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Summary 

The differential equation of the classic seepage problem changes upon creep. Examina
tion of the classic seepage problem omits some factors such as presence of constitutional 
water, compressibility of pure water, viscosity of soil grains etc., sometimes rather significant 
for the soil mass settlement. The most important among these factors can always be taken into 
consideration without excessive mathematical complications. A model taking soil grain vis
cosity and presence of constitutional water into consideration has been presented. Numerical 
analyses using the obtained formulae may be economically computerized. 

Development of the method to be presented was motivated by KtZDI, 
A.: "A Silo Foundation Story" (In Hungarian), M:elyepitestud. Szle. No. 3, 
Vol. XXII. (1972). This paper, referred to under [1], 'will be kept in mind 
throughout the discussion. Professor Arpad Kezdi was also consulted in some 
items of the numerical problem. 

Consolidation of the silo foundation can be considered as a problem of 
axial symmetry permitting one- or two-dimensional treatment. In this case, 
assuming identical consolidation coefficients in horizontal planes, the consoli
dation problem is described in a cylindrical coordinate system by: 

---=------'- - an -- -,- - -- -, a3 -- -:- e, z, t . f)u(q, z, t) _ 2[82U " 1 au ], 2a2u " f( ) 
at - f)rl e f)q f)z2 ' 

(1) 

Provided the examined soil mass rests on an impermeable layer and the 
construction itself rests directly on the soil, to generate a consolidation process 
requires to construct a sand pile system such as that seen in Figs la 
and 2a. 

Elements of the sand pile system are axial to silos. Cylindrical sand pile 
radii T = 0.3 m, silo diameters 2R = 4.8 m. No other than radial water flow 
is possible, making the problem one-dimensional. Because of symmetry, at 
silo contact surfaces: 

~I =0. 
f)e ig=R 
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Fig. 1 

Curves in Fig. 1b plotted in the system (u, e) start from point e = T = 

= 0.3 m, because of zero neutral stress on the sand pile surface. Curves in the 
figure are isochronous. 

Solution of the problem relies on linear algebra, in particular, on the 
so-called nodal line method (finite strip method) [2]. V. A. FLORIN [3] applied 
the method of finite differences (so-called nodal point method) to solve several 
problems. In applying the nodal point method for solving parabolic-type 
partial differential equations, difficulties arise from meeting the stability con
dition. Namely, application of the nodal point method imposes several deter
minations of function values of II of no other use. 

This will be demonstrated on a one-dimensional problem of determining 
the u values meter by meter of depth for a soil consolidation coefficient 
c = 0.08 cm2 sec (L1h = 1 m) from the stability condition 

c . cJt 1/2 (2) 
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to yield 
1 103 

.:1t = - . --- days ~0 1 day. 
2 8·86,4 . 

Thus, daily variations of the u value have to be calculated to obtain 
the neutral stress value at a time of interest. For a silo system where another, 
increased load is applied after being erected, the neutral stress in the soil at 
the start of the second soil loading as initial value cannot be obtained else 
than by calculating it for every day of the waiting time. The applied nodal 
line method (rather popular today) consists essentially in discretizing variables 
Q and z, rather than time tin Eq. (1). Thus, the problem is approximated by 
a system of common, first-order differential equations containing independent 
variable t, to be solved by closed formulae, continuous in t, delivering the 
wanted function value at any time. The accuracy can be improved e.g. hy 
systems in [2] and [4.]. Maintenance of the continuity exactly of variable t 

may be explained, in addition to the above, by the stability problem. In the 
considered case, the solution stability is always granted. 

Equation (1) is the classic equation of the consolidation process. Here 
it will be supplemented by involving the soil mass viscosity i.e. the creep 
effect, and the effect of constitutional water in the soil on the volume change, 
according to Kelvin's rheological model. 

Equations deduced from the model are: 

a) 0'1 = EOe1 

b) J; 0102 
O'? = "1--

- at 

k\i2 0'3 = 010 31 
(3\ 

c) . ) 

ot 

d) i: oC32 
0' 3 = "2-;;;-

(4) 

Equality 
0'2 + u = q(t) (5) 

being met, Eqs (3) yield, after some generalization, the wanted equation 

~[l + ;1]= k[EoV2U at. ;2 
where u(t) - neutral stress; ;1';2 
displacement modulus by volume. 

4* 

Eo -u 
;2 

moduli of viscosity by volume; Eo 

(6) 
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Remark. Analysis of the seepage equation being considered by most 
experts as sufficient since shear deformation appears at the instant of loading 
and is time-invariable, only Eq. (6) will be dealt with. 

