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Abstract

The incorporation of chaos functions into metaheuristic algorithms leads to significant progress in the results of optimal design of truss 

structures. Chaos functions, by forming chaotic mutations, create the necessary conditions to create a balance between exploration 

and exploitation. With this balance, the algorithm is saved from premature convergence and, by forming chaotic series, a jump from 

local optima to global optima is achieved. In this research, chaos functions are formed in the basic steps of three meta-heuristic 

swarm intelligence algorithms and three new chaos algorithms. These algorithms include the Chaotic Grey Wolf Optimizer (CGWO), 

the Chaotic Crow Search Algorithm (CCSA), and the Chaotic Cyclical Parthenogenesis Algorithm (CCPA). To improve the optimization 

results, three different scenarios are examined and the chaotic results are compared with the standard case. In these scenarios, chaos 

series replace the exploration, exploitation, or both stages simultaneously.
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1 Introduction
The advantages and superiority of truss structures have 
led to the use of this group of structures in various fields 
of engineering. In industrial buildings, aircraft hangars, 
and sheds, choosing a truss system is a unique option 
for covering large openings. In power transmission tow-
ers and telecommunication towers, the truss system will 
be required in large numbers and is the only system for 
which no other alternative can be found. In pedestrian 
overpasses, the truss structure of the bridge is associ-
ated with a large number of members. All of this empha-
sizes the importance of optimizing and constructing this 
group of structures in a light and economical manner for 
structural designers. Therefore, a large part of scientific 
research and optimization activities in recent decades 
have been dedicated to this topic. Designers of this group 
of structures need to consider other components such as 
cost and weight of the structure, in addition to engineer-
ing components such as stress, deformation, slenderness, 
and buckling, and the economic aspects of the structure 
need to be analyzed in the form of mathematical models. 
Traditional gradient-based methods and objective func-
tion derivative formation are the first solutions used by 

designers for optimization. In choosing the number of 
profiles, we will encounter discrete optimization, where 
the gradient-based method will not be able to reach opti-
mal solutions. Numerical methods are the second pro-
posed method for optimizing structures. In this method, 
the selected point for starting the iterative operation is 
of great importance, and if the selected starting point is 
not appropriate, the results of the calculations will stop 
when reaching the local optimum and, by falling into 
the trap of local optima, will undergo premature con-
vergence and maturity, and there will be no way to jump 
from these local optima. The number of decision vari-
ables will have an increasing effect on the optimization 
time, and as the number of decision variables increases, 
the time for mathematical calculations increases tremen-
dously. To get rid of these problems and benefit from high 
computational speed, researchers in the field of artificial 
intelligence have made great efforts and succeeded in pre-
senting meta-heuristic algorithms. These algorithms start 
with an initial population and at each stage, the next gen-
erations are improved by taking inspiration from natural 
or physical phenomena. The reason for modeling natural 
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phenomena is that if there is a need for a capability, nature 
has done it best [1]. The first source of inspiration is the 
pattern of genetic evolution of living things over millions 
of years since their beginnings. According to the theory 
of evolution, the world we live in is constantly changing. 
Therefore, any creature that intends to survive in such 
an environment must be able to adapt to the surround-
ing conditions. Although dinosaurs were powerful in 
size, they left the competition scene due to lack of adap-
tation, and instead, animals such as polar bears and arc-
tic foxes adapted to the harsh conditions prevailing in the 
Arctic and have maintained their presence. These algo-
rithms are based on Darwin and Lamarck's theory of evo-
lution of living organisms. Four operators play a major 
role in evolution. These operators include natural selec-
tion, crossover, mutation, and symbiosis. In each selection 
step, the population of offspring is selected and merged 
using a roulette wheel. The best traits of the generations 
are passed on genetically to the offspring in future gener-
ations. Examples of these algorithms include Evolutionary 
Strategy (ES) [2], Differential Evolution (DE) [3], and 
Genetic Algorithm (GA) [4]. The second inspiration is to 
take advantage of the group behavior and swarm intelli-
gence of animals in searching for and accessing food and 
other needs. By exchanging information in their surround-
ing search space, animals can demonstrate a cooperative 
optimization pattern that none of them could perform 
alone. Group members move through the search space and, 
by taking specific measures, gather at an optimal point, 
such as a food source. This group behavior and planning is 
evident in birds, fish, ants, and bees. The main components 
in this inspiration include population, cooperation, com-
munication, information exchange, information flow and 
self-ordering. Some of these algorithms include Particle 
Swarm Optimization (PSO) [5], Ant Colony Optimization 
(ACO) [6], Artificial Bee Colony (ABC) [7], Gray Wolf 
Optimizer (GWO) [8], Crow Search Algorithm (CSA) [9] 
and Cyclical Parthenogenesis Algorithm (CPA) [10]. 
The third group of metaheuristic algorithms have cho-
sen physical laws as their source of inspiration. Some of 
these laws include: Coulomb's law, Faraday's law, Gauss's 
law, the principle of energy and momentum. The ability to 
access classical and regular relationships is a character-
istic of this group. Some of the physically inspired meta-
heuristic algorithms are: Harmony Search (HS) [11], Water 
Evaporation Optimization (WEO) [12], Big Bang-Big 
Crunch (BB-BC) [13], Thermal Exchange Optimization 
(TEO) [14], Tug-of-War Optimization (TWO) [15], charged 

System Search (CSS) [16], Colliding Bodies Optimization 
(CBO) [17], and Vibrating Particles System (VPS) [18]. 
The inspiration is not limited to the groups introduced, 
and the inspiration and introduction of new metaheuris-
tic algorithms continues without interruption and with-
out any limitations. Biogeography-Based Optimization 
(BBO) [19], Imperialist Competitive Algorithm (ICA) [20], 
Teaching-Learning Based Optimization (TLBO) [21], and 
Invasive Weed Optimization (IWO) [22] are examples of 
metaheuristic algorithms with different sources of inspira-
tion, each of which has produced significant improvements 
in optimization. Despite extensive efforts in introducing 
new metaheuristic algorithms in the field of optimization, 
in most of them the computational process encounters pit-
falls that bring the operation to a halt. In this case, the algo-
rithm gets trapped in local optima and suffers from pre-
mature convergence or premature maturity. The research 
conducted in this paper shows that by utilizing chaos 
functions and creating chaotic mutations, we can move 
from local optima to global optima and improve the opti-
mization conditions. From a mathematical perspective, 
chaos refers to the ability of a structure and model to not 
show any signs of random events in practice, but to cause 
chaotic reactions in the environment. Important features 
of a chaotic system include: it is highly sensitive to ini-
tial conditions, its cyclical recurrence pattern is dense and 
compact, and in its chaotic and disordered behavior, one 
can see a specific order being extracted that is not repet-
itive. The potential inherent in chaos functions to create 
a balance between exploration and exploitation can be 
investigated and examined with different scenarios [23]. 
Some chaos functions converge to global minima in cha-
otic series formation with a very high probability from 
local minima, and these functions are suitable for improv-
ing the search conditions of algorithms. However, another 
group of chaos functions drive the search space towards 
local minima with a very high probability and are suit-
able for improving the extraction conditions. In a recent 
study, chaos functions have been embedded in three meta-
heuristic algorithms and the results have been compared 
with the standard case. The metaheuristic algorithms have 
been selected from the swarm intelligence group, and by 
forming chaotic algorithms, independent responses in the 
space of decision variables are significantly improved.

