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1. Introduction

The development of water management and the rise of demands on water
resources have been accompa mefl by t’le improvement of methods and tools
of hydrological forecasts, Th
forwarded by the ad ent of computers, and the arise of automatic mea-
suring and data collecting networks was a jump forward in the field of data
collection and transfer. Unified forecasting systems covering water networks

@D

development of forecasting methods was much

.

onnected

and even countries to solve hydrology problems. In
Hungary, a decisive part of systematic hvdrological forecasts is made by the
Institute of Hydrography (Sczentzfzc Research Centre of Water Management
VITUKI).

Hydrology forecasts are expected, among others, to involve not only a
preset lead time (time advantage) but different lead times keeping various fields
of water management (flood control, navigation, water utilization ete.) in
mind. Accuracy — confidence — of simultaneous forecasts with different lead

times will of course be not the same, and according to observations, with increas-
ing lead time forecast accuracy will decrease, a question to be insisted on in
the following. Hydrology forecasts have always some water management pur-
pose and a wide range of uses, with different lead times and economy impacts of
measure proposals relying on these forecasts. Water management decisions
relying on forecasts will only be correct if accessible to economy ponderations.
In uncertain surroundings — such as hydrology processes — evaluability is
based on the indication of the rate of uncertainty, the forecast error — diffe-
rence hetween the real and the forecast value. The concerned processes being
random, stochastic ones, the standard deviation of forecast errors will be the
statistic characteristic of the rate of uncertainty. Process z, has been plotted
in Fig. 1. A forecast issued at time ¢ at a lead time [ will be z,(I). The difference
between this latter and the real value z,_, is the forecast error:

ell) = 2., — 2(0). (1)
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Fig. 1. Interpretation of forecast lead time and forecast error

The expected value of the square of forecast errors is the variance:
21y — fo2(I\) 5
o) = E {1} }. 2}
t
where E { .} is the symbol of expected value formation. The rate of forecasting

accuracy or uncertainty will be expressed by the variance according to (2)
(or its square root, the standard deviation). (Remind that the accuracy decreas-
es, while the forecast uncertainty increases to the sense, with increasing o, (I).)

Knowledge of the ¢,(I) value permits to trace an arbitrary strip of confi-
dence around the forecast z,(l):

PG =ty - 0ll) = 5oy < 3D + g o)} = 1 — e (3)

Thus, the probability of the real value to lie between the given limits is exactly
1—e. u,y, in Eq. (3) is the value of the normal distribution function at &/2.
(Errors ﬁnay generally be assumed to be of normal distribution, else the normal
distribution function has to be replaced by another distribution function to the
sense.)

Here only statistic models will be analyzed, leaving forecast lead time
vs. accuracy problems of hydraulic or so-called physical models out of conside-
ration. The excellent book on forecasting by Box and Jexxgins [1] has been
relied on: examples on A RMA models are hydrologic applications in this coun-
try. Lead time-accuracy relationship of the general linear regression models
arose from the extension of the conventional regression calculus. Finally, let us
notice that the solution of the problems to be presented has largely been facili-
tated by the questions raised by Dr. Andrds Sz6ll6si-Nagy in the domain of
forecasting lead time aceuracy.

2. Lead time — accuracy relationship in ARMA models

Autoregressive moving average (ARMA) models are known to often
well suit deseription of hydrographs:

5= QiE T PaFie T T PpSp T G (4)

—ba_ 1 — 030, o— ... —Bia, .
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where

%y %1 «» . — hydrograph elements;

a,a,_; ... — independent, random Gaussian process (white noise) ele-
ments;

@1 Pas + - s @pand 01, 0,, . .., 6, — hydrograph parameters.

The model according to (4) is called ARMA(p, q) sinece it contains p
autoregressive terms and ¢ moving average terms.

Application of the so-called backward shift operator &B:

5= Bay, 5_y= B, g = B,
transforms (4) to
@(B)z, == O(B)a, (4a)
where ¢($) and O(B) are polynomials of operator &B:
P(B) =1 — B — o — ... — B
and
O(B) =1 — 6,8 — 0,83 — ... — §,3.