Introducing the proper constants. Eq. (6) becomes: 

all 
f)t [

a 
k 0::-, y 2

11 ot 

C d ' 1 d' I' f72 U onverte to aXla coor Inates --
CI",2 , u~ 

0) , by analogy to Eq. (1): 

With notations applied in [5], finite differences 

()2Ui 1 
-- /'''' -- fUi_ - 2zc- + u'"- ] CI~ _1·,_-1 1,1.1 urr - (T 

1 OUi 1 ___ '~ ___ -'--'-.::: __ c~ 

2 IQ 
L 2, ... , n) 

lead to equations of the form 

1 au, [ 1 71 12 [, 1-, 
---P", --- 11'_1 1 
o 00 R J . -! _I _ 

1 - 1 )] -]- 2u; - lIi-!-. (1 -'- - . 2i ' , ,1 2i 

(7) 

(8) 

Written for each i and invoh-ed in a matrix equation, (8) hecomes: 

(9) 

Introducing notations 

K = [E -xk (1 ; n r A Tl 
:M K [kP (1 R 11 r A + PIE -j , (10) 

Eq. (9) may be written as an inhomogeneous differential equation with a first
order normal matrix coefficient: 

dll 
-=lUu 
dt 

(11) 

taking boundary condition of the problem into consideration, thereby solution 
of (11) has only to meet initial condition HO = ll(t = 0). In compliance ·with 
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results in [6], (11) is solved in the form: 

U(t) = eMtuo + xd' q(T)eM(t-T
) • KedT. 

o 

Matrix A in matrix 1\1 is of the form: 

-2 1.5 0 0 

0.75 2 1.25 0 

A --
2n ~ 3 

0 0 0 
?( ~ n I) 

0 0 0 " -"" 
symmetrizahle, permitting it to he written in canonic form. 
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(12) 

For numerical analyses, solution (12) can he written by linear algebraic 
means. [6] presented matrix functions in canonic form as: 

Ai 

F(M) == 1: F(T;J v" . Wk', (13) 
k=1 

".-here I." is k-th eigenvalue, vi: and 11;; are .k-th left- and right-hand-side rigcn
vectors, resp., of matrix lL 

Solution (12) may he written as 

n n 

u(t) 1: e)'i}v" . W[U o + Xl 1: J e;'k(t-T)V" • W[ Keq(T)dT. (14) 
1:=1 1,=1,.' 

(For calculating 1'1;' VI, and lr;, see [8].) 
To accelerate the consolidation process, a gravel layer about 20 cm 

thick is inserted between the construction and the clayey soil, permitting the 
wat"!' two-way seepage, making the prohlem a two-dimensional one (Fig. 2a). 

In this case,solutionofEq. (I) has to meet [hesideconditionf(e, z, t) 0] 
the following conditions: 

a) 

h) 

c) 

d) 

e) 

0) vu(e, z, t 

lI( e, z 0, t) = 0 

u(e = r, z, t) = 0 

au 
az :=2H 

all 
rJe 'f=R 

o 

= o. 

(15 ) 

Solution of this problem using Bessel functions is found in [8] and [9]. 
Application of the lattice point method see in [3]. 
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Fig. 2 

Replacing partial derivatives with respect to variables Q and:::; by finite 
differences leads to the ordinary differential equation system: 

dU(t) 

elf 
MU(t) + U(t)A'''. 

According to [11], solution of (16) is of the form: 

(16) 

(17) 

In the one-dimensional case, elements of vector U o = u(t = 0) are 
directly obtained from the load, while in the two-dimensional case, matrix 
U 0 results as solution of a Dirichlet problem. Partial differential equation 

y2U= 0 (18) 

has to be solved by means of the nodal point method seen also in [4]. 
Numerical determination of solution [17] may rely on canonic forms of 

matrices M and A * . 
Let us consider now the concrete numerical problem. Its data being 

taken from [1] where data for characteristics of our rheological model are 
missing, the numerical problem will be presented for Eq. (1). 

A water saturated silt layer 12 m thick has been the subsoil to bear 
a 15 X 30 X 40 m system of 18 silos. The surface of the load-bearing soil is 
considered to be watertight. The silos are built in the slipform system. Reckon
ing with about one third of subsidence to occur during construction, at the 
bottom level of the layer - the worst position - there "was a neutral stress 
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l£ ~ 5.6 Mp/m2 by the end of construction. To accelerate the consolidation 
process, a sand-pile system was built. A few months after the end of the con
struction the neutral stress dropped to about zero, permitting the silos to be 
filled. Filling was intermittent, with partial empt)ing each three months, so 
filling was complete after 11 months applying a load of 20 Mp/m2• The process 
paralleling the construction is described by the solution of Eq. (1) at an initial 
condition l£(e, t = 0) 0 (omitting dead load). Boundary conditions are 
u(Q = T, t) = 0 on the sand pile surface, and 

~; le=R 
o below the silo edge. 