2 Formulation of structural optimization problems
For each optimization problem, three main parts are con-
sidered. These three parts include the objective function, 
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decision variables, and design constraints. For the design 
of truss structures, the objective function is of the min-
imization type and the weight of the structure must be 
able to satisfy the design constraints with the lowest pos-
sible weight. These constraints, which are often deter-
mined based on the rules of the regulations, include the 
allowable stress limit of the members, the displacement of 
the nodes and the slenderness of the members. The deci-
sion variable for estimating the weight of the structure is 
the cross-sectional area of   the members, which must be 
within the feasible range, and for its selection, the lower 
and upper limits of the decision variables are observed. 
The general form for these problems is proposed accord-
ing to Eq. (1):
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According to the provided equation, A is the cross-sec-
tional area of the members, W is the total weight of the 
structure, n is the number of members of the structure, 
gi and hi are design constraints. These constraints can 
include stress, member slender and nodal displacement. 
Also, Aι and Au are the upper and lower bounds of the deci-
sion variables. The initial form of meta-heuristic algo-
rithms for optimization of unconstrained problems is pre-
sented. For this reason, the penalty function method with 
Lagrange coefficients is used in the modeling to convert 
the bounded function into unbounded one. In this method, 
if there is no violation and the answers satisfy the restric-
tions, the amount of the penalty will be zero. But if there is 
a violation of the design constraints, its value is calculated 
according from Eqs. (2)–(6) and included in the penalized 
objective function:
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Eqs. (2)–(4) are related to stress, displacement and slen-
derness, respectively. The penalty function is presented in 
Eq. (5) and the objective function is formed after the pen-
alty (merit function) in Eq. (6). 

3 Introduction of Selected Chaos Map
In metaheuristic algorithms, the balance between the 
exploration and exploitation stages is not optimally main-
tained, so the convergence rate towards the global opti-
mum first slows down and then stops. In such cases, 
the algorithm is trapped in local optima. Instead, cha-
otic functions have the potential to create chaotic jumps 
and take the algorithm out of the traps associated with 
local optima. These functions have their own charac-
teristics. Some of these characteristics are: They do not 
exhibit any traces of random behavior, but they provide 
access to global optimal positions by creating irregular 
jump behaviors. In addition to these, they exhibit other 
characteristics, including: high sensitivity to initial con-
ditions, non-periodic and deterministic dynamic behav-
iors and ergodic, non-reversibility of their mathematical 
criterion. These functions have sudden jump conditions 
and have sufficient talent to save metaheuristic algo-
rithms from the trap of local optimum and transition in 
the vicinity of global optimum. In a classification, chaos 
functions can be introduced into two groups. The mathe-
matical model of some chaos functions is such that they 
converge from local minima to global minima with a very 
high probability. This group can be useful for improving 
algorithms that have problems in the exploration phase. 
In another group of chaos functions, the mathematical 
relationships are such that the decision space is located in 
the local optima with a very high probability. These func-
tions are suitable for algorithms that have weaknesses in 
the exploitation phase [23]. To familiarize yourself with 
the distribution form of chaos functions, the distribution 
diagram of several chaos functions for a repetition inter-
val of 100 sentences is presented in Fig. 1. These func-
tions have achieved significant results in combination with 
metaheuristic algorithms and improved optimization con-
ditions. In order to form chaotic metaheuristic algorithms, 
the probability distribution functions related to the search 
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and extraction stage must first be identified in the standard 
mode of the algorithm and then chaotic functions must be 
replaced in different scenarios. The probability distribu-
tion function of the algorithm itself in the standard mode 
is in most cases uniformly distributed. However, in some 
cases, Levy distribution, Cauchy distribution, and normal 
distribution have also been used. In the first scenario, the 
chaos function replaces the probability distribution func-
tion of the exploration stage. In the second scenario, the 
chaos function replaces the probability distribution func-
tion of the exploitation stage. Finally, in the third sce-
nario, the chaos function will replace both simultaneously. 
Now, by comparing the optimization results with the stan-
dard case, the degree of improvement in the results will 
be introduced. The chaos algorithm consists of four main 
steps. Flowchart of chaos algorithm for interfacing among 
steps presented in Fig. 2.

3.1 Logistics map
This map appears in nonlinear dynamic behaviors related 
to biological populations [24]. The statements of chaotic 
sequences in the logistic function are obtained according 
to Eqs. (7) and (8): 

CHM a CHM CHMk k k� � � �� �1 1 ,  (7)
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In the performed studies, a = 4 has been considered. 

3.2 Gauss map
Using this function in nonlinear dynamic behaviors has 
good results [25]. The statements of chaotic sequences in 
the Gaussian function are obtained according to Eq. (9): 
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4 Meta- heuristic algorithms and applying chaos 
functions
For metaheuristic algorithms, in the standard case, the 
necessary arrangements for convergence towards global 
optima are foreseen in two stages of exploration and 
exploitation. According to these stages, first, parts of the 
search space that have a superior strategy are selected 
and then their neighborhood is examined with as much 
precision as possible. In swarm intelligence algorithms, 
these two stages are somehow considered in the inspira-
tion stages. For the Gray Wolf Optimizer (GWO) algo-
rithm, surrounding the prey and then attacking the prey 
are considered the search and extraction stages in the algo-
rithm, respectively. In the Crow Search Algorithm (CSA), 
when crow i is chasing crow j, the exploration mode is 
applied, and if crow j is checking the food without chas-
ing, it plays the role of exploitation mode. Also, in the 
Cyclical Parthenogenesis Algorithm (CPA), reproduction 
with mating and without mating play the roles of explo-
ration and exploitation, respectively. In these algorithms, 
at each stage of selecting the search space, we will need 

Fig. 1 Distribution of numerical values   in 100 iterations for a number of 
well-known chaos functions

Fig. 2 Flowchart of chaos algorithm for interfacing among steps
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to create diversity and variety in order to have a compre-
hensive coverage of the scope of the investigation [26]. In 
the standard mode, the algorithms use random distribution 
functions to achieve these goals. These distribution func-
tions vary according to the perspectives of each algorithm 
and can include Uniform, Normal, Logistic, and Levy dis-
tributions [27]. Although the selection of these parame-
ters is done randomly, they play a decisive role in the effi-
ciency of the algorithm. By analyzing the sensitivity of 
metaheuristic algorithms, these key factors can signifi-
cantly improve their performance in the following cases:

• Increasing the speed of algorithm convergence in 
reaching global optima. 

• Jumping out of the trap of local optima and moving 
to the position of global optima. 

• Creating a proper balance between exploration 
and exploitation.

Chaotic series derived from chaotic functions have 
unique properties that can improve the weaknesses of meta-
heuristic algorithms. While the structure of these series 
resembles stochastic processes, their values   are determin-
istic, nonlinear, dynamic, and non-recursive. These series 
are non-convergent towards a specific limit, and there is 
no inverse for their generating chaotic functions [28]. With 
these properties and characteristics, their incorporation 
into metaheuristic algorithms with different scenarios can 
produce chaotic mutations and save the algorithm from the 
trap of local optima. In the first scenario, chaotic mutations 
are introduced in the exploration part of the algorithm. And 
the speed of operation for convergence increases. The sec-
ond scenario is specific to algorithms where the exploita-
tion part of the algorithm requires a chaotic distribution 
and the functions suitable for this stage have the largest 
distribution in local optima. For the third scenario, the cha-
otic function simultaneously replaces both the exploration 
and exploitation parts. Which scenario brings about desir-
able results for a specific algorithm is possible by modeling 
chaotic algorithms. In fact, the nonlinear and non-convex 
behavior of the objective functions in structural optimiza-
tion has created these conditions for metaheuristic algo-
rithms [29]. In this research, first, selected algorithms from 
the swarm intelligence group are examined in the standard 
mode, and then the results of embedding a number of chaos 
functions with three scenarios are presented, and finally, by 
creating a competition between the best chaos mode and 
the standard mode, the degree of improvement in optimi-
zation results is introduced.

4.1 Standard Grey Wolf Optimizer (GWO)
The Gray Wolf Optimizer (GWO) algorithm is inspired by 
the way the Gray Wolf hunts for prey. This algorithm was 
presented in 2014 by Mirjalili et al. [8]. This algorithm 
is in the category of swarm intelligence algorithms and 
is population-based. Gray wolves belong to the Canidae 
family and are considered apex predators. They often pre-
fer to live in packs, each of which has an average of 5 
to 12 wolves. The social hierarchy in wolves is very spe-
cific and strict. The leaders of each pack are a male and a 
female, who are called the alpha pack and are not neces-
sarily the strongest members of the pack. The next group 
is the beta pack, which is under the command of the alpha. 
The lowest rank is the omega, which has the role of protec-
tor, who is the last wolf allowed to eat food. If a wolf does 
not belong to these three packs, he/she belongs to the delta 
pack, which includes elders, guardians, observers and 
hunters. One of the interesting social behaviors in gray 
wolves is their group hunting. In this hunt, the following 
three stages are considered.

