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Introduction

Automation of water control is a significant and actual problem in water
management, occurring both with irrigation and diversion canals and with
drainage and seepage canals. The common method of automation is the control
of water level in a given canal cross section. Control structures in controlled-
level eanal systems obtain information about changes in water resources of
canal sections from water level changes in the given cross section. The obtained
information is relied upon in changing the discharges in each canal to match
the initial condition.

Difficulties arise in approximating the stability problem of water level
controls from:

— mnonlinear, partial differential equations describing flow conditions in canal
sections;

— nonlinearities in operating mechanisms of control structures;

— complexity of water control systems.

There is internationally a scarcity of publications in this scope [3].
Hungarian references see under [0, 8]. These papers practically give only the
analysis, rather than the synthesis of the problem.

Considering the complexity of the problem, the synthesis of stability
of water level control seems to be the simplest by evaluating properly accom-
plished analyses. These analyses can be rather expedient in nondimensional
models.

Nondimensional (generalized) expressions will be given for a test series
suitable as an approach to the synthesized stability problem. The examined
basic system consists of a controlled canal section and a control structure.

Notations:
g — discharge:
h — depth of flow;
h, — mean depth of flow;

i — slope of water surface;
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v — mean velocity of flow:
¢ — velocity of wave propagation;
b — width of flow surface;
f — area of flow cross section;
k — perimeter of flow cross section;
— bank slope;
~— time;
— space coordinate of canal:

— length of canal;

)
4
x

4 — change;
I
s ‘“i-operator (1/s):
P

“r-operator (1);

Y — transfer function;

j — imeaginary unit.

Subseript 0 refers to initial flow condition. Other notations are defined in

the paper.

Deseription of controlled canal sections

The transient flow conditions in oper canals are described by the Saint-
Venant equations in a general case [4]. However, this paper discusses only
controlled level canals having two essential features:

— they are prismatie;
— water levels change only within a limited operation range.

Due to these features, transient flow conditions can be deseribed by the
theory of small amplitude waves [4].

The linearized Saint- Venant equations are the following [4, 8]:

Ak @24h 824k . B4k 2ig 84k

c2 — — v — Ciigx 0 1

Yo a2 “oxor 0 ox v, Ot )
o4k 84q

b + 2 =0 2
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where c% = c'f,~v(2)
1 {10 8 QhkoJ

X = —m |~ —
hko

3 3 k

Let us introduce the following relative variables:

_dn

Y] hy

— relative water level change;
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N —— | — relative discharge change;
9o
« x - -
f= T — relative space coordinate;
T = — — relative time, where i, is the period of natural oscillation in
fo 2le,
the canal: ) = ——.
5
c2hy
Dividing Eq. (1) by -2 and Eq. (2) by ¢,/I, the following nondimensional
P2

linear equation system is obtained:

(g G e v o(ET)

B8 42 977 ¢, 0Fdr
_ ciiol (10 §_ ohy, ‘i (&) il on(¢, ) -0 (3)
cihy, | 3 3 kg | GI3 V4Co ot
c2byhy On(&,T) n o9(&, ) — 0 ()
2¢fovy 0T 613
Substituting
ﬂ-—F lOZ e .}:2.__3 Qhko = Af fO =N
o h, 3 3k boho
transforms Eqs (3) and (4) to:
o 1—Fr> oy Fr on  RMoy R og —0 (3)
o0& 4 o2 9&otT 1 — Fr2dé Fr ot
Loron o0 o

2FrN 8t 8¢

Applying operator p == #/67 transfers Eqs (5) and (6) to the operator
range:

d*H(¢,p) 1 f’" (P2H(&, p) — pno(€) — 10(£)) —

g
(7

. dH(Z,p) . RM dH(,p)
— Frip— —28 — H(Ep) — =0
rip i 1n0(€) T Fe @ — (pH(&.p) — mo(8)) =
1— Fr? - db(&,p)

(PH(£,p) — mo(8)) +

— — :0. 8
2FrN dé ©)
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Supposing permanent initial'/’flow condition, the general solutions of Eqs
(7) and (8) are [4]:

H(E, p) = Gy (p) exp (r1 (p)£) + Cy (p) exp (ro(p) &) + 70 (9) ©)

O(&: p) = A (p) Ci (p) exp (r: (p) §) + B (p) C2 (p) exp (r2 (p) £)  (10)

where
1—Fr? p
Afp) = — ————
2Fr N ryp)
1 — Fr?
Bp)= — ——— L
2FEr N ry(p)

