ВЫБОР ГРУППЫ СЛУЧАЙНЫХ АРГУМЕНТОВ ДЛЯ НАИЛУЧШЕГО ЛИНЕЙНОГО ПРОГНОЗА*

В. А. ҚАМИНСКИЙ

Московский Инженерно-строительный институт (Поступило: 15 июня 1981 г.)

Представлено: проф. Рейманн Й., Кафедра Математики, СТР. БТУ

Summary

POINTING OUT THE GROUP OF INDEPENDENT VARIABLES FOR AN OPTIMUM LINEAR PROGNOSTIC — A method has been outlined for solving a classical problem in mathematical statistics: how to select from a set of numerical, independent random variables a group in the closest linear group-wise connection with the function of these variables, in order to predict function x_1 . The solution method relies on the characteristics of so-called ..best groups". The selection algorithm of the group is obtained by computing the complete covariance matrix, then submatrices are tested all along, with certain coordinate groups fixed.

Резюме

В статье рассмотрен метод решения классической задачи математической статистики о выборе из некоторого множества случайных числовых аргументов x_2,\ldots,x_n группы аргументов $x_i,\ldots,x_{ip},\ i_k\in N=\{1,\ldots,n\},\ p\leq n,\ x_1(x_2,\ldots,x_n),\$ имеющих наиболее тесную групповую связь с функцией зависящей от этих аргументов, с целью использования этой группы аргументов для прогноза функции x_1 . Метод решения базируется на вводимой характеристике «наилучшей группы». Алгоритм выбора этой группы сводится к вычислению полной ковариационной матрицы, а затем полного перебора ее подматриц в связи с фиксацией определенных групп координат.

В заметке рассмотрен метод решения классической задачи математической статистики о выборе из некоторого множества случайных числовых аргументов x_2, \ldots, x_n группы аргументов $x_{i_1}, \ldots, x_{i_p}, i_k \in N = \{1, \ldots, n\}, p \leq n$, имеющих наиболее тесную линейную групповую связь с функцией $x_1(x_2, \ldots, x_n)$, зависящей от этих аргументов, с целью использования этой аргументов для прогноза функции x_1 . Метод решения базируется на вводимой характеристике «наилучшей группы».

1. Пусть $x=(x_1,\ldots,x_n)\in E_n$, где E_n -эвклидово пространство, $x_1=x_1(x_2,\ldots,x_n)$ -случайная функция числовых аргументов x_j $j=2,\ldots,n$, при этом плотность распределения случайного вектора $x-j(x)=ae^{-1/2(x-\overline{x})'A(x-\overline{x})}$ можно считать без ограничения общности нормальной (см. замечание 3), здесь a-нормировочная постоянная, A-эрмитова-вещественная, симметри-

^{*} Статья пу бликуется в рамках договора о сотрудничестве МИСИ и БТУ.

ческая, положительно определённая матрица, \overline{x} -среднее значение вектора x а (.)'-операция транспонирования вектора (.). Из работы [1] (см. теорему 2.3.1 стр. 29 из [1]) следует, что матрица $\mathbf A$ является обратной к матрице ковариаций $\mathbf K$, т. е. $\mathbf A = \mathbf K^{-1}$, а постоянная $a = (2\pi)^{-(1/2)n}|A|^{-1/2}$. Напомним, что матрицей ковариаций вектора x называется матрица $\mathbf K = [\kappa_{ij}]i,j=1,\ldots,n$, элементами которой будут $\kappa_{ij} = (M(x-\overline{x}))(x-\overline{x})$, где M(y)-операция нахождения среднего для случайного вектора y. Поверхностями уровня $S(\hat{c})$ функции f(x) будут поверхности

$$f(x) = 2\pi^{-1/2} |A|^{-1/2} e^{-1/2(x-x)'A(x-x)} = \tilde{c}$$
 (1)

