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Summary

The differential equation of the classic seepage problem changes upon creep. Examina-
tion of the classic seepage problem omits some factors such as presence of constitutional
water, compressibility of pure water, viscosity of soil grains etc., sometimes rather significant
for the soil mass settlement. The most important among these factors can always be taken into
consideration without excessive mathematical complications. A model taking soil grain vis-
cosity and presence of constitutional water into consideration has been presented. Numerical
analyses using the obtained formulae may be economically computerized.

Development of the method to be presented was motivated by K£zpi,
A.: “A Silo Foundation Story” (In Hungarian), Mélyépitéstud. Szle. No. 3,
Vol. XXTI. (1972). This paper. referred to under [1], will be kept in mind
throughout the discussion. Professor Arpad Kézdi was also consulted in some
items of the numerical preblem.

Consolidation of the silo foundation ean be considered as a problem of
axial symmetry permitting ope- or two-dimensional treatment. In this case,
assuming identical consolidation coefficients in horizontal planes, the consoli-
dation problem is described in a cylindrical coordinate system by:
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Provided the examined soil mass rests on an impermeable layer and the
construction itself rests directly on the soil, to generate a consolidation process
requires to construct a sand pile system such as that seen in Figs la
and 2a.

Elements of the sand pile system are axial to silos. Cylindrical sand pile
radii r = 0.3 m. silo diameters 2R = 4.8 m. No other than radial water flow
is possible, making the problem one-dimensional. Because of symmetry, at
silo contact surfaces:
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Curves in Fig. 1b plotted in the system (u, g) start from point p = 7
= 0.3 m, because of zero neutral siress on the sand pile surface. Curves in the
figure are isocchronous.

Solution of the problem relies on linear algebra, in particular, on the
so-called nodal line method (finite strip method) [2]. V. A. Frorin [3] applied
the method of finite differences (so-called nodal point method) to solve several
problems. In applying the nodal point method for solving parabolic-type
partial differential equations, difficulties arise from meeting the stability con-
dition. Namely, application of the nodal point method imposes several deter-
minations of function values of u of no other wuse.

This will be demoustrated on a one-dimensional problem of determining
the u values meter by meter of depth for a soil consolidation coefficient
¢ = 0.08 em? sec (4h = 1 m) from the stability condition

¢ At = ]./"2 (2)
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Thus, daily variations of the u value have to be calculated to obtain
the neutral stress value at a time of interest. For a silo system where another,
increased load is applied after being erected, the neutral stress in the soil at
the start of the second soil loading as initial value cannot be obtained else
than by caleulating it for every day of the waiting time. The applied nodal
line method (rather popular today) counsists essentially in discretizing variables
o and z, rather than time ¢ in Eq. (1). Thus, the problem is approximated by
a system of common, first-order differential equations containing independent
variable ¢, to be solved by closed formulae, continuous in ¢, delivering the
wanted function value at any time. The accuracy can be improved e.g. by
systems in [2] and [4]. Maintenance of the continuity exactly of variable ¢
may be explained, in addition to the above, by the stability problem. In the
considered case, the solution stability is always granted.

Equation (1) is the classic equation of the consolidation process. Here
it will be supplemented by involving the soil mass viscosity i.e. the creep
effeet, and the effect of constitutional water in the soil on the velume change,
according to Kelvin’s rheological model.

Equations deduced from the model are:
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Knowing that &5 + &5 = & = & We obtain
— k& Vo, o3 = 6, 9%y (4)
ot
Equality
o1 + 0y + u =q(t) (3)
heing met, Eqs (3) yield, after some generalization, the wanted equation
8_u 1_|T.El =L E0V2ur+§1?—-v"‘u .{_q_ﬁ_‘g‘lu (5)
at |, 2 ot 2

where u(t) — neutral stress; &,, §, — moduli of viscosity by volume; E, —
displacement modulus by velume.
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Remark. Analysis of the seepage equation being considered by most
experts as sufficient since shear deformation appears at the instant of loading
and is time-invariable, only Eq. (6) will be dealt with.

Introducing the proper constants. Eq. (6) becomes:

—();lti = k [1 ft Viu - ,3'\.7211} — oy g(t) + By (7)
Converted to axial coordinates | igl: = O} ., by analogy to Eq. (1):
0* 1 5 1 du .
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With notations applied in [5], finite differences
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Written for each ¢ and involved in a matrix equation, (8) becomes:

[E—-mk'l‘;”)“Alﬁz{kia(l_"'
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Introducing notations
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Eg. (9) may be written as an inhomogeneous differential equation with a first-

order normal matrix coefficient:

LI | A @ (11)
dt

taking boundary condition of the problem into consideration, thereby solution
of (11) has only to meet initial condition 1, = u(t = 0). In compliance with
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results in [6], (11) is solved in the form:
u(t) = eMug + a {g(7) M= . Kedr. (12)
]

Matrix A in matrix M is of the form:
—2 1.5 0o ... 0 |

0.75 —2 1.25

<

A= 2n - 3

2(n - 1)
0 0 0 .. —

bo

symmetrizable, permitting it to be written in canonic form.
For numerical analyses, solution (12) can be written by linear algebraic
means. [6] presented matrix functions in canonic form as:

A
F(M) = 5 F(r)v, - . (13)

where J, is k-th eigenvalue, v, and w} are k-th left- and right-hand-side eigen-
vectors, resp.. of matrix M.
Solution (12) may be written as
n not
u(t) = 3 ety - wiug — oy 3 | 000, wi Keg(r)dT. (14)
k=1 k=1 1
(For calculating 7., v, and w7}, see [8].)

To accelerate the consolidation process. a gravel layer about 20 cm
thick is inserted between the construction and the clayey soil, permitting the
water two-way seepage, making the problem a two-dimensional one (Fig. Za).