• Track, chase and approach prey. 
• Attempt to surround and harass prey until prey 

stops moving. 
• Attack towards prey.

4.1.1 Basic steps in Grey Wolf Optimizer
Step 1 Determine Initial Values: The Gray Wolf 
Optimization Algorithm, like other population-based algo-
rithms, begins by introducing initial proposed responses. 
These responses are selected within the decision space of 
the variables.

Step 2 Evaluation and Group Formation: By evaluating 
the initial responses, wolves belonging to the Alpha, Beta, 
and Delta groups are selected, which include the best posi-
tions of the first, second, and third solutions, respectively. 
The other solutions form the Omega group.

Step 3 Surrounding the Prey: The new position of each 
member of the omega group to surround the prey is deter-
mined according to the following mathematical Eq. (10):
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To determine the coefficient vectors, we proceed as follow 
Eqs. (11) and (12):



  A a r a� � �2 1 ,  (11)



C r� �2 2.  (12)

In these relations, the components of vector ɑ are selected 
in a linear decreasing manner from 2 to 0 during the iter-
ation. Also, r1 and r2 are random vectors in the range 0 
and 1.

Step 4 Prey Hunting: In the search space, we have no 
knowledge of the position of the prey vector, so we con-
sider the position of the prey vector to be the average of the 
positions of α, β, and δ, and the hunting equations for each 
of the wolves in group ω are formed as follow Eq. (13):
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The new position for the desired wolf is obtained from the 
following Eq. (14):
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Step 5 The termination conditions are checked and if nec-
essary, repeat the siege and baiting steps.

4.1.2 Chaos-Embedded Grey Wolf Optimizer (CGWO)
In order to determine the new location for the wolves of 
group ω, two exploration and exploitation strategies are 
considered in Eqs. (11) and (12). By replacing the chaos 
functions in the random selections related to these steps, 
we will have a significant improvement in the performance 
of the algorithm. The proposed scenarios for performing 
this replacement are as follows:

Scenario 1 Replacing the chaos function in the explo-
ration phase: In this case, the first chaos function CHM1 in 
Eq. (11). replaces the random selection term. The results 
of applying the chaos function will be as follow Eq. (15): 







A a CHM a� � �2 1 .  (15)

Scenario 2 Replacing the chaos function in the explora-
tion phase: In this case, the second chaos function CHM2 
is replaced in Eq. (12). to determine the values   of the vec-
tor C. For this purpose, we have Eq. (16):
 

C CHM� �2 2.  (16)

Scenario 3 Chaos function replacement in both stages: 
In this case, the chaos function is applied simultaneously 
in both stages and to replace random selections.

4.2 Standard Crow Search Algorithm (CSA)
This algorithm was presented in 2016 by Askarzadeh et al. [9] 
based on the behavior of crows. Crows are considered to be 
among the most intelligent birds. They can remember faces, 
give warnings when face with unfriendly behavior, and in 
most cases remember the hiding places of their food for 
months afterwards. They also track and remember where 
other birds hide their food and steal it at the right time, but 
if their hideout is stolen, they take extra precautions, such as 
moving hiding places. The social behavior of crows is very 
similar to the optimization process. Based on this behav-
ior, crows hide their excess food in certain locations and 
retrieve the stored food when needed. Crows are greedy 
birds and imitate each other to better access food sources. 
Finding a hidden food source by a crow is not an easy task 
because if a crow realizes that another is following it, it 
will try to deceive that crow by going to other locations. 
From an optimization perspective, crows are searchers and 
evaluate each location of the examined space with the qual-
ity of the food source as it is. In presenting the Crow Search 
Algorithm (CSA), the following principles are considered.

• Crows live in groups. 
• Crows maintain their roosting positions. 
• They chase each other to steal from their 

roosting positions. 
• Crows protect their roosting positions from thieves.

4.2.1 Basic steps in Crow Search Algorithm (CSA)
Step 1 Determine the algorithm parameters including: 
crow population, search space dimensions, lower and 
upper bounds for decision variables, maximum number of 
iterations, flight duration, and probability of wakefulness. 

Step 2 Determining the initial position and memory of 
the crows: Within the search space, scattered points from 
the interval related to the decision variables are assigned 
as the initial positions of the crows. The initial position 
assignment is done randomly. The information matrix 
related to the crows' positions is as Eq. (17):
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The memory matrix for each crow is formed according to 
Eq. (18). Since in the first iteration the crows still have no 
experience, it is assumed that they are hiding their food in 
the initial positions:
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Step 3 Evaluate the objective function values: The food 
quality of each crow is calculated by entering its position 
components into the objective function.

Step 4 Determining the new position of each crow: 
In this step, crow i randomly selects one of the crows in 
the group, such as j, and follows it to discover the location 
of the food hidden by the crow. Therefore, the new posi-
tion of the crow is obtained by Eqs. (14)–(17). as follow 
Eqs. (19)–(21):

if rand j
j iterAP≥ , ,  (19)

x x fl m xi iter i iter
i

i iter j iter i iter, , , , , ,� � � � � �� �1 rand  (20)

else

a random position of search spacexi iter, .� �1
 (21)

In these equations, AP is the crow's alertness coefficient 
and fl represents the flight length. And the values   randi 
and randj are random values   in the range 0 and 1 with 
uniform distribution.

Step 5 Checking the new crow positions: The new posi-
tions are compared with the lower and upper bounds of the 
decision variables. If these positions are within the accept-
able range, the previous positions are replaced with these 
positions and the results are updated, but otherwise the 
previous positions are not changed.

Step 6 The objective function value is evaluated for the 
new position of each crow.

Step 7 The crows' memory is updated according to 
Eq. (22):

m
m f x f x

m
i iter

i iter i iter i iter

i it

,

, , ,

,

�
� �

�
� � � �1

1 1 is better than

eer otherwise

�
�
�

��
.
 

(22)

According to this equation, if the value of the objective 
function for each crow improves in the new position, the 
crow's previous memory value is replaced with the new 
position. Otherwise, the previous position is maintained.

Step 8 the termination conditions are checked and if 
necessary, the steps from the fourth step are repeated. 
Otherwise, the operation is terminated.

4.2.2 Chaos-Embedded Crow Search Algorithm (CCSA)
To determine the new location of the crows, two explo-
ration and exploitation strategies are considered in 
Eqs. (19) and (20). By replacing the chaos functions in the 
random selections related to these steps, we will have a sig-
nificant improvement in the performance of the algorithm. 
The proposed scenarios for performing this replacement 
are as follows:

Scenario 1 Replacing the chaos function in the explo-
ration phase: In this case, the first chaos function CHM1 in 
Eq. (19). replaces the random selection term. The results of 
applying the chaos function will be as Eq. (23):

if CHM AP j iter
1 ≥

, .  (23)

Scenario 2 Chaos Function Substitution in the Exploitation 
Phase: In this case, the second chaos function CHM2 is 
substituted into Eq. (20) to determine the random values   
randi . By performing this substitution, Eq. (24) is obtained 
as follow Eq. (24):

x x CHM fl m xi iter i iter i iter i iter i iter, , , , , .� � � � �� �1

2  (24)

Scenario 3 Chaos Function Substitution in Both Stages: 
In this case, the chaos function is applied simultane-
ously in both stages and to replace the random choices of 
Eqs. (19) and (20).

4.3 Standard Cyclical Parthenogenesis Algorithm (CPA)
This algorithm considers the fundamental aspects of 
aphid life. Two types of reproduction with mating and 
without mating allow aphids to exploit favorable condi-
tions and rapidly grow their population. The proposed 
algorithm, like most algorithms, is population-based 
and was proposed in 2017 by Kaveh and Zolghadr [10]. 
In reproduction with mating, two different solutions share 
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information, while in conditions without mating, a new 
solution is formed using only the information of a female 
parent. Using this inspiration in metaheuristic algorithms 
creates the best conditions for creating a balance between 
exploration and exploitation and in most cases prevents 
the operation from stopping at local optima and premature 
convergence. In the presented algorithm, first for the with 
mating stage, the initial responses are spread across wide 
areas of the search space, and then for the without mating 
stage, the selected responses are analyzed more carefully 
in the neighborhood.