являющиеся эллипсоидами. Переходя от (1) к виду

$$(x - \overline{x})' \mathbf{A} (x - \overline{x}) = C, \tag{2}$$

где $C = -2\ln(\tilde{c}\cdot 2\pi^{1/2n}|A|^{1/2})$, положим для упрощения $\overline{x} = \Theta$, что соответствует уже центрированной векторной случайной величине x и возьмём числю \tilde{c} достаточно малым (например, таким, чтобы $/\int j(x)dx - \int j(x)dx| < \varepsilon$, где ε достаточно малое фиксированное число, $V = (0.05 \, \mathrm{m})^3$, ограниченный поверхностью $S(\tilde{c})$, а под символом \int понимается $(0.05 \, \mathrm{m})^3$, ограниченный поверхностью вероятностная мера $(0.05 \, \mathrm{m})^3$ отличается от полной меры (равной 1) на величину ε . Таким образом можно считать, что генеральная совокупность значений случайного вектора $(0.05 \, \mathrm{m})^3$ находится в $(0.05 \, \mathrm{m})^3$ ограниченном поверхностью $(0.05 \, \mathrm{m})^3$

Замечание І. Из эрмитовости матрицы А следует её простота (см., например, [2], стр. 76, теорема 2.9.4), т. е. равенство кратности каждого собственного числа матрицы её геометрической кратности.

Пусть $\lambda_1, \ldots, \lambda_k, \ldots, \lambda_n$ -собственные числа, а $e_1, \ldots, e_k, \ldots, e_n$ -собственные векторы соответственно матрицы $\mathbf A$, притом $\lambda_k \neq 0$ $\kappa = 1, \ldots, n$ так как матрица $\mathbf A$ является не вырожденной (в противном случае функция f(x) не могла бы представлять из себя плотность распределения некоторого случайного вектора); тогда при $\lambda_i \neq \lambda_j$ имеем ортогональность векторов e_i и e_i . Отсюда и из замечания I вытекает существование базиса пространства E_n . состоящего из попарно ортогональных собвенных векторов матрицы $\mathbf A$.

Найдём связь между расположением двух эллипсоидов $S(c_1)$ и $S(c_2)$ в пространстве E_n , для чего сравним уравнения поверхностей $x'\mathbf{A}x = c_1$ и $x'\mathbf{A}x = C_2$. Второе уравнение перепишем в виде $x'\left(\frac{c_1}{c_2}\,\mathbf{A}\right)x = c_1(c_2 \neq 0)$, обозначая $\frac{c_1}{c_2}\,\mathbf{A} = \widetilde{\mathbf{A}}$. Матрицы \mathbf{A} и $\widetilde{\mathbf{A}}$ подобны, т. е. $\mathbf{A} - \mathbf{A}$, отсюда следует равенство их спектров, а, значит, и совпадение наборов соответственно собственных векторов. Так как матрица \mathbf{A} является простой, то она подобна диагональной

матрице $\mathbf{J}=[\lambda_{ij}]i, j=1,\ldots,n$, где $\lambda_j=\lambda_{jj}\neq\Theta(j=1,\ldots,n)$ -собственные числа матрицы \mathbf{A} , а $\lambda_{jj}=0$, если $i\neq j$ (см., например, [2] стр. 62 теорема 2.4.2). В силу отсутствия в квадратичной форме (2) линейной части в x оба эллипсоида $S(c_1)$ и $S(c_2)$ имеют один и тот же центр в точке $x=\overline{x}=\Theta$. Отсюда фактически вытекает следующая лемма.

 $\it Лемма.$ Эллипсоиды $\it S(c_1)$ и $\it S(c_2)$ имеют общий центр $\it x=\bar x=\Theta$ и гомотетичны относительно $\it \bar x=\Theta$ с коэффициентом $\it \gamma=\sqrt{c_1\over c_2}$.

Следствие. Задача нахождения главной системы полуосей эллипсоида S(c), т. е. системы осей, на которых лежат собственные векторы матрицы A, определяющей квадратичную форму (2), не зависит от постоянной C.

