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1. Iniroduction

In recent decades, world-wide generalization of in-situ assembled, precast
large-slab buildings highlighted relevant structural problems. A major problem
is to determine the displacement of structural units, the developing stresses
and ultimate load capacities. Quite a number of design methods are available
both for theoretical research and for practical design [1, 2].

Among them, algorithm of the finite elements method relying on princi-
ples of the displacement methodis felt to be the most convenient. In thelast years,
comprehensive research has been made at the Department of Civil Engineering
Mechanies on the application possibilities of the finite elements method, and
on the development of effective computer programs involving these algorithms,
in particular, for taking the elastic deformations of junctions into consideration.

2. Unit types with rigid nodal joints

Two, essentially different considerations were underlying our models
two program sets have been developed for, both suiting either plane walls
(independent, detached from the building) or complex spatial buildings, as
the case may be, under arbitrary boundary conditions (various soil models,
symmetry ete.).

2.1 Elastic plate model

The first alternative involved rectangular units with corner nodes to
model walls or floors. It is decisive for the model that units join each other at
nodes with an infinite rigidity. Obviously, assembly of large-slab buildings
must absolutely strive to in-situ joints of a rigidity as high as possible (welded
and grouted) nevertheless both theoretical comsiderations and conclusions
drawn from laboratory and full-scale model tests [3] argue against the excessive
requirement of such a rigidity from prefabricated buildings, if not within
certain load limits and even then, only from certain joint types.
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Remark that units affected by the program set may have various char-
acteristics.

The unit of twelve degrees of freedom seen in Fig. la suits only con-
sideration of the plate effect. Type 1b reckons also with the effect of bend-
ing, it behaves like a ‘““plane’ shell unit (with 24 degrees of freedom). Type
le is a so-called substructural unit. Here only the so-called global nodes at the
corners join other units, displacements of which help of determine those
of the other edge points. (By the moment, only its alternative with 12 de-
grees of freedom is effective.)

Any of these alternatives suits the analysis of either plane walls or
spatial structures. By nature of the displacement method, unknown param-
eters of the problem are nodal displacements, that can he calculated in
knowledge of the external load and of the structure geometry and physical
data, while in knowledge of displacements, unit stresses may be indicated.

2.2 Rigid panel model

The other model type relies on absolutely different principles. Here every
unit (wall slab) is modelled by an independent panel considered to he infinitely
stiff in its plane [4, 5].

Units are connected by springs fit to take tension and compression at
the corners, and shear along the edges (Fig. 2). Springs represent elastic
characteristics of the slabs, in knowledge of the unit geometry and material
characteristics their constants can unambiguously be determined by means of
forces developing from unit displacements at the corners.

A spatial alternative may be created by analogy to the plane model
in Fig. 2. Here a unit is connected by five springs on each edge to the other
ones (Fig. 3).
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In the figure, spring forces considered to be positive are represented.
Forces normal to the plane are taken by shear springs. Determination of
spring constants follows the same principles as in the plane case.

The presented method is rather advantageous. Since rigid paunels can
only perform rigid-body motion (e.g., in the plane case, two normal displace-
ments and a rotation) the degrees of freedom of the tested system hence also
the size of the coefficient matrix of the set of equations to be solved markedly
decrease, the problem can be solved on a smaller computer or in less running
time.

This method especially suits decription of the nodal behaviour, of partie-
ular importance, nodes being critical parts of large-slab buildings.

It should be noted that also the plastic behaviour of units can be described
by this method, just as the model under 2.1 may be modified for the non-
linear-plastic variety of rigid panels, affording a rather simple ultimate plastic
analysis of panel-skeleton buildings [5]. Rigid panel models permit to take
arbitrary boundary conditions into counsideration. The soil behaviour is advis-
ably simulated by the shear model, it being easy to fit to the stiff deep beam
model [7].
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3. Unit types with elastic nodal joints

In creating numerical models coping with the design practice, knowl-
edge of the effective stiffness is imperative, alongside with the application
of a structural skeleton fit to take joint elasticity into consideration.

Theoretical and experimental research has been made in this scope abroad
[6]. The nodal joint model in Fig. 4 is generally considered as a close approxi-
mation.

The diagram represents the jumetion between corners of four umits.
Every corner suits to take normal displacements and forces, increasing the
degrees of freedom of the complete “"node” from two to eight.

Formulae are given in [6] for calculating the spring constants as a fune-
tion of joint design (closed. open. ribbed etc.), reinforcement and eross section
geometry.

This method has the inconvenients of much more unknowns than origi-
nallv. and of the rather difficult consideration of the essentially separate nodal
and joint rigidities, arguing against its application in our problems.

3.1 Elasiic unit — elastic joint
3.11 Description of the model

Let us consider the panel in Fig. 5. joining adjacent units via corner
springs.

