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Summary

This paper proves J. Bognéar’s conjecture that if the range of a transformation of the
real projective plane is the whole plane and this transformation holds the collinearity of any
three points of the plane then this transformation is a one to one mapping.

J. BoeNAr (Department of Geometry, Eétvés L. University) raised the
problem if the map f of the next properties is a collineation:

1. fis a map of the (real) projective plane X' onto the other projective
plane 2°:

2.if A, B, C are three points of a line of 2 then there is a suitable line
of £ which contains the images f(4), f(B), f(C).

According to the original one the pext theorem proves the answer to
be ““yes”:

Theorem: Let f be a map of the real projective plane into the same plane
with the property of holding collinearity (cf. 2) and fixed points A4, B, C,
E of general position. Thereby f is an identical map.

Proof: Let us denote the intersection point of lines (4E) and (BC)
by (AE) N (BC) = U and two other intersection points by (BE) N (4C) = V
and (CE)YN (4B) = W.

Tet RU {cc} be denoted by R, where R is the set of real numbers and
oo is out of R and define the function f : R — R as for P € (AC); if f(P) =
and P = C then f((ACPV)) = (ACf(P)V) where (QRST) denotes the double
ratio of Q. R, S and T, and in any other case, be }‘(x) = =,

Remark: Replacing C and V by B and W, respectively, the definition
of f provides the same function because denoting (BC) N (VW) by R and
(AB) N (RP) by P’, R is evidently a fixed point of f so not only (ACPV) =
= (ABP’W) but because of holding collinearity, (ACf(P)V) = (ABf(P)W).
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Notations; In case of a € R-{0}, denote a - ~ by = . by 0. and
(e
23
— by oc.
0 Y

Lemma 1: If 4 and p € R, (1) == 0 and == o then }'(i‘:—’ = %

Proof of lemma 1: Be P, Q € AC namely (4CPT/) = } and (ACQV) = p.
Denoting (WP) N (BC) by T, T = B, C for f(1) == 0, = A== 0, o, and for
the same reason f(T) = (f(P)W) N (BC) =< B, C. Denotlng (QT) N (AB) by
S because of the projectivity of the centre T it holds that (A BSW) = (4CQP) =

((jgg;; 7 and for the projectivity of centre f(T). (ABf(S)W) =

(ACfQV)  fw
= (AC P))=-

TN = Cacreymy ~ Ty °

mark after the definition of function f, to:
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., leading, in compliance with the re-

as expected.
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Lemma 2: For any Z€R, }"{—*) = —
7)) T 70
Proafoflemma 2: Iff(?) 52 0 or oo then the equality is evident from lemma
1 and from f(1) = (ACf(V)V) = 1 considering . as (ACPV). If f() = 0 or
>0 then with notations of lemma 1 requiring Q = Vit also holds that (4 BSW) =

= i;— = —ﬁ—butf 17J will be of order = or 0 for § = V as stated in this lemma,

Lemma 3: If f(3) = 0, co then (i - u) = f(3) - f(u)-

Proof of lemme 3: Using the previous lemmas

fOp) =f (1/ ) where f ll) 1 =— 54 0, co thus, the equation holds.
A

f)

Lemma 4: 2 > 0 involves f()) >0 or ]7'(2,) =0 or ~]7'()) =

Proof of lemma 4: As thereis p, p> = Asou= 1. lin conformity with
u

lemma 3, f()) =0 or f(}) = = or f(u) = () =—

, implying the statement
of this lemma. fw)
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Let us complete the proof of the theorem with the help of lemma 4!
Consider points A, B and C constituting the triangle as system of projective
coordinates with the unity peint E. Because of holding collinearity, the points
of binary fraction coordinates are fixed points of map f and simply the fact
has to be verified that f cannot change separation on a line of triangle 4BC.
In an indirect way, assume that among four points, the first, the second, the
third and the fourth are 4, B, X and V, respectively, and it holds that
(4BXV) > 0 but (fIAABAX)f(V)) < 0. But it is inconsistent with lemma
4 because with the same notation, 2 = (4BXV) would imply the simultaneity
of A >0 and f()) < 0. This completes the proof of the theorem.
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