3, may be written as infinite-termed sum of random pulses a;:

B Py T Pl =
wl D z
= S‘guja,_- = (1 - Zzp]‘ﬂ = p(B)a,, (5)
Je=1 Jj=1
where
wy = L@, Wo ... — weights of the “white noise” process;
(&) — transfer function of the linear filter relating z, to

{

Confrontation of (4a) and (5) shows an unambiguous relationship for
determining weights

#(B) - p(B) = (), (6)

of importance in what follows.
To determine the error variance o5(I) of forecasts with different lead
times, let z;,, be written in form (5):
2., = T L R 4 e L =
Zg =A@ F Vg T T W) (e Pt ) =

= ¢(l) + z(1).. (7

that is, the sum of the first [ terms is exactly the forecasting error at time ¢,



286 KONTUR

of a lead time I. The expected value of the forecasting error is zero, since also
the process a, has been assumed the same; furthermore:

o(l) = f3 (D) y=Q0Q +9}+vi+ ... +yi,) ol (8)

utilizing that set a; is a ““white noise” process. As a matter of fact, Eq. (8) is the
wanted relationship.

Determination of the error variance of the forecast of lead time [ is seen
to need the first I — 1 elements of the infinite set ;. ¢,.. . .. The p values may
be obtained from (6), or, in particular:

(I1— @B o — ... — @) (1 9B+ 9,82+ .. ) =

D
—1—6,% — 0,8 — ... — 8,8 (62)

Equating coefficients of operators & with identical expoznents vields al-

gebraic equations for determining:
yo =1 — Py=1
— B P, B = 6B — = —0, -+ ¢
— @B — 0@ - B = 0, B — o= — By = @y + oy 0+ )
ete ©)

In general, recursive formulae may be writien for y:
P =1
vy = — 0,
Wy = QP + Pay — Oy
Ys = P Wy - Qo + Py — O

V=P T @ale e Y, — 0

etc. (10)
For j>q, 6,=0.
Figure 2 is the scheme of recursive calculation, separately for cases p > ¢
and p < q.
Calculation of v is seen to need only parameters ¢ and 8 of the ARMA
model,

It should be noticed that it is a pure moving average model, for MA(g).
the set of p is finite and ;=0 , thus y,.; = Y. = ... = 0.
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Fig. 2. Scheme of reeursive calculation of coefficients for p < g and p > ¢

At the same time, for I > ¢, 0, (I} equals the standard deviation ¢, of the
process.

3. Lead time —aecuracy relationship for a general linear regression model
S P g g

In the practice of hydrology forecasts, it is often insufficient to apply a
single ARMA model for describing the processes, since the examined pheneo-
menon (e.g. stage) is influenced by several, interdependent phenomena (e.g.
stages al upstream gauging stations, precipitation etc.). Hydrology practice
mostly applies linear regression models, at a generally close approximation of
reality, suiting rough estimation even for very nonlinear phenomena.

The general regression model of lead time [ is of the form:

s = D3+ boD%g o b D+ ell), (11)

where x,,, x,,, ..., x,, are variables involved in forecasting that may in-
clude target variable values z preceding time t (e.g. %;; = %;_1, %oy = % _ s - -
ete.) so that the model includes also autoregressive terms. Including terms of the
“white noise” process among independent variables (e.g. x, , = a5, x,_{, =
= @,_;,... etc.) the general linear regression model contains also a moving
average. In the special case where the general linear regression model contains
only the quoted autoregressive and moving average terms, (11) tends to the
ARMA model in (4).

Estimation of parameters of a general linear regressive model is obtained
by minimizing the square sum of deviations ¢(l):

b(l) = R -ri(]) (12)
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where
b(l) — vector of estimated parameters b,(l) ..., b (I);
nh
(R}; — correlation matrix determined from hydrographs x,,, ..., x,
n,n
. . . 0,
15(f) — vector formed of so-called distorted correlations —r_(I);
(n,1) xj
o, — standard deviation of process z
o, ~— standard deviation of process x;, (j=1,2,...,n);
r.o(l) — correlation between x;, and z,_,.