 $2.^{\circ}$ Будем считать для достаточно малых c эллипсоид S(c) полем рассеяния случайного вектора x, плотность распределения для которого определяется в (1). Задача построения линейного регресионного уравнения является по существу экстремальной задачей, в которой для множества точек из V с мерой $f(\xi)$ из (1) ограниченного поверхностью S(c) ищется наилучшая гиперплоскость L^* среди различных гиперплоскостей L пространства E_n , τ . е. задачей минимизации

$$\sup_{\xi \in V} \inf_{\eta \in L} \left[\varrho(\xi, \eta) \cdot f(\xi) \right] \to \min_{L}, \tag{3}$$

где ξ , $\eta \in E_n$, а $j(\xi)$ -плотность вероятной меры (1), а расстояние $\varrho(.,.)$ может пониматься в различных смыслах: а) $\varrho(\xi,\,\eta)=||\xi-\eta||_{E_n}$ для $\xi,\,\eta\in E_n$, что соответствует обычному эвклидовому расстоянию в пространстве E_n ; в) $\varrho(\xi,\,\eta)=|\xi_1-\eta_1|$ при условии совпадения остальных координат $\xi_j=\eta_j$ $j=2,\ldots,n$ у пары точек ξ и η из E_n , т. е. соотвествует расстоянию между точками ξ и η по функционалу (в случае линейной аппроксимации эллипсоида этот функционал линеен) с) методу наименьших крадратов соответствует задача 3с:

$$\int_{V} \varrho^{2}(\xi, \eta) f(\xi)d\xi \to \min_{L}, \tag{3c}$$

где расстояние $\varrho(\xi,\eta)=|\xi_1-\eta_1|$ берётся только по парам точек $\xi\in V$ $\eta\in L$, для которых $\xi_j=\eta_j$ $j=2,\ldots,n$ (расстояние по координате x_1). Отметим, что задача За (или Зв, Зс) является конечномерной, так как гиперплоскость L в пространтсве E_n определяется "n+1" параметром — "n" координатами нормального вектора и постоянной.

В силу симметричности функции f(x) относительно $x = \Theta$ гиперплоскость L_a^* (L_b^* или, соответственно, L_c^*) является наилучшей в смысле задачи За (Зв или, соответственно, Зс) и проходит через точку $x = \Theta$. В общем случае

гиперплоскости L_a^* , L_b^* и L_c^* , конечно, не совпадают в силу разной топологии измеряемого расстояния $\varrho(\xi,\eta)$ для случаев "3а", "3в", "3с".

Остановимся на случае расстояния, вводимого в задаче 3а, т. е. на наиболее простом и удобном случае. С силу эрмитовости матрицы \mathbf{A} существует унитарное линейное преобразование T базиса в пространстве $E_n x = Ty$ такое, что $T^{-1}AT = \mathbf{J}$, где \mathbf{J} -диагональная матрица подобная матрице \mathbf{A} ; отсюда следует, что в новом базисе квадратичная форма (2) имеет канонический вид

$$\varphi(x) = \widetilde{\varphi}(y) = y'(T^{-1}AT)y = \sum_{j=1}^{n} \lambda_j y_j^2.$$
 (4)

Без ограничения общности положим

$$\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_k \ge \ldots \ge \lambda_n,$$
 (5)

обозначив соответственно набор собственных векторов $e_1, \ldots, e_k, \ldots, e_n$. Преобразовав уравнение эллипсоида S(c) в форму

$$\sum_{j=1}^{n} y_j^2 \left[\sqrt{\frac{\overline{c}}{\lambda_j}} \right]^2 = 1 , \qquad (6)$$

где $\overline{c}=0$, легко найти решение задачи За в виде гиперплоскости $L_a^*=\{y\in E_n:y_1=0\}$ нормальной собственному вектору, соответствующему наибольшему собственному числу $\lambda_1=\max_{i\leq j\leq n}(\lambda_j)$. Возвращаясь к исходному базису пространства E_n и учитывая инвариантность решения задачи За относительно выбора базиса можно получить следующий критерий элемента L_p^* .

Teopema. Для того, чтобы гиперплоскость L_a^* была решением задачи За необходимо и достаточно, чтобы она проходила через точку $x=\overline{x}=\Theta$ и была нормальна к собственному вектору e_1 матрицы $\mathbf A$, соответствующему наибольшему собственному числу $\lambda_1=\max_{1\leq i\leq n}(\lambda_i)$.

Следствие 1. Гиперплоскость L_a^* является единственной, если выполнено условие $\lambda_1 > \lambda_2 \geq \ldots \geq \lambda_n$.