(D) = ngM' B mign _:L—f,}z_ N ‘2RMFr 4 R o
1AE AL — Fr2) 2 Y i FT’
R2jf? (W2 RM Fr 1
e | 2S e IP‘:_F(?>

(1 — Fr2p?, 2(1 — Fr? 2 2

C.(p) and C,(p) are integration constants depending on boundary cendi-
tions. In determining boundary conditions, the two cases of control basic
system have to be considered [6] (Fig. 1):

Upstream level contret Downstream teval controt

»Controt structure
Input signal {

Input signal

A= Amox
/

Operation range- |
) |
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Fig. 1. Schemes of water level control systems

— in case of upstream level control the disturbing effects (input signals) as
discharge changes set up in the upper boundary section. Control structures
operate in the opposite (lower) boundary sections. Their discharge changes
represent the modifying effecis, namely:

V(&= 0.7) =9, (7) — O, (p)
Pp(s = 1. 7) = 0y(1) — O, (p)
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— in cases of downstream level eontrol the loci of disturbing and modifying
effects are opposite to the previous ones, namely:

94§ =1.7) = J,(7) — O (p)
Fg(§ = 0,7) = ¥, (r) — O, (p)-

Considering these boundary conditions, the general solutions are:

H(E,p) = —2Fr N L (04(p)(ra(p) e (ra(P)®) —
Q- F)A—esp(—F@) p ?
- 7'1(?) exp (— ri(p)(1 — £) Tz(F)) D) X

X (ri(p) exp (— ry(®) (1 — £) —ry (@) exp (— ri(p) +1o(p) §))) (11)
! o, exp (ro(p) )} — exp(— r(p)(1 — &) +
pe— (O(p) (exp (r(p)8)) — exp (— ru(p)(1 — &)

1
+1(p)) + O o) (exp (— r(p)(1 — &) — exp(— ri(p) + ro(p)9))- (12)
Solution (11} is already a possibility to describe the nondimensional
transfer functions of controlled canals:
— the transfer function of relative water level change (1, (£, 7)) due to relative
discharge changes (&, (7)):

0. ) =

Y (&) = — 48 L i &p)Ey(&,p) —
Hl(g/i) T exp(«-F(?)) P< 1(p) Iy -P) (& p)
— Ly(p) I(£.p) Eo(£.p)) (13)

— the transfer function of relative water level change (1, (&, 7)) due to relative
discharge changes (4, (7)):

£o) — —dy%) 1 (D) Bl —
Y poép) = 1 —exp (— F(p)) ;(Lz(P) I3(5.p) Eg(é.p)
— Ly(p) Is(£.p) Ei(5.p)) (14)
where

FrN RM & FrN —RM(1 — &)
ex €x ;

dy(&) = 3 s dy(8) =
O =T ™y O T P n
RM RM
L1()“—1—:“15,-; Frp — F(p); Lz(P)Zm—Z— Frp + F(p)

Liép) =exp l_;‘: (b — F(p))l 5 Ey&.p)=exp (~—~ —g—(l — Fr) p}

I, P)_eq,f =90~ F@)|: Biep)=oxp (~—-§—(2—s)(1—:—Fr>p]
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l

I(£,p) = exp —é—(l — &) — F(p))} : Eq(f.p) = exp | — -21—(1 — £+ Fr)p

I(.p)=exp g(l +Hp—F (p))} i Ey&p)=

p|-

1
1+

¥y

1 [

ure

Description of control structures

The other basic element of water level control system is the control
structure. Its discharge is described by: [8]

gr(t) = am(t) (3(t)—z,())’ (15)
where
a, — constant area of a typical flow section in the structure;
m(t) — discharge coefficient, changing according to the dynamic fea-
tures of controller;
54(t) and z,(t) — stages of head- and tailwater, resp.;

é — constant, depending on the features of flow.

In this paper the general description of discharge change in control strue-
tures is omitted to get simpler approach [8]. The simplifying condition is the
following:

— the effect of changes in head- and tailwater levels can be neglected in com-
parison to the discharge change caused by changes in the controlled water
level.

In this case the relative discharge change of the control structure is:

m

85—
Pa(t) = SR ™o g O (16)
R
%  4dhs B
where
U= . relative change in discharge coefficient;
my
Ahg . .
dng = T relative change in the controlled water level:
0

The change A7(z) is caused by two effects:

— by disturbing effect #, (), 7,(¢) and
— by modifying effect #4(t) caused by n(z).
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Considering these the Laplace transform of the relative discharge change
of the control structure is:

O(8) = Y ry(s) (Hy(s) + H,i(s)) = Yr(s) (Hgp(s) + O(8) Y o(Xs> 8))- (17)

Oer (8)
M Ypo (s} R

Vys(Rg,5) [

Fig. 2. Flowchart of water level control

From solution (17) the resultant relative discharge change of the control
structure is (Fig. 2):

Y ry(s)
O p(8) = Rs H(s i8
eR( ) 1_ YRS(S) Y‘VS(xS,S) so( ) ( )
where
Y i (s) — transfer function of control structure relating to controlled
level change:
Yy(s) — transfer function of feedback.

