Haar expansion of this func-
tion at a point a:

where

d;, = [(z —1)2-,

[ s
) W L 3 3 )
m=U k==

! Observe that this system (like the original one) is not orthogonal in {0.1}.

[}
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o8 = | S i

the partial sum of (3) up to the term ¥4 (x) will be denoted by S¥(x).
As an almost immediate consequence of (2) we deduce:

Theorem 1L

The Haar expansion (3) comverges to function f at each
point x € [0, 1] where f equals the derivative f of its indefinite integral.”
Proof. Transforming S (x) by means of (2) into a linear combination

of characteristic funetions, a simple calculation yields:

A

SP@) = 24 3 gy () [F0)de+

o= i (dl.!»)

(4) T 7, () § fle)de] +

()
L2 3 @ [ fod (1< 2<2),
L k2ol kv (di)

where d,, = d,Ud}, = [(k — 1)277,k - 277), and the last term is to be re-
placed by 0 in the case 7 = 2",
Denoting by d, the only subinterval figuring in (4) for which x€d,,

we have?
SE(w) = 14,71 [ fie)de.
(d:)
Hence the assertion follows for v — oc at once,
We add that our expression for S)(x) implies obviously also its uniform
convergence to f(x) in any interval [x;, x,] < [0, 1] where f is continuous.

4.

As far as the question on generalization is concerned, in [7]—[8] the
following family of orthogonal systems has been investigated.!

Starting from any finite basic interval I, = [a, b], consider a partition
of I, into mutually disjoint (not necessarily equal) subintervals, say

N
I0: UI;{.
. k=1

* As well-known. this condition is-fulfilled almost everywhere and in particular at
any point of continuity. For details, see [10], 309—310.

8 Here and later, we use the notation |.| for the length of an interval.

4The system (12) in [7] differs from the system (3.1).in [8] only by notation.
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Then divide each I, further into union of some disjoint I,;, each subinterval

I,, into union of some disjoint I, , ete.; in formulae:

Ilm
N R Nu ~ .
I!: = I!;I(]- = k < N)' Ii:i =y Il:Im (1 < k ol -'7\!'/ 1 < I < ’)' e
[=1 m=}

Let us assume that the number of subintervals is always > 1, and that the
partitions

Negookey
Lioiiy = U Y PR Sy
Ity =1
satisfy the condition max fIkl roe | — 0. Write now [cf. (2)]:
3 .

pO) =1

. N PR . 1Tt
5 1EO= I L0 - Lol a<r

| x

|16 = 3 [iplzt) = iZlng(0)]
p=r

fmd
A
=
|
=

‘r
-1

Plainly, in general:

ka-'-kp
EIkl.A.k,,‘p% for @€ I/{l...l-:;«f
p=r+1

'_ fIl:l...l:,vri fol‘ t E U : Il

p=r-=1
l 0 for other i

Therefore, each term of (5) has a very simple geometrical meaning:
,ufg',_kv (t) (r>1) is a step function with at most three intervals of con-
stancy and with a zero-valued integral on I, (See Figure 1; the rectangles
over and below the t-axis are congruent.)

It can be shown that the normed version at (5) is such a generalization
of Haar’s orthonormal system, which is complete on L(I,)) and yields a “natural”™

1 fr) )
} P’h...kp
1
]
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1
a ! b
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) 1
e
B o
Ty okor
Fig. 1




36 MIKOLAS

extension in the sense that also the counterpart of Theorem I (with the above
most general interval partition instead of the dyadic one) holds. Namely,
introducing the notation (g,! g, ....g,) for the system of functions which
issues from (g, gs . . .» &,) by orthogonalization and after by discarding the
first term ||g;||~!g,, we obtain

Theorem ITL.

The sequence of functions

X1 (721.;].';.'1,: c s AIv_) (f;,'lz:lf;.'fk.xs s J.U.r;.:.'k_\) I<LE<N); ...

is identical with (5), apart from order and eventual constant factors. More
precisely: this system is the normed wvariant of (5).

The verification is based on a new property of the Gram determinant
of certain characteristic functions and some general facts on orthogonalized
systems. (Cf. [8], 245—248.)

Firpally, the Fourier series associated with (5) will be shown to have
the same outstanding convergence properties as the original Haar expansion.
Namely,

Theorem IV.

The Fourier expansion of any function f€ L(I,) in terms of
the system (5) represents f at every point x € I, where the function is equal
to the derivative of its indefinite integral. So this expansion econverges to
f(x) almost everywhere and, in particular, in all points of continuity; the
convergence is, besides, uniform in any closed subinterval of I, where f is
continuous.

Proof. (Cf. [7], 311, (III).) Let S,, = S,,(x) be the partial sum of the
Fourier series in question and let i, 5, ..., {, denote the subintervals of I,
in which S,(x) is constant. Then S, (as a step function) can be written clearly
in the form

(6) Sul®) = 2 enuf®);
where coefficients ¢, depend on function f.

If f€ L¥(1,), the minimum property of the partial sums of an arbitrary
Fourier series yields immediately

(7) ¢, = [in] 7t [ fle)dt (n=1,2,..., %)
(i)
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and this holds also in case of f€ L(I,). f¢ L*(I,). because any such function
is the L(Iy)-limit of suitably chosen functions {f,} < L*I,), so that each
Fourier coefficient of f is the limit for ¢ — o of the corresponding Fourier
coefficient of f.

(6)—(7) imply that there is a (uniquely determined) subinterval i
among the i, for which x €1, and

Splx) = it jf(t)d"'
(iz)

Therefore, S,/(¥) — f(x) for max| [, , | —0(r=2,3,...), provided that

x--h

lim [A7% { f)dt] = flx)  (h

fir QO x

X

N

0),

which is just the main point of the above assertion.
The remaining part of the theorem can be gotten in the same manner
as its analogue for the classic Haer expansion.

3o

Remark that a further extension of the definition of (5) to arbitrary
measurable sets instead of intervals is easy to realize. Note also that the gene-
ralizations indicated by Haar himself in [5] are contained in the construction
of (5), but Haar’s processes allow of no simple explicit representations for the
resulting systems.

We remind still of the fact: Franklin [3] has altered the definition of (1)
in such a way that the system obtained there consists of everywhere coniinuous
(linear) functions. A similar procedure can be given for the system {3}, too.

As mentioned succintly in the introduction, the essential background
of the above results is the deeper use of a (recently detected) close connzction
between some complete systems of characteristic functions and orthogonal
expansions of Haar’s type. This connection is just the source of some applica-
tions in the theory of L?(p > 1) spaces ([7], [9]). Additional results on the
topic, in particuléu‘, about a new class of linear metric spaces, will be published
elsewhere.
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