4.3.1 Basic steps in Cyclical Parthenogenesis Algorithm
Step 1 Formation of parent aphids: In the interval of deci-
sion variables, the initial aphids are formed and consid-
ered as the parent population. Their formation is random 
and occurs according to the following Eq. (25):

x x x x j nij j j j A
0 1 2� � �� � �,min ,max ,min , ,..., .rand  (25)

In this relation, Xij
0 specifies the jth component of the ith 

aphid population, Xj ,max and Xj ,min indicate the upper 
and lower bounds of the decision variables, respectively. 
The total number of aphids is equal to nA , which is placed 
in nC colonies, each with a population of nM . Accordingly, 
it is clear that the population size of each colony is obtained 
by dividing the total population by the number of colonies, 
and nM is also constant during the optimization operation.

Step 2 Procreation of the offspring population: To form 
offspring aphids in each colony, Fr × nM number of off-
spring are formed without mating. The parents of these 
aphids are female and their selection is done randomly and 
from the best answers. The Matlab coding for this stage 
and the formation of the offspring population is according 
to the Eqs. (26) and (27):

rf Fr nMi � � � �� � �� �round 1 1 . ,rand  (26)

x F
NITs

x x

j n

ij
k

j
k

j j

A

� � � � � �� �
�

1

1

1 2

�
randn

,max ,min

, ,...,

. (27)

In Eq. (26), the index related to the female parent is intro-
duced, and in Eq. (27), new offspring related to the without 
mating are formed in the new cell array. Next, it is the turn 
to form fertilized aphids. The number of these offspring 
(1–Fr )xnM , in which each male parent M and a female par-
ent F are randomly selected, and according to Eq. (28), 
new offspring related to the with mating state are placed 
in the new cell array:

x M F M j nij
k

j
k

j
k

j
k

A
� � � � � �� � �1

2 1 2� rand , ,..., .  (28)

Step 3 Flight of the best aphid and death of the worst aphid: 
After the formation of a new generation of offspring, the 
objective function is evaluated and with the probability Pf 
one of the best winged aphids is selected from colony 1 
and, by reproducing, it replaces the worst aphid in col-
ony 2. In order to keep the colony population constant, the 
removal of the worst aphid from colony 2 is likened to the 
death of the aphid and the replacement of the best aphid 
with flight. The probability related to this step is based on 
Eq. (29):

pf NITs
NITs

�
�
�
1

1max
.  (29)

Step 4 Replacing the best aphids: In each colony, the popu-
lation of parents is compared with the offspring, and from 
among them, nM of the best ones is selected to form the 
next generation.

Step 5 The termination conditions are checked and if 
necessary, the operation is repeated from step 2.

In this regard, bestT is the best team so far and NITs is 
a repeat number.

4.3.2 Chaos-Embedded Cyclical Parthenogenesis 
Algorithm (CCPA)
The two main stages for the birth and formation of the off-
spring population in aphids are reproduction with mating 
and without mating. The balance between these stages solves 
the problem of premature convergence in the algorithm. 
Reproduction with mating plays the role of exploration 
and without mating plays the role of exploitation. By using 
chaos functions in the random selections of these two stages, 
significant chaos mutations are obtained and the algorithm 
is saved from the trap of local optima. The replacement of 
chaos functions with several scenarios is done as follows.

Scenario 1 Replacement of chaos function in the with-
out mating reproduction stage: In this case, the first chaos 
function CHM1 introduced in Eq. (26) is applied in the 
standard case, and chaotic selection replaces random 
selection. This replacement is shown in Eq. (30):

rf Fr nMi � � � �� � �� �round 1 1 . .CHM1  (30)

Scenario 2 Replacing the chaos function in the reproduc-
tive stage with mating: In this case, the second chaos func-
tion CHM2 introduced in Eq. (28) is applied in the stan-
dard case, and chaotic selection replaces random selection. 
The results will be in accordance with Eq. (31):
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x M F M j nij
k

j
k

j
k

j
k

A
� � � � � �� � �1

2 1 2� CHM2 , ,..., .  (31)

Scenario 3 Replacing the chaos function in both stages 
simultaneously: In this case, both chaos functions are 
applied simultaneously in Eqs. (26) and (28), and chaotic 
choices replace random choices.

5 Numerical Examples of Optimal Truss Design
In order to compare the presented metaheuristic algo-
rithms in standard and chaotic modes, we consider well-
known examples of truss structures. To determine the 
optimal design in truss structures, the main goal is to 
design the smallest cross-sectional area of   each member 
that can satisfy the design constraints. The design con-
straints are determined based on the steel structure code 
and include providing the allowable deformation at the 
nodes, observing the allowable stress and the slenderness 
range of the members [30]. Two steps are considered for 
modeling each algorithm for the optimal design. In the 
first stage, the selected metaheuristic algorithm competes 
in the standard mode with 6 chaotic states with different 
functions and scenarios. In the next stage, the competition 
is carried out between the selected chaotic states them-
selves, and finally, with a wide range of investigations and 
a wide variety of possible solutions from the space of deci-
sion variables, a quasi-optimal state is selected [31]. In this 
research, we will have a significant challenge and compe-
tition to move towards the global optimum, and the best 
metaheuristic algorithm, the best chaotic function, and the 
best scenario will win the competition.

5.1 A 120-bar Dome Shaped Truss
Fig. 3 shows a 120-bar dome-shaped truss. This truss 
dome is a well-known example, which is often used by 
researchers to investigate the effectiveness of metaheuris-
tic algorithms. The numbering of nodes and members, as 
well as the geometric structure of the structure, is pre-
sented in the figure. The specific weight of the materials 
used in the construction of the structure is 0.288 lb/in3 
and the modulus of elasticity of the structural members is 
30,450 klb/in2 . The AISC ASD code has been selected to 
determine the allowable stress of the tensile and compres-
sive members. Based on the code relations, these stresses 
must be within the range introduced in Eqs. (32)–(34). 
To apply the deformation limit of the nodes, the maximum 
deformation of each node in all directions is introduced as 
0.1969 in. Also, the loading of the structure is applied to 
all non-supported nodes. The intensity of the applied loads 

is –13.49 kips at node 1, –6.744 kips at nodes 2 to 14, and 
–2.248 kips at the remaining nodes, respectively. The geo-
metric symmetry of the structure with respect to the lon-
gitudinal and transverse axes has been used to classify the 
dome members, and all members have been considered 
in seven groups according to the proposed figure. In the 
optimization operation, the range of decision variables is 
0.775 in2 and 20 in2. The allowable stress in tension and 
pressure is determined based on Eq. (32):

�
�

� �i
y i

i i

F
�

�
�

�
�
�

�

0 6 0

0

.
.

for

for
 (32)

For compressive stresses, we have the following Eq. (33):
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.  (33)

In this equation we have the Eq. (34):
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Fig. 3 Schematic of a 120-bar dome shaped truss
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The parameters used include E the modulus of elasticity, 
Fy the yield stress of the steel, C the boundary slender-
ness ratio that separates the elastic and inelastic buckling 
regions compared to the existing slenderness λ. Also, k 
is the effective length factor of the member and r is the 
radius of gyration of the member. To facilitate the appli-
cation of code constraints, four cases are considered. 
These cases are: 

• Case 1: We consider stress constraints without 
deformation constraints. 

• Case 2: Both stress and deformation constraints are 
considered along the X and Y axes. 

• Case 3: Deformation constraints are considered 
only along the Z axis and stress constraints are 
not considered. 

• Case 4: All constraints are considered simultaneously.

