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Introduction 

Automation of water control is a significant and actual problem in water 
management, occurring both with irrigation and diversion canals and with 
drainage and seepage canals. The common method of automation is the control 
of water level in a given canal cross section. Control structures in controlled
level canal systems obtain information about changes in water resources of 
canal sections from water level changes in the given cross section. The obtained 
information is relied upon in changing the discharges in each canal to match 
the initial condition. 

Difficulties arise in approximating the stability problem of water level 
controls from: 

nonlinear, partial differential equations describing flo'w conditions in canal 
sections; 
nonlinearities in operating mechanisms of control strnctures: 
complexity of water control systems. 

There is internationally a scarcity of publications in this scope [3]. 
Hungarian references see under [6,8]. These papers practically give only the 
analysis, rather than the synthesis of the problem. 

Considering the complexity of the prohlem, the synthesis of stability 
of water level control seems to be the simplest by evaluating properly accom
plished analyses. These analyses can be rather expedient in nondimensional 
models. 

Nondimensional (generalized) expressions 'will be given for a test series 
suitable as an approach to the synthesized stability problem. The examined 
ba"ic system consi"ts of a controlled canal section and a control structure. 

Notations: 
q discharge; 
h depth of flow; 

hi: mean depth offlow: 
i slope of water surface; 
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v mean velocity of flow; 
c velocity of wave propagation; 
b width of flow surface; 
f area of flow cross section; 
k perimeter of flow cross section; 
q bank slopc; 

time: 
x space coordinate of canal; 

L1 change; 
length of canal; 

s ;,!~t-operator (lis); 

P (T-Operator (I); 
Y transfer function: 

] imaginary unit. 

Subscript 0 rcfers to init ial flO'.I- condition. Other notations arc defined in 

the paper. 

Description of contl'oHea canal sections 

The transient fIo·w conditions in open canals are described by the Suint
Venunt equations in a general case [4]. Howcvcr, this paper discusses only 
controlled level canals having two essential features: 

they are prismatic; 
- ·water levels change only ·within a limited operation range. 

Due to these features, transient flow conditions can hc described by thc 
theory of small amplitude waves [4]. 

The linearized Suint- Venunt equations are the following [4, 8]: 

(2) 

where ci = c5 - v~ 

x = _I_f~ _! Qhl,,) • 

hi', ! 3 3 ko 

Let us introduce the following relative variables: 

- relative water level change; 



" x :;=T 
t 

r =
to 
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relative discharge change; 

- relative space coordinate; 

relativt; time, where to is the period of natural oscillation in 
2lco the canal: to = -?-

Ci 

Dividing Eg. (1) hy C~~IO and Eq. (2) by qo!l, the following nondimensional 

linear equation system is obtained: 

Substituting: 

Vo 
-=Fr; 
Co 

et O}/(~, r) 

4C5 or2 
10 _ 8 Qhko \ arM, -r) 

3 3 Iro i o~ 

c'i bo ho orJ(~, r) 

2cof ovo or 

transforms Eqs (3) and (4) to: 

021'M, r) 

Co o~ or 
iolg 017(~, r) = 0 

VoCo or 
(3) 

(4) 

o~ _ 1 - Fr2 82
1] _ Fr 02

1] _ RM01) _ ~ ~ = 0 (5) 
0~2 4 or2 o~ar 1 - Fr20~ Fr or 

1 --- Fr2 o'f} of} = 0 . (6) 
2Fr]V or o~ 

Applying operator p alor transfers Eqs (5) and (6) to the operator 
range: 

(7) 

- Fr lp - dH(t;, p) - 170
(t;») - RM dH(t;, p) - (pH(t;,p) - rJo(t;)) = 0 

dt; 1 - Fr2 dt; 

1 - Fr2 (H(t; ) _ (;}) -L d8(t;,p) = O. 
2Fr N p , P 'f}o I dt; (8) 
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Supposing permanent initial fIo,,- condition, the general solutions of Eqs 
(7) and (8) are [4]: 

Vi'here 

H(~, p) Cl (p) exp (rl (pg) Cz (p) exp (rz(p) ~) -'- tio (~) (9) 