Now, the expected value of the variance becomes:

(D) = oil) = o¥(1 — LR x..(D). (13)

r(I) being a vector formed of correlations r..(I) (n, 1).
Introducing notation:

o(l) = v - R e, (14)
formula of the forecast accuracy becomes:

o¥1) = o¥(1 — a(D))- (13a)

Thus, it is sufficient to examine the development of p(l);
if | — oo, g(I) — 0, hence variance of the forecast error tends to the process
variance, quite harmonizing with the practical approach.

Special cases of the development of p(I) have been analyzed in [2, 3].

4. Examples and applications

Caleulation of the lead time vs. accuracy relationship will be presented
on two sets of data. One is the forecast of daily stages in the Felséberecki
section of Bodrog river. The other data set comprises the monthly mean dis-
charges at the Szeged section of the Tisza river. A yearly set of the Bodrog
river stages (IN = 365) has been examined. The Tisza set contained ten years of
deviations of monthly discharges from long-time averages (N = 120). Auto-
correlation functions of Bodrog stages and of Tisza discharges have been
plotted in Figs 3a and b, respectively.

Three examples — AR(1), AR(2), and ARMA (1, 1) — will be presented
for the application of ARMA models, (No pure moving average model suits
these hydrographs: one- and two-step autocorrelations r; and r, are outside
the range of pure moving average models.) Parameters ¢; ¢, ,; and ¢, 8, of
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Fig. 3. Autocorrelation functions a) for daily stages of the Bodrog at Felsgberecki; b} for
monthly mean discharges of the Tisza at Szeged

the three kinds of models are seen in Table 1 for both hydrographs. So are
values of autocorrelation factors r; and r,, standard deviations o, of the hydro-
graphs, as well as calculated values of o,.

Table 1
Bodrog— Felsgberecki | Tisza~Szeged
Model ry == 0.986, r, = 0.962, 5, = 145 {cm]} } r, == 0.7065, r, = 0.3349, o, == 250 [::—]
(21 : P ! 0, Gg ! Py f Fa2 } 6 ! "3
AR(I) 098 l - l 24178 07065 | — | — | 176.928
AR(2) 134757 —0.3667 | 22492 00381 —032828 — | 167178
ARMA(L. 1) 0.9756 I O 450 ¢+ 22,070 0.474 | —0.545 | 163.037
i

l |

Identified models 4R(1), AR(2), and ARMA(1, 1) were velied on in
calculating theoretical autocorrelation functions, also seen in Figs 3a and 3b.
Confrontation with the autocorrelation functions obtained from the original
hydrograph shows model autocorrelation functions to be approximative, and
obviously, ounly one- or two-step autocorrelation functions to coincide.

On the basis of model parameters (p, 0), recursion formula (10) was
applied to calculate the p; value, followed by determining the o*(1) value for
all the six models (three for Bodrog, and three for Tisza) according to Eq. (8).

In view of the different hydrographs examined, while results of forecast
lead time vs. accuracy relationships had to be confronted, rather than the
standard deviation or variance of deviations, their ratio to the process vari-
ance o5:

oi(l)/o?

was examined.
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Fig. 4 shows the trend of GZ(Z) Sduring I = 1,2,3,..., 13 days for the
three models referring to the Felsfberecki section of Bodrog river. Although
there is often a slight difference between models, the quality order where
ox(D)/c? is the least, is for [ == 1 day: ARM A, ARO)‘ AR(L); for 1=2,3,...,
10 days: AR(1), ARMA, AR(2), and for I -~ 10 days: 4RMA, 4R(2), AR(1).

v the way, if the forecast accuracy is to be rated by the correlation index,
. a2 '
then, on the basis of o7(l)/

I (15)

Also square values of the correlation indices have been indicated in Fig. 4.
o3(l)/o? values calculated for models 4R(1), 4R(2) and ARMA (1, 1)

~

fitted to monthly mean discharges of the Tisza river have heen plotted in

n
.
o
o
o
]
Peiy
<
=
v
(¢
jav]
n
pes

Fig. 5. With inereasing lead times, -

tel

: accuracy is seem to steeply

Bodrog at Feisdbe

1.0 T
r |
D8
| AR( AR(D) ARQ) AR(D)
AR(Z) ARMA ARMA Zheen AR(2)
06l ARMAARM ARG BT . AR
L - ' — RRD)
o /i'/./
04— s @
L ~ | — AR
' : - - W ARMA Q1)
o2 ! : . e i
b e =
FUN iz “g{ .
0 il I WU T N N v 1 [
<] 2 4 & 8 0 12 %

Lead time !, days

Fig. 4. Lead time to uncertainty relations for different models referring to Bodrog stages
at FelsSberecki
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Fig. 5. Lead time to uncertainty relations for different models referring to monthly mean
discharges of the Tisza at Szeged
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decrease, in conformity with expectations from the confrontation of aute-
correlation functions of both processes.