Be K, the elementary stiffness matrix of the panel unit with rigid nodes.
Unit displacement (shift or rotation) at a spring end joining the panel will
induce a displacement u of panel corners. In this case, obviously,

Ku=s (1)

/
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Elastic plate unit

for the panel, and
Dle;—wu) = s (2)

for the springs, where s is;the spring force vector, D the diagonal matrix of
spring constants, and e; a unit vector for the i-th displacement. Expressing
vector u from (2):

= D=YDe; — s) (3a)
or
u=¢ — D 1g, (3b)
Substituting (3b) into (1):
K.(e; —D-1s) =s. (4)
Arranged:
s=(E LKD) 1K, e,. (5)

(5) determines spring forces from unit displacement. According to principles
of the displacement method, the determined vector yields the i-th column of
a modified elementary stiffness matrix embracing elastic properties of both
the unit and the joint. Accordingly, from (5):

Kmod = (E + Ke Dul)—lKe' (6)

This stiffness matrix directly fits the algorithm of plate programs, no compila-
tion change from the plate unit with rigid nodes is needed, neither the number
of unknowns, thus, neither running time nor storage space are increased.

By nature of the equation, obviously, for infinitely high spring constants,
Kioa tends to K,, and for infinitely high K,, it tends to the spring constant
matrix.

With the global stiffness matrix of the structure established, and ficti-
tious nodal displacements u; calculated, spring forces are obtained from:

s = Knog uy (7)
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Fig. 6

leading. in turn, to corner displacements of elastic deep beams:
u = u;— D~1s. (8)

In possession of u, plate siresses can be determined.

Application of the model will be illustrated on a simple structure, e.g.
the wall seen in Fig. 6. (Similar observations were made with spatial mod-
els. the plane model was chosen for the sake of easy surveying.)

The obtained horizontal displacement of a point on the top edge vs.
spring constants is seen in Fig. 7. Displacements of either plane or spatial
units were observed to about equal those for the stiff node model for spring
constants of the order of 10% to 109 kNm~1,

Vertical forces acting on units at nodes on the lower wall edge (considered
as restrained at a close approximation) are seen in Fig. 8.

The diagram points out the increase of force dificrences due to node
“relaxation”.

3.12 Reckoning with the effect of shear deformations

The model seen in Fig. 5 is simple and easy to manage. In designing large-
slab buildings, however, reckoning with shear deformations between units
may be required. (This effect may be taken into consideration by means of
the rigid panel model under 2.2.)

Alternative under 3.11 can only describe this phenomenon intermediat-
ing nodal springs but it is a rather unreliable method, likely to bias forces
acting on the plate. A closer approximation of connection forces between units
is offered by the model seen in Fig 9a. Here further (again elastic) nodes are
assumed at mid-edges permitting to reckon with shear deformation effects.
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Rather than to analytically establish the new stiffness matrix for the
new unit (with 24 degrees of freedom), it is easy to produce by means of the
method of substructures.

Partitioning the equilibrium equation of the elastic unit set (of momen-
tarily perfectly stiff nodal junctions) assuming no force at the middle node:

e )=l < ]]2] o
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where F and e are vectors of nodal forces and displacements, K being the stiff-
ness matrix of the set. Expressing displacements of the inner point in terms
of e,

a

e, = — K5 K, e, (10)
Fa = (Kaa - Kab Kﬁ)l Kba) €q- (11)
K

The resulting matrix K may be used in the following as stiffness matrix
of the new unit (with eight nodes and 24 degrees of freedom). Deduction under
2.11 may help dissolving the nodalstiffness. This unit type has theinconvenient
to require modifications in the computer program (a different compilation
procedure ete.).

3.2 Generalized rigid panel model

This model permits a rather simple and efficient consideration of joint
deformations, by simply complementing the matrix of unit elastic characteristies
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by the effect of elastic joints [4, 5], yielding for the adjacent edges:
Kios = (Kidit e, + Kige o) 7* (12)

needing no modification whatever of the available computer algorithm.

Outcomes of numerical analyses on different structures equal results
obtained on the model under 3.11. Horizontal displacements at top mid-edge
of the wall strueture seen in Fig. 6 have been plotted vs. nodal junection
spring constants in Fig. 10 (in smooth line). For the sake of comparison,-out-
comes with the elastic plate model have been represented in dashed line.

Figure 11 represents vertical forces at the lower nodes. The results show
this model to suit simple and reliable solution of the problem.

4. Application of reduced substructure uniis

Voluminous problems may advantageously be solved by so-called “re-
duced” subsiructure units {Fig. 12). Essential of the method is to determine
displacements of the so-called inner edge points (type “b”") from those of the
“global” points type “a” by means of matrix equation

€y == Gab €, (13)

where matrix G, contains displacement constraint conditions we prescribed.
Thereby even for very many inner units, an elementary stiffness matrix K eq

Edge points —" 1 |
tupe 'a"/ i

N

Inner network  elements
F ig. 12

can always be established, valid only to edge points type “a”. Cyelic applica-
tion of this method permits to analyse extensive systems by means of a few
units.

Provided all nodal junctions along the edge are considered as elastie,
constraint condition matrix G,, in (13), thus, nodal stiffness in reduced sub-
structures can only be dissolved if only nodes type “a” are assumed to be
elastic connections, while displacements of inner edge points type “b” are
treated as independent.
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Summary

Simple methods have been presented for the design of units with elastic nodes. Integrat-
ing the models with two kinds of programs, analysis of plane and spatial structures showed
them to be effective, to require no important modification of the available programs or an
important increase of the running time.

These methods have been applied in two problems:

a) Numerical analysis of the effect of varying nodal spring characteristics by vertical
and horizontal parameters on the displacements,

b) Theoreticalfrelationships for determining the nodal spring constants for existing
structures.
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