0(~, p) A (p) Cl (p) exp (rl (p) ~) B (p) C~ (p) exp (1"z (p)~) (10) 

Ri"ii 

A(p) 

B(p) 

Fr 
--D 

'J • 

1 - Fr2 p 

2FrN rl(p) 

1 Fr2 _P_ 

2Fr N r2(p) 

1

2RMFr 
-) 
1 1 17 ry 

.L r-

Cl(P) and Cz(p) are integration constants depending on boundary condi
tions. In de-::ermining boundary conditions, the two caSl':3 of control hasic 
system have to he considered [6] (Fig. 1): 

U?stream level contrci Cownstreom lE''.'''''! contro. 

Fig. 1, Schemes of wa ter le'n'l control SYi't(-1l15 

in case of upstream level control tIlt' disturhing effects (input signals) as 
discharge changes set up in the upper boundary section. Control structures 
operate in the opposite (lower) houndary sections. Their dit3charge changes 
represent the modifying effects, namely: 

1}z(E 0, T) = 1}J (T) -> 0 1 (p) 

(}R(; 1, T) = Vz(T) --> O2 (p) 
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in cases of downstream level control the loci of disturbing and modifying 
effects are opposite to the previous ones, namely: 

{}za 1, c) = il z (c)~' e 2 (p) 

ilR ( ~ = 0, c) = ill (c) -+ e1 (p). 

Considering these houndary conditions, the general solutions are: 

H(,;,p) = -2FrN 
(1 - Fr2)(1 - exp ( 

1 
- (e1(p)(r2(p) exp (r2(p),;) -

F(p») p 

rl(p) exp (- rl(p)(1 ;) - rz(p» + e2(p) X 

X (rl(p) exp rl(p)(1 ~) - rz (p) exp (- r1(p) + rz(p) ~») (ll) 

1 
e(;, p) = -l--ex-.p--F-(-p)-) (e1(p) (exp (r2(p),;)) 

Solution (ll) is already a possihility to describe the nondimensionaI 
transfer functions of controlled canals: 

6 

the transfer function of relative ,'later level change (Jil (;, -r» due to relative 
discharge changes (ill (-r»: 

y Hl(';'P) = ~(Ll(P) I 1(;,p) El(';' p)-
1 - exp( F(p») P 

- L 2(p) 12(';'p) E 2(;,p)) (13) 

the transfer function of relative water level change (172 (~, -r» due to relative 
discharge changes (il z ( c» : 

YH2(~'P) = ~(L2(P) 13(;,p) E3(';'P) -
1 - exp ( - F(p») p 

- L1(p) Ii,;,p) E4(';'P» (14) 

where 

d (;) Fr N RN!'; d (;) = FrN ex -Rlvl(1 - ,;) ; 
1 = 1 _ Fr2 exp 2(1 _ Fr2); 2 1 - FrZ P 2(1 - Fn 

Ll(P) = 1 ~iv~r2 Frp -- F(p); Lip) = 1 Rl~r2 + Frp F(p) 

. .. (,;) 
I 1(,;,p) = exp f ; (p - F(p»)); E1(,;,p) = exp - 2 (1 - Fr) p 

12(,;,p) = exp (~ (2 - ,;)(p - F(P»); Ez(;,p) = exp (- ~ (2 - ;)(1 + Fr)p) 
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13(~,p)=exp (~ (1 ~)(p 

14(~'p) = exp (~ (1 ~)(p 

= exp (- ~ (1 ~) 1 
2 
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F(p))1 ; 
J 

F(p))); E.l(~'P) = 

:-~) p). 

Description of control structures 

The other basic element of water level control system IS the control 
structure. Its discharge is described by: [8] 

(15) 

where 

a o 
met) 

constant area of a typical flow section in the structure; 
discharge coefficienL changing according to the dynamic fea
tures of controller; 

zAt) and za(t) 
o 

stages of head- and tailwater, resp.; 
constant, depending on the features offlo\L 

In this paper the general description of discharge change in control struc
tures is omitted to get simpler approach [8]. The simplifying condition is the 
following: 
- the effect of changes in head- and tailwater levels can be neglected in com
parison to the discharge change caused by changes in the controlled water 
level. 