In this case. solution of Eq. (1) has to meet [beside conditionf{p, s, t) = 0]
the following conditions:

a) Vu(o. s, t = 0) = Vu,

b) u(o,5=0.¢) =0

c) ulo=r,5t) =0
Su 15
= £:=_’.H

(,) ﬂi: = (),
()Q =R

Solution of this problem using Bessel functions is found in [8] and [9].
Application of the lattice point method see in [3].
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Fig. 2

Replacing partial derivatives with respect to variables p and z by finite
differences leads to the ordinary differential equation system:

dU()
dit

= MU(t) + U(t) A% (16)

According to [11], solution of (16) is of the form:
U=¢". u,. . e*. (17)

In the one-dimensional case, elements of veetor uy= uft = 0) are
directly obtained from the load, while in the two-dimensional case, matrix
U, results as solution of a Dirichlet problem. Partial differential equation

VU =0 (18)

has to be solved by means of the nodal point method seen also in [4].

Numerical determination of solution [17] may rely on canonic forms of
matrices M and A*.

Let us consider now the concrete numerical problem. Its data being
taken from [1] where data for characteristics of our rheological model are
missing, the numerical problem will be presented for Eq. (1).

A water saturated silt layer 12 m thick has been the subsoil to bear
a 15%x30x40 m system of 18 silos. The surface of the load-bearing soil is
considered to be watertight. The silos are built in the slipform system. Reckon-
ing with about one third of subsidence to occur during construction, at the
bottom level of the layer — the worst position — there was a neutral stress




SOIL CONSOLIDATION 20

u ~~ 5.6 Mp/m?> by the end of construction. To accelerate the consolidation
process, a sand-pile system was built. A few months after the end of the con-
struction the neutral stress dropped to about zero, permitting the silos to be
filled. Filling was intermittent, with partial emptying each three months, so
filling was complete after 11 months applying a load of 20 Mp/m?, The process
paralleling the construction is deseribed by the solution of Eq. (1) at an initial
condition u(p,t = 0) = 0 (omitting dead load). Boundary conditions are
u{pg = r,t) = 0 on the sand pile surface, and

ou

= 0 below the silo edge.
89 o=R

Accordingly. solution of (1):
u(t) = ——e (19)

E being unit matrix.
Spectral decomposition of matrix A yields for the i-th element of veec-
tor (19):
P | 5
wi(i) = B 3 ——val 3 wij) - (20)
k=1 A j=1
The g value being given as 8 Mp/m?, the value of 5 has to be calculated
from (20) so that the max. neutral stress in [1] may be u a2 5.6 Mp/m?. Thus,
the value in (18) has been calculated at several times in the period from 10
to 25 days — as in [1] —, the optimum was found to be 12 days, arguing
for 8 = 20. Neutral stresses imposed by the construction for different building
rates are seen in Fig. 3, together with the timely course of consolidation after
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Fig. 3. Load diagram. I. During construction. II. Left to consolidate. IIL. Silo loading
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the building was complete. Consolidation coefficient contained in 7, was taken
as 0.08 cm?*sec after [1].

Now, the u; value after 12 days was taken as initial value in analyzing
the process. The time where the value

wild) = 3 vy 3w, (=1.2....5) (21)

2

was lower than 1072 Mp/m® was computer determined as start of linear silo
loading, to become 7.5 Mp/m? after three months. At this time unloading
followed for a month, at the rate of {filling. In the next three months, a load of
6.5 Mp/m? was applied on the silo system, followed by one month of unloading
by 3.5 Mp/m® In the subsequent three months, the missing 12 Mp/m? were
added (Fig. 4). Neutral stresses developed during filling are seen in Fig. 5.
The applied mathematical formulas are combinations of (20) and (21).

Remark 1. Computations raised unloading problems. How to assume
the neutral stress decrease?

a) Unloading may be assumed to be instantaneous, causing the devel-
opment of negative neutral stresses, still increasing after the second unloading.
The problem becomes two-dimensional if a draining layer is applied under
the construction.

Now, the negative neutral stress develops slower, a case obviously
impossible in practice.

b) Unloading may be protracted in time, causing neutral stresses to be
considered as negative, In this case, neutral stresses due to unloading have

U (Mp/m?)

5 10 12 15 18 20 25 30
t {days)

Fig. 4.t = 12 has been calculated as the admissible shortest time of completing a construction
neutral stress values under the same load developing during different time-
““““““ consolidation in time
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Fig. 5. Silo filling intermetting two partial emptyings

been deduced from those prevalent at the instant of unloading, considered
to be more realistic. To our knowledge, this important fact has not yet been
described in literature.

The cases above have all been computed all along, and our relevant
program is available.

Another alternative in solving the problem was to consider filling as
instantaneous. Still other alternatives tested were filling linearly varying with
time, for different time intervals, examining also consolidation processes.
The problem was also solved for a varying consolidation coefficient where the
soil mass got compacted during construction and rest time, as seen in Fig. 6.

Instantaneous
load curve

U {Mp/m2)

t { months})

Fig. 6. consolidation values for consolidation coefficients of 11.75

consolidation values for consolidation coefficients of 117.5
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Remark 2. Depth is irrelevant to one-dimensional problems involving
sand piles.

Remark 3. In a two-dimensional problem, neutral stress in the imper-
meable layer is half that in the one-dimensional problem.

Remark 4. Subject of [12] is the same as that of this paper. Its Eq. (8)
is formally similar to our Eq. (7). In our case, this equation has been derived
from a rheological model. In [12], it was written assuming separability of
primary and secondary consolidation processes. Methods of solving these
equations are quite different, our method seems to be more advantageous
for numerical caleulation.
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