Положим дисперсии всех координат случайного вектора x равными 1, τ . е. $Dx_1=\ldots=Dx_k=\ldots=Dx_n=1$ и обозначим поперечник по Колмогорову множества S(c) в задаче За через $\pi=\min_{L}\sup_{\xi\ni V}\inf_{\eta\ni L}[\varrho(\xi,\eta)|f(\xi)]$, тогда максимальная ошибка аппроксимации эллипсоида S(c) гиперплоскостью L_a^* не будет превышат π . Пусть длина собственного вектора $e_1=(e_{11},\ldots,e_{1n})$ будет равна единице, τ . е. $||e_1||=1$, а функция $x_1=x_1(x_2,\ldots,x_n)$ не тривиальна, τ . е. хотя бы одна из координат $e_{ij}\neq 0$. Тогда имеет место следствие.

Следствие 2. При использовании для линейного прогноза функции x_1 по аргументам x_2, \ldots, x_n гиперплоскость L_a^* максимальная ошибка прогноза не превышает величины π/e_{11} .

3.° Рассмотрим класс эллипсоидов $\{P(c)\}$ типа (6) в предположении (5) при c=1 имеющих один и тот же поперечник $\pi_1=\frac{1}{\sqrt{\lambda_1}}L_a^*$ в данном случае будет иметь вид $y_1=0$, что очевидно).

Наряду с абсолютной максимальной ошибкой аппроксимации — поперечником π_2 — можно ввести и относительную ошибку аппроксимации r, связанную с поперечником Π_2 проекции эллипсоида P(c) на гиперплоскость $P_1=0$, следующим образом $s=\frac{\pi_1}{\pi_2}$, где $\pi_2=\frac{1}{\sqrt{\lambda_2}}$. В случае λ_1 » λ_2 имеем сильно «сжатый» по оси y_1 эллипсоид P(c), при этом π_1 « Π_2 и, следовательно, гиперплоскость $y_1=0$ достаточно хорошо аппроксимирует множество P(c) ($c=\frac{1}{\sqrt{\lambda_2}}$); если же $\lambda_1=\lambda_2\ldots=\lambda_r$, то проекцией эллипсоида P(c) на подпространство L размерности v, натянутое на систему собственных векторов e_1,\ldots,e_r является шаром и поэтому существует пучок гиперплоскостей $\{L_a^*\}$ ранга v-1 одинаково аппроксимирующих эллипсоид P(c) с абсолютной ошибкойв метрике задачи За не превосходящей числа $\frac{1}{\sqrt{\lambda_1}}$; относительная ошибка в этом случае c=1, c=1,

Из последних рассуждений ясна невозможность построения линейного регрессионного уравнения $x_1 = x_1(x_2, \ldots, x_n)$.

Малые коэффициенты парной корреляции ещё не означают слабой групповой связи случайных координат x_2, \ldots, x_0 с функцией x_1 . Это показывает следующий пример.

Пример. Рассмотрим поле рассеяния в виде 3-х мерного эллипсоида для случайного вектора $x=(x_1,x_2,x_3)\in E_3$ распределённого нормально. Пусть в базисе (y_1,y_2,y_3) эллипсоид P представлен каноническим уравнением y' $\mathbf{J}y=100$ $y_1^2+y_2^2+y_3^2=1$, где \mathbf{J} -диагональная матрица, а в базисе (x_1,x_2,x_3) соответственно $x'\mathbf{A}x$, где $\mathbf{A}=\mathbf{T}\mathbf{J}\mathbf{T}^{-1}$, при этом матрица перехода от базиса (y_1,y_2,y_3) к базису (x_1,x_2,x_3) имеет вид

$$\mathbf{T} = \begin{bmatrix} \frac{2}{\sqrt{12}} & 0 & -\frac{2}{\sqrt{6}} \\ \frac{2}{\sqrt{12}} & \frac{3}{\sqrt{18}} & \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{12}} & -\frac{3}{\sqrt{18}} & \frac{1}{\sqrt{6}} \end{bmatrix}, \text{ обратная к ней } \mathbf{T}^{-1} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$