Also, the range of decision variables for modes 1 and 2 
is proposed to be between 0.775 and 5 in2, and for modes 3 
and 4 between 0.775 and 20 in2. To form statistical infor-
mation, each of the standard and chaotic metaheuristic 
algorithms was run 30 times independently, and the results 
related to the best response, the average of the responses, 
and the coefficient of variation were determined. The coef-
ficient of variation of the responses can be useful in ana-
lyzing the statistical results. This coefficient is a good 
criterion for expressing the stability of the responses, 
the sensitivity of the responses, and the correct selection 
of the specific parameters of each algorithm. The statis-
tical results of all optimization models are presented in 
Table 1. Also, for quick access to the optimization results 

and comparison of the competition of the seven groups in 
the standard and chaotic modes, a bar chart is displayed in 
Fig. 4. The convergence history of the optimization oper-
ation for 140 iterations indicates the good speed of the 
chaotic modes in moving towards the optimal responses. 
The diagram of this history is drawn in Fig. 5.

For the final comparison and competition between cha-
otic modes, Table 2 is presented. In this table, the abbre-
viation "NFE" represents the Number of Evaluations of 
the objective Function. By examining this table, a signif-
icant improvement in the optimization results has been 
achieved. These results for each of the algorithms are:

Fig. 5 The convergence histories for the 120-bar dome shaped truss

Table 1 Statistical results for the 120-bar dome shaped truss

Algorithms Statistical
Information

GWO
Standard

CGWO-21
Logist-1

CGWO-22
Logist-2

CGWO-23
Logist-3

CGWO-31
Gauss-1

CGWO-32
Gauss-2

CGWO-33
Gauss-3

1-GWO

Best 33255.701 33158.269 33186.433 33112.897 33176.406 33094.890 33193.978

Mean 33269.944 33218.549 33230.189 33162.690 33246.495 33153.968 33317.504

C.V (%) 0.053949 0.13238 0.09323 0.16841 0.16167 0.16487 0.28685

Algorithms Statistical
Information

CSA
Standard

CCSA-21
Logist-1

CCSA-22
Logist-2

CCSA-23
Logist-3

CCSA-31
Gauss-1

CCSA-32
Gauss-2

CCSA-33
Gauss-3

2-CSA

Best 33253.664 33194.593 33205.740 33200.959 33245.059 33259.449 33226.744

Mean 33267.026 33230.911 33233.960 33221.073 33248.359 33304.662 33257.065

C.V (%) 0.028281 0.10013 0.0516 0.04785 0.009988 0.07990 0.080873

Algorithms Statistical
Information

CPA
Standard

CCPA-21
Logist-1

CCPA-22
Logist-2

CCPA-23
Logist-3

CCPA-31
Gauss-1

CCPA-32
Gauss-2

CCPA-33
Gauss-3

3-CPA

Best 33246.780 33247.208 33246.018 33242.481 33247.394 33244.960 33249.621

Mean 33250.007 33250.872 33248.227 33247.606 33250.258 33249.157 33252.504

C.V (%) 0.00667 0.00697 0.00524 0.01015 0.00713 0.00867 0.01021

Fig. 4 Optimization results in standard mode and selection of chaos 
map for the 120-bar dome shaped truss
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• In the Gray Wolf optimizer (GWO), the Gaussian 
chaos function with scenario 2 has reduced the total 
weight of the structure to 33094.890 lb.

• In the Crow Search Algorithm (CSA), the logistic 
chaos function with scenario 1 has reduced the total 
weight of the structure to 33194.593 lb. 

• In the Cyclical Parthenogenesis Algorithm (CPA), the 
logistic chaos function with scenario 3 has reduced 
the total weight of the structure to 33242.481 lb. 

By comparing chaotic algorithms, the Chaotic Gray 
Wolf Optimizer (CGWO) resulted in the lowest weight for 
the structure at 33094.890 lb.

5.2 A 200-bar planar truss structure
Fig. 6 shows the 200-bar planar truss. This truss struc-
ture is one of the well-known examples, which is often 
used to investigate the effectiveness of metaheuristic algo-
rithms. The numbering of nodes and members, as well as 
the geometric structure of the structure, is presented in 
the figure. The specific weight of the materials used in 
the construction of the structure is 0.288 lb/in3 and the 
modulus of elasticity of the members is suggested to be 
30,000 klb/ in2. The allowable stress for the members is 
determined to be 10 klb/in2 and there is no deformation 
limit for the nodes. The loads applied to the truss are 
examined in three groups. These groups are independent. 
The first group is the lateral load of the structure, which 
includes a load of 1 klb in the positive direction of the 
X-axis and is applied at nodes 1, 6, 15, 20, 29, 34, 43, 48, 
57, 62, and 71. The second group includes the gravity load 
of the structure, which includes a load of 10 klb in the neg-
ative direction of the Y-axis and is applied at nodes 1, 2, 3, 
4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, and . . . . 71, 72, 73, 

74, and 75. The third group applies both loading groups 
together. To facilitate optimal design, the truss members 
are classified into 29 groups. For the optimization opera-
tion, the decision variable range is 0.1 in2 lower bound and 
16 in2 upper bound. 

To access statistical information, each of the standard 
and chaotic metaheuristic algorithms was run 30 times 
independently and the results related to the best response, 
average responses and coefficient of variation are pre-
sented. The coefficient of variation of responses can be 
useful in analyzing statistical results. This coefficient is 
a good criterion for expressing the stability of responses, 
sensitivity of responses and correct selection of specific 
parameters of each algorithm. 

Table 2 Optimal design comparison for the 120-bar dome shaped truss

Number group GWO Standard CGWO Gaus-2 CSA Standard CCSA Logis-1 CPA Standard CCPA Logis-3

1 3.02619 3.02432 3.02503 3.02805 3.02512 3.02412

2 14.5694 14.755 14.6564 13.776 14.591 14.7935

3 5.1921 5.19525 5.06365 5.44826 5.17932 5.06922

4 3.14234 2.94748 3.1377 3.01136 3.13214 3.12896

5 8.45703 8.55476 8.49103 8.81836 8.47334 8.48944

6 3.33359 3.32646 3.39259 3.36933 3.32423 3.28278

7 2.49437 2.49697 2.49522 2.4968 2.49491 2.49676

Best Weight (lb) 33255.701 33094.890 33253.664 33194.593 33246.780 33242.481

Mean Weight (lb) 33269.944 33153.968 33267.026 33230.911 33250.007 33247.606

Coefficient Var (CV) 0.053949 0.16487 0.028281 0.10013 0.00667 0.01015

NFE 11280 11280 11280 11280 11280 11280

Fig. 6 Schematic of a 200-bar planar truss structure
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Statistical information of all optimization models is 
presented in Table 3. Also, for quick access to the optimi-
zation results and comparison of the competition of seven 
groups in standard and chaotic modes, a bar chart is dis-
played in Fig. 7. The convergence history of the optimiza-
tion operation for 150 iterations indicates the good speed 
of chaotic modes in moving towards optimal responses. 
The diagram of this history is drawn in Fig. 8.

For the final comparison and competition between cha-
otic modes, Table 4 is presented. By examining this table, 
a significant improvement in the optimization results has 
been achieved. These results for each of the algorithms are:

• In the Gray Wolf Optimizer (GWO), Gaussian chaos 
function with scenario 1, the total weight of the 
structure has been reduced to 24,659.21 pounds.

• In the Crow Search Algorithm (CSA), Gaussian 
chaos function with scenario 2, the total weight of 
the structure has been reduced to 24,806.36 pounds.

• In the Cyclical Parthenogenesis Algorithm (CPA), 
Gaussian chaos function with scenario 2, the 
total weight of the structure has been reduced to 
25117.10 pounds.

By comparing chaotic algorithms, the Chaotic Gray 
Wolf Optimizer (CGWO) resulted in the lowest weight for 
the structure at 24659.21 pounds.

