A GENERALIZATION OF THE MATN THEOREM OF THE PROJECTIVE MAPS IN TWO-DIMENSIONAL REAL PLANES

By
G. Kertész
Department of Civil Eng. Mathematies, Technical University, Budapest

(Received June 12, 1981)
Presented by Prof. Dr. J. Reimann

Summary

Abstract

This paper proves J. Bognar's conjecture that if the range of a transformation of the real projective plane is the whole plane and this transformation holds the collinearity of any three points of the plane then this transformation is a one to one mapping.

J. Bognár (Department of Geometry, Eötwös L. University) raised the problem if the map f of the next properties is a collineation:

1. f is a map of the (real) projective plane Σ onto the other projective plane Σ^{\prime};
2. if A, B, C are three points of a line of Σ then there is a suitable line of Σ^{\prime} which contains the images $f(A), f(B), f(C)$.

According to the original one the next theorem proves the answer to be "yes":

Theorem: Let f be a map of the real projective plane into the same plane with the property of holding collinearity (cf. 2) and fixed points A, B, C, E of general position. Thereby f is an identical map.

Proof: Let us denote the intersection point of lines ($A E$) and ($B C$) by $(A E) \cap(B C)=U$ and two other intersection points by $(B E) \cap(A C)=V$ and $(C E) \cap(A B)=W$.

Let $R \cup\{\infty\}$ be denoted by \bar{R}, where R is the set of real numbers and ∞ is out of R and define the function $\bar{f}: \bar{R} \rightarrow \bar{R}$ as for $P \in(A C)$; if $f(P) \neq C$ and $P \neq C$ then $\bar{f}((A C P V))=(A C f(P) V)$ where $(\underline{Q R S T})$ denotes the double ratio of Q, R, S and T, and in any other case, be $\bar{f}(x)=\infty$.

Remark: Replacing C and V by B and W, respectively, the definition of \bar{f} provides the same function because denoting $(B C) \cap(V W)$ by R and $(A B) \cap(R P)$ by P^{\prime}, R is evidently a fixed point of f so not only $(A C P V)=$ $=\left(A B P^{\prime} W\right)$ but because of holding collinearity $(A C f(P) V)=\left(A B f\left(P^{\prime}\right) W\right)$.

Notations; In case of $a \in \bar{R}-\{0\}$, denote $a \cdot \infty$ by $\infty ; \frac{a}{\infty}$ by 0 , and $\frac{a}{0}$ by ∞.

Lemma I: If λ and $\mu \in \bar{R}, \bar{f}(\lambda) \neq 0$ and $\neq \infty$ then $\bar{f}\left(\frac{\mu}{\lambda}\right)=\frac{\bar{f}(\mu)}{\bar{f}(\lambda)}$.
Proof of lemma 1: Be P: Q $\in A C$ namely $(A C P V)=\lambda$ and $(A C Q V)=\mu$. Denoting ($W P) \cap(B C)$ by $T, T \neq B, C$ for $f(\lambda) \neq 0, \infty \lambda \neq 0, \infty$, and for the same reason $f(T)=(f(P) W) \cap(B C) \neq B, C$. Denoting $(Q T) \cap(A B)$ by S because of the projectivity of the centre T it holds that $(A B S W)=(A C Q P)=$ $=\frac{(A C Q V)}{(A C P V)}=\frac{\mu}{\lambda}$ and for the projectivity of centre $f(T) \cdot(A B f(S) W)=$ $=(A C f(Q) f(P))=\frac{(A C f(Q) V)}{(A C f(P) V)}=\frac{\bar{f}(\mu)}{\bar{f}(\lambda)}$, leading, in compliance with the remark after the definition of function f, to:

$$
\bar{f}\left(\frac{\mu}{\lambda}\right)=\frac{\bar{f}(\mu)}{\bar{f}(\lambda)} \text { as expected. }
$$

Lemma 2: For any $\lambda \in \bar{R}, \bar{f}\left(\frac{1}{\lambda}\right)=\frac{1}{\bar{f}(\lambda)}$.
Proof of lemma 2: If $\bar{f}(\hat{\lambda}) \neq 0$ or ∞ then the equality is evident from lemma 1 and from $\bar{f}(1)=(A C f(V) V)=1$ considering λ as $(A C P V)$. If $\bar{f}(\lambda)=0$ or ∞ then with notations of lemma 1 requiring $Q=V$ it also holds that $(A B S W)=$ $=\frac{\mu}{\lambda}=\frac{1}{\lambda} \operatorname{but} \bar{f}\left(\frac{1}{\lambda}\right)$ will be of order ∞ or 0 for $Q=V$ as stated in this lemma.

Lemma 3: If $\bar{f}(\lambda) \neq 0, \infty$ then $\bar{f}(\lambda \cdot \mu)=\bar{f}(\lambda) \cdot \bar{f}(\mu)$.
Proof of lemma 3: Using the previous lemmas $\bar{f}(\lambda \mu)=\bar{f}\left(\frac{\mu}{1 / \lambda}\right)$, where $\bar{f}\left(\frac{1}{\lambda}\right)=\frac{1}{\bar{f}(\lambda)} \neq 0, \infty$ thus, the equation holds.

Lemma $4: \lambda>0$ involves $\bar{f}(\lambda)>0$ or $\bar{f}(\lambda)=0$ or $\bar{f}(\lambda)=\infty$.
Proof of lemma 4: As there is $\mu, \mu^{2}=\lambda$ so $\mu=\lambda \cdot \frac{1}{\mu}$ in conformity with lemma $3, \bar{f}(\lambda)=0$ or $\bar{f}(\lambda)=\infty$ or $f(\mu)=\bar{f}(\lambda) \frac{1}{\bar{f}(\mu)}$, implying the statement of this lemma.

Let us complete the proof of the theorem with the help of lemma 4! Consider points A, B and C constituting the triangle as system of projective coordinates with the unity point E. Because of holding collinearity, the points of binary fraction coordinates are fixed points of map f and simply the fact has to be verified that f cannot change separation on a line of triangle $A B C$. In an indirect way, assume that among four points, the first, the second, the third and the fourth are A, B, X and V, respectively, and it holds that $(A B X V)>0$ but $(f(A) f(B) f(X) f(V))<0$. But it is inconsistent with lemma 4 because with the same notation, $\lambda=(A B X V)$ would imply the simultaneity of $\lambda>0$ and $\bar{f}(\lambda)<0$. This completes the proof of the theorem.

Assistant Gábor Kertész: H-1521, Budapest