$$\mathbf{a} \quad \mathbf{\Pi} = \begin{bmatrix} 100 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Легко видеть, что преобразования Т и \mathbf{T}^{-1} изомеричны и сохраняют ортонормированный базис. Поэтому для эллипсонда P гиперплоскость L_a^* в базисе (y_1,y_2,y_3) имеет вид $y_1=0$, а в базисе $(x_1,x_2,x_3)-x_1+x_2+x_3=0$; поперечникэллипсонда $P\colon \pi=\frac{1}{10}$ и относительная ощибка аппроксимации $z=\sqrt{\frac{\lambda_2}{\lambda_1}}=\frac{1}{10}$ что показывает довольно тесную групповую связь между координатами x_1,x_2,x_0 , при этом величины π и π и π из-за изометричности преобразования π не зависят от выбора базиса. С другой стороны эллипсоид π проектируется на плоскости π поскости π поскост

Введём понятие «наилучшей группы» аргументов (которые, возможно, являются зависимыми случайными переменными) — $(x_{i_1},\ldots,x_{i_k})^*$. Будем называть группу $(x_{i_1},\ldots,x_{i_\ell})$ наилучшей для прогноза x_1 из всех групп $(x_{j_1},\ldots,x_{j_\ell})$, где $i_1,\ldots,i_k,j_1,\ldots,j_e\in N$ $\{1,\ldots,n\}$ и $K,l\leq n$, при этом $i_1=j_1=1$ т. е. в каждой из рассматриваемых групп присустствует координата x_1 -изучаемая функция от аргументов x_2,\ldots,x_n , если для этой группы

$$\mathbf{z}(i_1,\ldots,i_k)^* = \min_{j_1,\ldots,j_e \in N} \mathbf{z}(j_1,\ldots,j_e), \tag{7}$$

где $i_1=j_2=1,$ а $i_2,\ldots,$ $i_k,;j_k,\ldots,$ $j_k\in N$ при этом $\mathbf{r}\leq K,$ $l\leq n.$ Обозначим через \widehat{K} ковариационную матрицу для группы координат $x_{j_1},\ldots,$ x_{j_e} , являющуюся по сути дела подмножеством полной матрицы ковариаций \mathbf{K} .

Таким образом в случае, когда дисперсии всех координат x_j центрированной векторной случайной величины $x=(x_1,\ldots,x_n)$ равны 1, т. е.

$$Dx_j = 1 \quad j = 1, \ldots, n$$
 (8)

очевидно следующее свойство наилучшей группы аргументов:

Предложение. В случае линейной аппроксимации случайной функции $x_1 = x_1(x_2, \ldots, x_n)$, распределение которой удовлетворяет (1), для наилучшего линейного прогноза x_1 по значениям аргументов x_2, \ldots, x_n необходимо выбрать такую группу аргументов x_i, \ldots, x_i , для которой спектр матрицы $\mathbf{A} = \hat{\mathbf{R}}^{-1}$ таков, что выполнено условие (7).

Замечание 2. В случае достаточно высоких групповых связей, т. е. при малых значениях поперечника π полного эллипсоида рассеяния (т. е. такого

эллипсоида, для которого имеем $\int_V f(x) dx = 0,96$ и условии (8) гиперплоскость L_a^* будет близка к гиперплоскости L_c^* , поэтому её можно использовать для прогноза вместо решения задачи методом наименьших квадратов, которое может быть затруднено из-за плохой обусловленности матрицы системы нормальных уравнений.

Замечание 3. Все рассуждения разделов 1°, 2°, 3° относились к случаю нормального распределения вектора x, но по существу использовался только тот факт, что поверхности уровня плотности распределения заданы квадратичной формой (2). Поэтому выводы, полученные в разделах 1°, 2°, 3° легко распространить и на другие типы распределений, имеющих в качестве линий уровня плотности квадратичную форму.

Алгоритм выбора наилучшей группы сводится к вычислению полной ковариационной матрицы **К**, а затем полного перебора её подматриц в связи с фиксацией определённых групп координат.

Литература

1. Anderson, T. W.: An Introduction to Multivariate Statistical Analysis. New York, 1958 2. Lancaster, P.: Theory of Matrices. Academic Press, New York—London, 1969

КАМИНСКИЙ. В. А., доцент, МИСИ, Москва. Шлюзовая наб. 8, СССР