In this case the relative discharge change of the control structure is: 

where 

m 
a=
, mo 

Ll1} = Llhs 
S ho 

relative change in discharge coefficient; 

relative change in the controlled water level: 

The change Ll1}s(t) is caused by two effects: 

by disturbing effect {f2 (t), 1}b(t) and 
by modifying effect {fRet) caused by .11}s(t). 

(16) 
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Considering these the Laplace transform of the relative discharge change 
of the control structure is: 

fishes) '~'-~-S-(s-)~ 

Fig. 2. Flowchart of water level control 

From solution (17) the resultant relative discharge change of the control 
structure is (Fig. 2): 

(18) 

where 

or 

transfer function of control structure relating to controlled 
level change; 
transfer function of feedback. 

The transfer function Y RS(s) can usually be approximated as: 

in case ofproportional-ty-pe controller: 

Y R (s) = e-TU9 
S (1 + T1s) 

iu case of integrating-type controller: 

Substituting: 

a 
s=--= 

t 
too

to 

1 () 1 
--=-p 
to aT to 

(19) 
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where 

AR - proportionality coefficient; 

Tl I 01 = - ~ re ative time constant of the storage Alement; 
to 

Ti 
0i = - - relative time constant of the integrating element; 

to 

TH 
"CH = - - relative time constant of dead-time element. 

to 

Transfer functions (19) are already nondimensional. A further simplify~ 
ing condition is needed to determine the nondimensionaI form of feedback 
transfer function Yvs(xs:s): 

- total reflection is supposed in the houndary cross section opposite to the 
controller of the controlled canal. (The case of stability.) 

It follows from the foregoing that: 

in cases of upstream level control: 

(20) 

in cases of downstream level control; 

(21) 

Using relationships (18) to (21) the nondimensional resultant transfer 
function of control structures takes the form: 

(22) 

Stability of water leveI control 

Due to the complexity of transfer function (22) the Nyquist criterion is 
suitable for stability tests [1, 6, 8]. 

From transfer function (22) the loop transfer function of the control 
system is: 

(23) 

Loop transfer function (23) can be translated to the frequency range by 
substituting p = Iv: 

(24) 
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where 

W 21 Co 
1'=-=-2- 0) 

Wo Cl 
resonance factor; 

OJ frequency; 

natural frequency of the canal section. 

It IS demonstrable that under certain conditions the characteristic 
equation 1-Y( ;s, p) = 0 has no positive real part root [1], making the simpli
fied lVyquist criterion adequate to test stability. 

According to the criterion the control system is stable if the following 
condition is realized: 

III all cases where 0 = (Fig. 3). 

-1.0 . ------f-. 
oo_p ~n -'''''~(P,jVk) 

..\-pz 

v-.:~ / 
/.r~1 

1.0 
Re{ Y(g. ,jV)} 

Fig. 3. l'i"yquist curve and curve of the describing function 

According to the foregoing, the stability of a water level control system 
is unequivocally determined by five nondimensional dynamic canal parameters 
(Fr, R, Al, lV, ;s) and max. four nondimensional dynamic control structure 

parameters (AR' "I' "i' "H)' 
If a control structure has essential nonlinearities, the method of des

cribing functions can be applied [2]. In this case the nonlinear elements can be 
approximated by describing functions substituting transfer functions. Resul
tant frequency function of the control structure is: 

(26) 
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where 

nondimensional describing function of nonlinear element; 

f3 amplitude of relative change in the controlled level; 

Y RS(jv) frequency function characterizing linear signal transmission 
of the control structure. 

Using the denominator of (26) the nonlinear stability can be determined 
as: [2] 

(27) 

Equality (27) also yields the relative parameters of steady-state oscilla

tion (Pk' vlJ in case of a convergent critical cycle. 

Summary 

::\ondimensional exprcssinlls are presented for the dynamic dcscription of controlled_ 
level canal sectioils and control structures. 

These expressions invoh·e max. nine nOlldimel1sional parameters to test the stability 
of a given system. Introducing the describing function method, also nonlinear stability can 
be tested. 

The gin'Il expressions permit to carry out a test series, by varying nine parameters. 
Evaluating the test results yields practical design stability conditions. 
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