Again, the quality order of forecast models varies with the lead time;
for I = 1 month: 4RMA, 4R(2), AR(1); for I = 2 months: AR(1), AR(2),
ARMA; 1=22,3,..., months: 4R(1), ARMA, 4AR(2).

Nevertheless, the ferecast model contains almost no information excess
in the case of four to five months of lead time.

Finally, let us consider the application of the general linear regression
model for different lead times, referring to daily stage data at the Felsfberecki
section of the Bodrog river. Forecasting involved the following stations:

[001}: Bodrog, Fels8berecki

[002]: Bodrog, Sarospatak

[140]: Bodrogz. Bodrogszerdahely

[101]: Latorca, Nagykapos

[122}: Labore, Vajan.

For instance:
[001].. = ao(l) = by(1) [101], + by(l) [122], = by(7) [002], + eI,

In case of Model (A):

0.946 1.0 0.916

1.0 0.946 0.946—}
R:L.::: =
0064 0916 10 |

its inverse being:

27.710  —8.495  —13.147
_1:[ —8.495 9.537 4}.547].
—13.147  —0.547 14,175
Furthermore:
0.972 0.955 0.930
r:{:(l):{OQSS]; r.(2) = 0.938}; rﬂ(a):[omo].
0.973 0.944 0.910

Accordingly, from (13) and (14):
o{l) = 0.974 o(2) = 0.930 o(3) = 0.876
o,(1) = 23.38 [em]; ©6,(2) = 38.36 [em]: o,(3) = 51.06 [em].

The o(l) and o,(I) values are calculated in the same manner for any lead time.
Lead time vs. forecast error has been plotted in Fig. 5, together with models

(B) [001],; = ao(l) + by(1) [140]; + by(I) [140],_, + b5() [001]; + &,(D).
(C) [001]rs; = ao(l) + by(1) [140]; + bo(1) [140];_; + ei(D),
(D) [001];,; = ag(l) + b5(1) [140]; + by(I) [001]; + e(1),
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and also the forecast accuracy of model AR(2) examined hefore:
(G) [001];.; = ao(l) + by(1) [001], + by(1) [001]; 1 + efl)

has been analyzed by means of the relationship for cases of the generalized
linear regression model.

According to Fig. 5, model accuracies follow different trends with in-
creasing lead times, though with insignificant deviations but hinting to the
possible need to change the forecast model strueture with the variation of lead
time. The deviation between two ways of calculation of model AR(2) = (G)
results from the implicit assumption that the process is perfectly described by
model AR(2), correlations ry, 7y, . . . etc., dependent on ry and r, give no further
information. The reality is, however, diffevent, taken by the relationship for

S 0,=145em ":/,-’,—-A
% no
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Fig. 6. Lead time to forecast error relations for different linear regression models on Bodrog
stages at FelsGberecki

the generalized linear regression model into consideration, permitting, at the
same time, to reckon to a degree with the uncertainty arising from the model
identification.

Summary

Forecast lead time vs. accuracy relationships have been examined. Forecast accuracy
has been described in terms of the expected value of the square of the deviation between the
forecast and the real value. A relationship has been given for the lead time vs. accuracy of
autoregressive moving average (ARMA) models. Variance of the forecast error may be ex-
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pressed in terms of parameters ¢ and 0 of ARM A models for different lead times. An aceuracy
to lead time relationship has been established for the general linear regression model. Variance
of the forecast error may be obtained from auto- and cross-correlations.

Examples have been presented on the application of the theoretical relationships to

forecast daily stages of the Bodrog river, and monthly mean discharges of the Tisza river at
Szeged.
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