The transfer function Y 5 (s) can usually be approximated as:

— in case of proportional-type controller:

YRS(S) e —1_43___,8_’1'39
(1 +Tys)
— in case of integrating-type controller:
Y pi(s) = _Ar e~Tas,
T.s(1 +Tys)
Substituting:
5} 1 0 1
8 =— IS e e 2 e P
0 t t, o7 L,
ty
A
YRs(p) = = e"TEP
1+7p
or
A
Y ri(p) = —F e (19)
7 p(1 + 71p)
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where
Ap — proportionality coefficient;
L lative ti fthes 1 ;
Ty = —= relative time constant of the storage element;
fy
T et s ¢ ofthei atine el .
7; ==L — relative time constant of the integrating element;
)
T, . .
Ty=— — relative time constant of dead-time element.
fy

Transfer functions (19) are already nondimensional. A further simplify-
ing condition is needed to determine the nondimensional form of feedback

transfer funetion ¥ (v :s):

— total reflection is supposed in the houndary cross section opposite to the
controller of the controlled canal. (The case of stability.)
It follows from the foregoing that:

— in cases of upstream level control:

Yislwe 8) = YVio(e 2) (20)

-— in cases of downstream level control;
Y (s 8) — Y (€, p)- (21)

Using relationships (18) to (21) the nondimensional resultant transfer
funetion of control siructures takes the form:

) e YRS(P) c
YelD) = Ty ) Yot (22)

Stability of water level conivol

Due to the complexity of transfer function (22) the Nyquist criterion is
suitable for stability tests [1, 6, 8].

From transfer function (22) the loop transfer function of the control
system is:

Y(£p) = —Yre(p) Y u(é: p)- (23)

Loop transfer function (23) can be translated to the frequency range by
substituting p = j»: '

Y(Es ) = —Yrd{j») Y&, j») (24)
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where
® 2le,
V= ——s=-—0— m '— resonance factor;
0o c1
w — frequency;
we — natural frequency of the canal section.

It is demonsirable that under certain conditions the characteristic
equation 1 —Y (&, p) = 0 has no positive real part root [1}, making the simpli-
fied Nygquist criterion adequate to test stability.

According to the criterion the control system is stable if the following
condition is realized:

Re {¥ (&, vy > 1,0 f Im{Y (&, )} =20
V)5 ! J

in all cases where 0 <7» < o= (Fig. 3).

=4
RY
e
E
HUEs, V)
) v
14
\
. ) Bk, Vi) S_0 ()
T - ,E ’ \../ Re{¥(Es,iv)]
o=>f Bn \\‘{‘JS(B;JVk) i
N
AN
w0 7
//\a,

Fig. 3. Nvquist curve and curve of the describing function

According to the foregoing, the stability of a water level control system
is unequivocally determined by five nondimensional dynamic canal parameters
(Fr, R, M, N, {,) and max. four nondimensional dynamie control structure
parameters (Ap, 7, 7, Ty)-

If a control structure has essential nonlinearities, the method of des-
cribing functions can be applied [2]. In this case the nonlinear elements can be
approximated by describing functions substituting transfer functions. Resul-
tant frequency function of the control structure is:

‘Ns(ﬁ? j"’) YRS(]"V)
L— Ny(B. jv) Y ro(j?) Y 5(Ese?)

Yer(Eejv) = (26)
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where
NgfB,j») — nondimensional describing function of nonlinear element;
p — amplitude of relative change in the controlled level;
Yps(j¥)  — frequency function characterizing linear signal iransmission

of the control structure.

Using the denominater of (26) the nonlinear stability can be determined

-+
Ny(B, j»)

lso vields the relative parameters of steady-state oscilla-

— Yj) Yu(é.jv) =

Equality (27) a
tion (8., v,) in case of a

convergent eritical cyele.

Summary

Nondimensional expressions are presented for the dynamic description of controlled.
level canal sections and centrol structures.

These expressions involve max. nine nondimensional parameters to test the stability
of a given system. Introducing the describing function method, also nonlinear stability can
be tested.

The given expressions permit to carry out a test series, by varying nine parameters,
Evaluating the test results yields practical design stability conditions.
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