5.3 A 582-bar Tower Truss Structure
The 582-bar tower truss is a well-known example, which 
is often used by researchers to investigate the effectiveness 
of metaheuristic algorithms. The dimensional specifications 

and member numbering for this structure are shown in 
Fig. 9. Weight optimization of this structure with continu-
ous variables was first proposed by Kaveh et al. In the opti-
mization relations, the modulus of elasticity of the structural 
members is considered to be 203893.6 MPa. The steel rec-
ommended for the design of the structure with a yield stress 
of 253.1 MPa. To apply the deformation limit of the nodes, 
the maximum deformation of each node in all directions has 
been determined to be 8 cm. The limit for slenderness of 
the members in tension parts is maximum 300 and for com-
pression parts is maximum 200. The allowable stress of the 
tensile and compressive members is selected according to 

Table 3 Statistical results for the 200- bar planar truss structure

Algorithms Statistical
Information

GWO
Standard

CGWO-21
Logist-1

CGWO-22
Logist-2

CGWO-23
Logist-3

CGWO-31
Gauss-1

CGWO-32
Gauss-2

CGWO-33
Gauss-3

Best 26343.007 24837.033 25020.260 24867.351 24659.216 25226.472 24716.553

1-GWO Mean 26777.799 25203.961 25386.605 25634.988 24891.138 25362.004 25129.958

C.V (%) 2.1277 1.1833 1.2670 4.0809 0.82486 0.52692 1.4791

Algorithms Statistical
Information

CSA
Standard

CCSA-21
Logist-1

CCSA-22
Logist-2

CCSA-23
Logist-3

CCSA-31
Gauss-1

CCSA-32
Gauss-2

CCSA-33
Gauss-3

Best 25827.658 25428.709 25307.501 25217.796 24938.073 24806.363 25021.539

2-CSA Mean 26050.933 26148.966 25660.188 25460.188 25193.651 25028.433 25208.448

C.V (%) 0.79915 1.9823 1.0764 0.64267 0.84013 0.90168 0.60548

Algorithms Statistical
Information

CPA
Standard

CCPA-21
Logist-1

CCPA-22
Logist-2

CCPA-23
Logist-3

CCPA-31
Gauss-1

CCPA-32
Gauss-2

CCPA-33
Gauss-3

Best 25791.455 25118.590 25210.114 25137.361 25198.006 25117.108 25143.099

3-CPA Mean 26365.253 25348.538 25333.791 25436.294 25441.905 25250.84 25528.918

C.V (%) 1.9009 0.85254 0.40345 1.2308 0.81384 0.36203 1.1622

Fig. 7 Optimization results in standard and the chaos map for the 200- 
bar planar truss structure

Fig. 8 The convergence histories for the 200- bar planar truss structure
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the AISC ASD proposed relationships, which are presented 
in Eqs. (32)–(34). It should be noted that the components 
used include E the modulus of elasticity, Fy the yield stress 
of the steel, C the boundary slenderness ratio that separates 
the elastic and inelastic buckling regions compared to the 
existing slenderness λ. Also, k is the effective length fac-
tor of the members and r is the radius of gyration of the 

members. The effective length factor is considered to be 
1 for all members. The loads acting on the tower are con-
sidered in a group that includes lateral loads of 5 kN in both 
the X and Y axes and gravity loads of –30 kN in the Z axis. 
This loading is applied to all free nodes of the tower.

To facilitate optimization, all members of the tower 
have been classified into types. Based on the geometric 

Table 4 Optimal design comparison for 200-- bar planar truss structure

Number
group

Element
group

GWO
Standard

CGWO-31
Gauss-1

CSA
Standard

CCSA-32
Gauss-2

CPA
Standard

CCPA-32
Gauss-2

1 1,2,3,4 0.309047 0.102001 0.1 0.1 0.100045 0.100339

2 5,8,11,14,17 1.50311 0.967523 1.49672 1.49672 0.957302 1.14968

3 19,20,21,22,23,24 0.100175 0.175671 0.100769 0.100769 0.1 0.100008

4 18,25,56,63,94,101,132,139,170,177 0.116486 0.105626 0.1 0.1 0.1 0.111659

5 26,29,32,35,38 2.19921 1.94261 2.05603 2.05603 1.9507 2.03737

6 6,7,9,10,12,13,15,16,27,28,30,31,33,34,
36,37 0.391609 0.288587 0.275154 0.275154 0.292773 0.264223

7 39,40,41,42 0.243918 0.164868 0.150466 0.150466 0.331111 0.169507

8 43,46,49,52,55 3.22107 3.03419 3.49775 3.49775 3.07893 3.07121

9 57,58,59,60,61,62 0.187243 0.120591 0.129516 0.129516 0.1 0.1

10 64,67,70,73,76 5.37341 4.03326 4.42528 4.42528 4.07896 4.06498

11 44,45,47,48,50,51,53,54,65,66,68,69,71,
72,74,75 0.454666 0.424282 0.449637 0.449637 0.503 0.425966

12 77,78,79,80 0.161817 0.14102 0.1 0.1 0.1 0.108528

13 81,84,87,90,93 5.56815 5.26571 5.77794 5.77794 5.49553 5.37705

14 95,96,97,98,99,100 0.160035 0.10858 0.15415 0.15415 0.114396 0.102744

15 102,105,108,111,114 6.49948 6.26106 6.3296 6.3296 6.49354 6.37358

16 82,83,85,86,88,89,91,92,103,104,106,107,
109,110,112,113 0.610523 0.520442 0.627061 0.627061 0.661921 0.516515

17 115,116,117,118 0.130033 0.733951 0.139984 0.139984 0.108615 0.203728

18 119,122,125,128,131 8.07418 7.67938 7.84931 7.84931 8.02395 7.75462

19 133,134,135,136,137,138 0.108138 0.111756 0.107096 0.107096 0.214248 0.134733

20 140,143,146,149,152 9.07201 8.72157 9.02625 9.02625 9.00663 8.74731

21 120,121,123,124,126,127,129,130,141,142,
144,145,147,148,150,151 0.724611 0.972569 0.723246 0.723246 0.751787 0.729385

22 153,154,155,156 0.938049 0.308911 0.830863 0.830863 0.778415 0.953673

23 157,160,163,166,169 11.2392 10.8471 10.8209 10.8209 11.1788 10.7196

24 171,172,173,174,175,176 0.201731 0.168948 0.232744 0.232744 0.12962 0.1

25 178,181,184,187,190 12.2678 11.5303 12.1174 12.1174 12.1315 11.5497

26 158,159,161,162,164,165,167,168,179,180,
182,183,185,186,188,189 1.42721 1.0688 1.43102 1.43102 1.29886 1.29949

27 191,192,193,194 5.47571 5.53726 5.62783 5.62783 5.82254 5.96218

28 195,197,198,200 9.94375 10.5145 10.3616 10.3616 10.2569 10.5188

29 196,199 14.7038 11.6449 13.691 13.691 14.4343 12.9404

Best Weight (lb) 26343.01 24659.21 25827.65 24806.36 25791.45 25117.10

Mean Weight (lb) 26777.79 24891.13 26050.93 25028.43 26365.25 25250.84

Coefficient Var (CV) 2.1277 0.82486 0.79915 0.90168 1.9009 0.36203

NFE 14345 14345 14345 14345 14345 14345
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symmetry of the structure with respect to the longitudinal 
and transverse axes as well as the floors, the number of 
type groups is 32 groups, which are applied in the struc-
tural model as shown in the figure. Another information 
item for optimization models is the introduction of the 
decision variable range. For this structure, the lower limit 
of the decision variables is 20 cm2 and the upper limit is 
1000 cm2. To access statistical information, each of the 
standard and chaotic metaheuristic algorithms was run 
30 times independently and the results related to the best 
response, the average of the responses, and the coefficient 
of variation were determined.

The coefficient of variation of responses can be useful in 
analyzing statistical results. This coefficient is a good crite-
rion for expressing the stability of responses, the sensitivity 
of responses, and the correct selection of specific param-
eters for each algorithm. The statistical results of all opti-
mization models are presented in Table 5. Also, for quick 
access to the optimization results and comparison of the 
competition of seven groups in standard and chaotic modes, 
a bar chart is displayed in Fig. 10. The convergence history 
of the optimization operation for 180 iterations indicates the 
good speed of chaotic modes in moving towards optimal 
responses. The diagram of this history is drawn in Fig. 11. 
For the final comparison and competition between chaotic 
modes, Table 6 is presented. By examining this table, a sig-
nificant improvement in the optimization results has been 
achieved. These results for each of the algorithms are:

• In the Gray Wolf Optimization (GWO), the Gaussian 
chaos function with scenario 2 has reduced the total 
volume of the structure to 15.5347 m3.

• In the Crow Search Algorithm (CSA), the logistic 
chaos function with scenario 1 has reduced the total 
volume of the structure to 15.6507 m3.