Accordingly, solution of (I): 

eAt - E 
l£(t) = f3 e 

A 

E being unit matrix. 

(19\ . ! 

Spectral decomposition of matrix A y-ields for the i-th element of yec
tor (19): 

(20) 

The q yalue being given as 8 Mp/m2, the value of fJ has to be calculated 
from (20) so that the max. neutral stress in [1] may be l£ ~ 5.6 Mp/m2• Thus, 
the value in (18) has heen calculated at several times in the period from 10 
to 25 days - as in [I] the optimum was found to he 12 days, arguing 
for fJ = 20. Neutral stresses imposed hy the construction for different huilding 
rates are seen in Fig. 3, together ",ith the timely course of consolidation after 

22 

20 

18 

16 

11. 

Ill. 

NE 
"-a. 
:::;: 
N 
N 

"0 
0 

21 

~I 
I o ! , 

0.51 2 20.5 25.·521..5 27.5285 31.5 t (months) 

Fig. 3. Load diagram. I. During construction. H. Left to consolidate. Ill. Silo loading 
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the building was complete. Consolidation coefficient contained in i'l: was taken 
as 0.08 cm2/sec after [1]. 

Now, the u j value after 12 days was taken as initial value in analyzing 
the process. The time ,,,-here the value 

un(i) = t ei"}vik( t wtj1l1(j)), (i = 1,2, ... ,5) 
k=l j=l 

(21) 

was lower than 10-2 ~Ip/m2 was computer determined as start of linear silo 
loading, to become 7.5 Mp/m2 after three months. At this time unloading 
followed for a month, at the rate of filling. In the next three months, a load of 
6.5 Mp/m2 was applied on the silo system, followed by one month of unloading 
by 3.5 Mp/m2• In the subeequent three months: the missing 12 Mp/m2 were 
added (Fig. 4). Neutral stresses developed during filling are seen in Fig. 5. 
The applied mathematical formulas are combinations of (20) and (21). 

Remark 1. Computations raised unloading problems. How to assume 
the neutral stress decrease? 

a) Unloading may be assumed to be instantaneous, causing the devel
opment of negative neutral stresses, still increasing after the second unloading. 
The problem becomes two-dimensional if a draining layer is applied under 
the construction. 

Now, the negative neutral stress develops slower, a case obviously 
impossible in practice. 

b) Unloading may be protracted in time, causing neutral stresses to be 
considered as negative. In this case, neutral stresses due to unloading have 

\=27 t=30 

I "-I , 
" I 

'-, 
'''-...... ' ........ .... 

I ------- ----
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t {daysl 

Fig. 4. t = 12 has been calculated as the admissible shortest time of completing a constructio:l 
----- neutral stress values under the same load developing during different time-

------ consolidation in time 
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Fig. 5. Silo filling intermetting two partial emptyings 
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been deduced from tbose prevalent at the instant of unloading, considered 
to be more realistic. To our kno'wledge, this important fact has not yet been 
described in literature. 

The cases above have all been computed all along, and our relevant 

program is available. 
Another alternative in solving the prohlem was to consider filling as 

instantaneous. Still other alternatives tested were filling linearly varying ",ith 

time, for different time intervals, examining also consolidation processes. 
The problem was also solved for a varying consolidation coefficient where the 
soil mass got compacted during construction and rest time, as seen in Fig. 6. 

E 
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0.3 0.5 0.91.0 1.5 2.0 2.5 
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Fig. 6. consolidation "alues for consolidation coefficients of 11.75 
----Consolidation "alues for consolidation coefficients of 117.5 
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Remark 2. Depth is irrelevant to one-dimensional problems involving 
sand piles. 

Remark 3. In a two-dimensional problem, neutral stress in the imper
meable layer is half that in the one-dimensional problem. 

Remark 4. Subject of [12] is the same as that of this paper. Its Eq. (8) 
is formally similar to our Eq. (7). In our case, this equation has been derived 
from a rheological model. In [12], it was v.TItten assuming separability of 
primary and secondary consolidation processes. Methods of solving these 
equations are quite differeut, our method seems to he more advantageous 
for numerical calculation. 
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