• In the Cyclical Parthenogenesis Algorithm (CPA), the 
Gaussian chaos function with scenario 2 has reduced 
the total volume of the structure to 15.4171 m3.

By comparing chaotic algorithms, the Chaotic Cyclical 
Parthenogenesis Algorithm (CCPA), has resulted in the 
lowest volume for the structure, which is 15.4171 m3.

6 Discussion of the algorithms
In a recent study, three well-known metaheuristic algo-
rithms from the group of swarm intelligence selection 
and the reasons for stagnation in reaching global optima 
have been examined. In selection algorithms, in cases 
where the models under study have a large number of 
variables, the balance between the two basic stages of 
exploration and exploitation is interrupted and the algo-
rithm stops at local optima. We can interpret this situa-
tion as premature convergence, and in the terminology 
of some algorithm designers, they say that the curse of 
dimensionality has affected the algorithm. Although in 
some algorithms, they have tried to escape the trap of 
local optima by designing a jump stage and move towards 
global optima, research shows that the jump stage of the 
algorithms itself is not productive in the standard mode 
and a fundamental solution must be considered. In this 
regard, chaos functions have a good potential to estab-
lish a balance between exploration and exploitation [23]. 
Also, in order to have the same conditions, the initial pop-
ulation in Examples 1, 2, and 3 is set to 80, 95, and 100, 
respectively. The mutation rate is 10% at the beginning of 
the optimization, which gradually decreases to 3% at the 
end. Chaos functions in each of the algorithms improve 
the weakness of imbalance in a way. In metaheuristic 
algorithms, functions with different probability distribu-
tions are used for each of the search and extraction stages 
to create diversity in the search space. The type of prob-
ability distribution varies depending on the algorithm, 
the most famous of which are normal, Cauchy, and Levy 
distributions. However, none of these functions have the 
power of chaotic mutation, and we will need to replace 
these chaotic functions at different positions in the algo-
rithm to improve the optimization results. Therefore, 
three different scenarios are formed, and ultimately, in 
one of them, the greatest balance between the exploration 
and exploitation stages is achieved. The chaos functions 

(c)
(b)(a)

Fig. 9 Schematic of a 582-bar tower truss structure (a) 3D view, 
(b) side view, (c) top view
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themselves also have different conditions. In a number of 
chaos functions, the search space converges with a very 
high probability from local minima to global minima, in 
which case these functions are suitable for improving the 
search conditions, while in another group of chaos func-
tions, the search space converges with a very high proba-
bility to local minima and are suitable for improving the 
extraction conditions. The result is that by selecting at 
least two chaos functions and each with three scenarios, 
the statistical space required by the recent study has been 
formed [32]. Since the results are based on discrete struc-
tural examples, we will need to contribute the results of 

all the stages to combine and summarize the information. 
Using Eq. (35), a general conclusion regarding the success 
rate of each chaos mode with comprehensive participation 
will be possible:

Val
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com
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MV

ii
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�1 1
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.  (35)

In the introduced relationship, an attempt is made to apply 
the results of all models and extract the success percentage 
for each of the states, including the standard state and six 
chaotic states. By combining the results of all examples 
comparing the efficiency of standard and chaotic modes 
for each of the metaheuristic algorithms, a significant 
challenge arises in introducing the most optimal scenario. 
For this purpose, Valᴹᵛ and Valcom

Mv  are the optimal values of 
the previous tables and the corresponding combined val-
ues, respectively [27, 28]. Also, S is the number of struc-
tural examples examined and Vali,min is the lowest value 
obtained in each study. To access the normalized results 
and select the optimal design for each of the meta-heu-
ristic algorithms, the values obtained from the combina-
tion of problems in another relation are applied Eq. (36). 
In this regard, in order to facilitate the interpretation of 
normalized results, inverse values have been considered, 
so those that have a high percentage will correspond to the 
optimal design:
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Table 5 Statistical results for the 582-bar tower truss structure

Algorithms Statistical
Information

GWO
Standard

CGWO-21
Logist-1

CGWO-22
Logist-2

CGWO-23
Logist-3

CGWO-31
Gauss-1

CGWO-32
Gauss-2

CGWO-33
Gauss-3

Best 19.85572 19.92493 21.9985 20.23321 16.57130 15.5347 16.89907

1-GWO Mean 20.5127 20.18630 22.3221 21.1175 16.6794 15.5881 17.00230

C.V (%) 4.85650 1.46700 1.81628 4.96328 0.59908 0.29972 0.57361

Algorithms Statistical
Information

CSA
Standard

CCSA-21
Logist-1

CCSA-22
Logist-2

CCSA-23
Logist-3

CCSA-31
Gauss-1

CCSA-32
Gauss-2

CCSA-33
Gauss-3

Best 18.19611 15.6507 18.7133 19.08721 16.57129 19.8431 19.86427

2-CSA Mean 18.80231 15.7227 19.3194 19.74361 17.2139 20.5212 20.0212

C.V (%) 3.54559 0.42112 2.6706 3.83921 3.75855 3.96613 0.91786

Algorithms Statistical
Information

CPA
Standard

CCPA-21
Logist-1

CCPA-22
Logist-2

CCPA-23
Logist-3

CCPA-31
Gauss-1

CCPA-32
Gauss-2

CCPA-33
Gauss-3

Best 20.71633 18.5672 19.3742 19.1187 17.7283 15.4171 16.9693

3-CPA Mean 21.52711 19.2832 19.8221 20.0463 18.9598 15.4439 17.0124

C.V (%) 4.55080 5.29270 3.31095 6.58697 6.7978 0.19811 0.31860

Fig. 11 The convergence histories for the 582-bar tower truss structure

Fig. 10 Optimization results in standard and the chaos map for the 
582 bar tower truss structure
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In this comparison, nopt is the number of cases examined 
for optimization in each example, which in this study is 
7 cases. Table 7 presents the normalized results with the 
participation of all structural examples. Also, in order to 
quickly access the final results of the best weight, the best 
mean and the best coefficient of variation, pie charts are a 
suitable option. Whit the formation of these charts, the fol-
lowing results have been obtained.

6.1 Results of optimal design for best weight
By determining the success rate of each chaotic state, 
we can determine the most useful chaotic function and 
scenario in each metaheuristic algorithm to improve 
the optimization results. In cases where the success rate 
is the highest, the greatest balance between search and 
extraction has been achieved. Based on the final results 
for the recent research, the best weight in the Chaotic 

Table 6 Optimal design comparison for 582-bar tower truss structure

Element 
Group

GWO
Standard

CGWO-32
Gauss-2

CSA
Standard

CCSA-21
Logist-1

CPA
Standard

CCPA-32
Gauss-2

1 23.03938 20.06355 21.10793 20 21.32077 20.06593

2 246.9272 155.1647 147.3718 157.8389 99.95783 151.2329

3 33.67345 30.90637 33.03011 30.86969 33.91471 30.9833

4 77.87588 118.3799 149.0555 139.313 95.56768 125.4084

5 30.07553 26.87356 29.02754 26.83133 29.62998 26.76897

6 25.01488 20.10464 25.69651 20.07462 26.42537 20.00163

7 113.5223 109.1716 81.53227 106.5454 187.6107 93.69028

8 27.16429 25.00219 28.77883 25.11106 24.89734 25.27872

9 21.08023 20 23.46077 20 22.46645 20.09486

10 79.50981 83.55701 131.8152 71.92074 221.2876 100.4542

11 24.00528 23.03243 26.75922 22.66337 23.74318 21.78523

12 125.3873 152.4565 311.1666 157.4075 232.559 140.844

13 151.0339 145.3192 156.5978 148.0464 101.9919 146.1685

14 87.59071 98.08288 79.64381 84.6313 160.5204 89.47754

15 201.1891 138.5492 98.96328 155.4782 111.5661 147.5739

16 37.23665 31.0552 52.7292 31.3835 36.79648 31.4191

17 108.717 127.0848 107.9573 129.4626 117.859 122.7136

18 39.0356 23.68318 35.2376 23.91704 27.63773 23.90438

19 32.65908 20 20.04085 20.0153 27.16355 20.20777

20 150.1616 83.19053 110.176 70.09786 261.5027 79.76006

21 24.58382 21.47422 31.75628 21.72332 21.88616 21.60413

22 20.94666 20 22.37363 20.03305 28.1286 20.02239

23 388.0318 35.52802 63.40127 49.02267 44.67642 52.14127

24 21.03091 20.18354 24.04908 20 25.10025 20.10298

25 22.56864 20.10975 22.5029 20 22.92893 20.01235

26 41.55715 20.07573 38.13768 20.41595 39.51534 21.17999

27 21.76659 20.01834 26.79099 20 23.53016 20.17599

28 20.61138 20.13832 27.77936 20.64422 30.60028 20.00967

29 333.5885 28.7142 20 20.62733 413.3706 20.06573

30 23.40145 20.30114 32.5149 20.04698 27.54583 20.00205

31 24.98237 20.52048 482.6035 20.00546 24.39115 20.13808

32 28.0665 20.0411 21.36959 20 312.7653 20.203

Best (m3 ) 19.85572 15.5347 18.19611 15.6507 20.71633 15.4171

Mean (m3 ) 20.5127 15.5881 18.80231 15.7227 21.52711 15.4439

CV (%) 4.85650 0.29972 3.54559 0.42112 4.55080 0.19811

NFE 18100 18100 18100 18100 18100 18100
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Gray Wolf Optimizer (CGWO) and Chaotic Cyclical 
Parthenogenesis Algorithm (CCPA) jointly belongs to the 
Gaussian chaos function with the second scenario, and for 
the Chaotic Crow Search Algorithm (CCSA), it belongs to 
the logistic chaos function with the first scenario. Also, the 
highest success rate is achieved in the Chaotic Cyclical 
Parthenogenesis Algorithm (CCPA). The distribution of 
percentages between chaotic states to determine the best 
weight is shown in Fig. 12.

6.2 Results of optimal design for best mean 
Given that each optimization model has been repeated 
30 times, therefore, obtaining the highest percentage 
of success between the average of the repeated states is 
also considered. Based on the final results for the recent 
research, the best average weight in the Chaotic Gray Wolf 
Optimizer (CGWO) and Chaotic Cyclical Parthenogenesis 
Algorithm (CCPA) jointly belongs to the Gaussian chaos 
function with the second scenario, and for the Chaotic 
Crow Search Algorithm (CCSA), it belongs to the logistic 
chaos function with the first scenario. Also, the highest 
percentage of success has been achieved in the Chaotic 
Cyclical Parthenogenesis Algorithm (CCPA). The dis-
tribution of percentages between the chaotic states to 
determine the best average weight is shown in Fig. 13. 

The correspondence between the results of the best weight 
and the best average weight shows the stability of the 
responses and the correct selection of the parameters of 
the algorithms.

6.3 Results of optimal design for best coefficient of 
variation 
In cases where the results of the iterations have similar 
conditions, the stability of the chaotic algorithm converges 
towards the ideal and stable state. In these conditions, the 
success rate related to the coefficient of variation plays a 
fundamental role. Based on the final results for the recent 
research, the best coefficient of variation in the Chaotic 
Gray Wolf Optimizer (CGWO) and Chaotic Cyclical 
Parthenogenesis Algorithm (CCPA) jointly belongs to the 
Gaussian chaos function with the second scenario, and for 
the Chaotic Crow Search Algorithm (CCSA), it belongs 
to the Gaussian chaos function with the third scenario. 
Also, the highest success rate has been achieved in the 
Chaotic Cyclical Parthenogenesis Algorithm (CCPA). 
The distribution of percentages between chaotic modes 
to determine the best coefficient of variation is shown 
in Fig. 14.Fig. 12 The final results of the optimal design to determine 

the best weight

Table 7 Final normalized value with the participation of all examples

Category Algorithms Standard Logistic
21

Logistic
22

Logistic
23

Gauss
31

Gauss
32

Gauss
33

GWO 3.5383 4.2607 2.8673 3.9911 17.9645 54.0337 13.3444

Best Weight CSA 6.3914 52.3753 6.0771 5.5595 20.015 4.8698 4.7119

CPA 0.0201 0.0364 0.0286 0.0309 0.0485 99.7626 0.073

GWO 2.9197 3.7284 2.5405 2.9982 15.8507 60.9989 10.9636

Mean Weight CSA 8.3063 43.8857 7.7747 7.2449 19.3395 6.4274 7.0216

CPA 0.0106 0.0184 0.0162 0.0153 0.0198 99.8783 0.0413

GWO 4.2308 11.704 10.7301 3.1596 21.673 37.5367 10.9658

CV (%) CSA 15.4164 13.0585 14.345 12.3276 17.7497 9.2757 17.8271

CPA 1.8992 1.8364 3.1793 1.414 1.4409 76.872 13.3582

Fig. 13 The final results of the optimal design to determine 
the best mean
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7 Conclusion remarks
In the recent paper, three popular algorithms inspired 
by swarm intelligence are selected and chaos maps are 
embedded in them. The results of this embedding have led 
to significant improvements in structural optimization. 
Some of the conclusions are below:

• In most cases, the combination of chaos functions 
in metaheuristic algorithms has produced signifi-
cant improvements compared to the standard case. 
The main factor may be the effect of chaos functions 
in escaping local optima and preventing premature 
convergence. In cases where geometric optimization 
is performed, analysis in the elasto-plastic limit can 
significantly improve the optimization results [33]. 

• For geometric optimization of members at the plastic 
limit, the connection method affects the optimization 
process. This issue should be further considered in 
future research [34, 35].

• With the development of new inspirations in meta-
heuristic algorithms of swarm intelligence and 
access to the mysterious behaviors of animals in their 
daily activities, researchers' efforts to apply them 
to optimization problems are increasing. The suc-
cess of these algorithms in flat, linear, and low-vari-
able problems is commendable. However, with the 
increase in the number of variables and nonlinear 
behaviors, convergence threatens the maturity of 
these algorithms. 

• To improve the optimization conditions, we can 
review two basic stages of the algorithm. These two 
stages that affect the convergence speed of meta-
heuristic algorithms include the exploration and 
exploitation stages.

• In the standard design of algorithms, probability 
distribution functions are used to create diversity 
and variety to access unknown parts of the search 
space. Algorithms that use the normal bell distri-
bution have a wide range and produce larger search 

steps. Therefore, in these algorithms, the explora-
tion conditions are well met, but they have difficulty 
in exploitation. In algorithms that recommend the 
Cauchy distribution, the search space is examined 
with a limited and smaller range. In this group, the 
exploitation conditions are well met, but the balance 
between these two stages will not be met. After the 
unsuccessful experience of the two aforementioned 
distributions, the Levy distribution was proposed, 
but the desired results were not achieved.

• Chaotic functions offer great potential to the algo-
rithm to save it from the trap of local optima. In the 
early stages, we will need long steps to master 
unknown areas of the search space, so those chaos 
functions that converge with a high probability 
from local optima to global optima save the algo-
rithm from the risk of premature maturity. In the 
later stages, when the algorithm has somewhat 
understood the positions of global optima, we will 
need smaller and more cautious steps, and this sit-
uation results in another group of chaos functions 
in which they are likely to be within the range of 
local optima. 

• For a greater challenge, chaos functions from 
both groups should be examined with three sce-
narios and by comparing their success rates, the 
most successful case in this competition should be 
determined. This approach provides a significant 
improvement for problems that have more variables 
and elements. 

• According to the results of Table 7, the success rate 
of all three algorithms in chaotic states is impres-
sive and has a good improvement. Among these 
three algorithms, the greatest improvement belongs 
to the Chaotic Cyclical Parthenogenesis Algorithm 
(CCPA), which has achieved the best weight, the best 
average weight, and the best coefficient of variation 
for all three components. 

• To select the starting sentence in the series of chaos 
functions, performing several initial iterations 
before the main iterations and selecting the appro-
priate starting sentence improves the results in a 
leapfrog manner. 

• Among the chaos functions, the Gaussian function 
with scenario 2 has provided the greatest improve-
ment in the optimization results.

Fig. 14 The final results of the optimal design to determine the best 
coefficient of variation
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