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1. Introduction 

Big rooms are aptly roofed by so-called su.spended roofs supported on 
cable nets fitting the ground plan. 

Exact structural analysis of cable nets requires to determine the starting 
form, advisably starting from a rectangular net of a set of cables orthogonal in 
ground plan, stretched over a rigid frame of rectangular ground plan, to meet 
computer aspects. An expedient method for determining the equilibrium form 
of such a cable will be presented. 

2. Fundamental equation of the cable net 

Equilibrium form of the cable net of the layout seen in Fig. 1 is described 
by the matrix equation (details see p. 69 in [1]): 

(1) 

where 

Letter symbols being: 

Z, F 
(m, n) (m, n) 

ex Cy 

(m, m) (n, n) 
Hx By 

(n, n) (m, m) 
a, b 
Zox, ZO\l 

2 

matrices size m X n including height coordinates of internal 
nodes and of vertical nodal forces, respectively; 
tridiagonal matrices including second partial difference oper­
ators along x and y, respectively; 
diagonal matrices containing horizontal components of forces 
arising in cables along x and y, respectively; 
ground-plan spacings of cables along y and x, respectively; 
matrices size m X n containing prescribed height data of 
boundaries along x and y, resp., where only columns 1 and 
rn, and ro"ws 1 and n are non-zero. 
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3. Basic algorithm for solving (1) 

Multiplying (1) by H;l from the left and by H;l from the right yields 

1 H-1 C Z I 1 ZC 
-;; y x Ib y 

brought bv other notations to the form: 

1 
-Ax Z 
a, 

1 ~ 
-ZAv = Q 
b -

(2) 

A rather expedient algorithm - first published by SZABO [2] - is available 

for solving equations type (2) (p. 71 in [l D· 
Provided matrices Ax and Ay may be produced in canonic forms 

Ax = UxAx U;l and Ay = UyAy U;I, then Eq. (2) is solved to: 

(3) 

A being symbol of logical - or element-'vise - multiplication of matrices 
(also termed in literature Hadamard product), 1\I being a matrix to be formed 
from eigenvalues ofAx and Ay, having as (i, j)th element: 
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This algorithm is particularly advantageous if spectral decomposition 
of coefficient matrices Ax and Ay is kno"\V""ll or simple to establish. This is the 
case e.g. if horizontal components of cable forces arising in cables parallel in 
ground plan are equal, that is, if in Eq. (1), [Hx,jJ = Hx (j = 1, 2, ... , n), 
[Hy) = Hy (i = 1,2, ... ,m). Namely then, solution (3) requires spectral 
decompositions Cx = Cm = UmAm Urn and Cy = Cn = UnAn Un of matrices Cx 
and Cy alone, elements of the involved matrices being, however, known as 
formulae, and depend only on the matrix order. For the sake of completeness, 
these relationships are: 

lr-r. i· 
[ U U • i J = ! sm ----''-:---c::-

, , '. . f-L + ,LL 

[J..u , i] 
i . ;-c 

= 4 sin2
----

2(fl + 1) 

(ft = m, n) 

(4) 

(i, j = 1, 2, ... , fL). 

In the actual case, matrices and By contain different elements, impos-
ing total spectral decomposition of - generally not symmetric - matrices Ax 
and Ay of size (m X m) and (n >< n), respeetively, much adding to the computa­
tion work in case of big sizes, even likely to yield complex eigenvalues and 
eigenvectors, requir·jng double storage space and complex arithmetics. In the 
folIo'wing, an iteration method for solving (1) making use of advantages of the 
above algorithm, Eq. (3) with nothing but spectral decomposition of matrices 
Cx and Cy will be described. 

4. The suggested method 

4.1 First variety of iteration 

Properly amplifying both left- and right-hand side of Eq. (1) yields 

with 

1 
-(ZHx b . (5) 

Considering, for a while, matrix Z' = ZHx RyZ in the left-hand side of 
(4) as unknown, and the right-hand side to be known, then Z' may be directly 

2* 
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expressed as: 

yielding Z from Z' hy another logical multiplication: 

(6) 

In this solution, Ux and Uy are modal matrices of matrices Cx and Cy , 

and M is a matrix developed from eigenvalues of the same matrices. 
Matrix Ml will he formed from elements of matrices fix and Hy follow­

ing the rule: 

[Ml;i,j] = rH . ~ H.]' 
. y, l I X,] 

Solution hy iteration "will make use of Eqs (5) and (6) so that in the first 
step, only Q in the right-hand side of (5) will he taken into consideration, 
computing the pertaining matrix Z from (5), using it to compute the new 
right-hand side of (5) and again calculating Z from (6) for the ohtained matrix 
Q' etc. Formulating the first and the v-th iteration steps: 

Q~= Q 
Zl = Ml A {Vx [M A (VxQ1Vy)] V y} I 
Q~ = Q -L : CXHXZv-l + ~ ZV-IHxCyj 

Zv = Ml A {Vx [:tiff A (Ux Q~ Uy)] Uy} . 

(7) 

In every iteration step, the ohtained matrix Z,. is resuhstituted into (1) 
to see what a load the determined net shape can halance: 

(8) 

and the iteration is considered as complete if some norm of difference matrix 

is less than a specified value. 

4,.2 Accelerated iterative solution 

Numerical experience "with the method under 4.1 shows it to converge 
hut the convergence is much accelerated according to the following considera­
tions: Adding Eq. (1) in a zeroed form: 
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to (4) yields, after arranging: 

~. CAZHx + HyZ) + ~ (ZHx + HyZ)Cy = 

2Q-~CAZHx (9) 
a 

Performing iteration steps under 4.1 for Eqs (6) and (9) leads, after 
starting vvith Q~ = 2Q. to the 1'-th step: 

Q; 2Q - 1 Z,,-l) + b
1 \~v-l~.~x 

a (10) 

Z" = 1\11 A {Ux [M A (Ux Q~ Uy)] Uy}. 

Iteration is finished as indicated under 4.1. 

5. Numerical analyses 

Applicability of the presented method has been tested numerically. To 
this aim, computer programs have been made for iterations (7) and (10). In 
both iterations, the program forms value 

each iteration step, and the iteration is considered as complete for 0: < 10-4• 

The program has heen ·written in ALGOL-60 and trial runs were made 
on the computer ODRA-1204 of the Faculty of Civil Engineering, Technical 
University, Budapest. 

First, the program has been tested, and the convergence examined on 
an example detailed, , ... ith its numerical results, on p. 75 in [1]. Starting data: 

m = 7; n = 9; a = b = 2.0 m 

Hx = 20 (1; 1; 1; 1; 1; 1; 1; 1; 1) 

By = 50 (0.712; 0.872; 0.968; 1.0; 0.968; 0.872; 0.712). 

Other data can be read off Fig. 2. The first numerical observations are rather 
favourable and justify the efficiency of convergency acceleration. Fig. 3 is a 
semilog. plot of Cl. vs. iteration steps. In the first-type iteration (Eqs 7), the 
required accuracy was obtained in 18 iteration steps, as against 7 steps in the 
accelerated iteration. In both cases, one iteration step took 11.7 sec. 
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Fig. 2 

Number of iteration steps 

Fig. 3 

I Yp.. 

a=b=2.0m 
m=7jn=9 

Final outcome of accelerated iteration: 

0.548386 1.044140 1.479323 1.822911 1.999452 ... 
0.470439 0.876091 1.201680 1.423154 1.507366 ... 

z= 0.413764 0.762695 1.031175 1.202809 1.262615 ... 

0.393942 0.723986 0.975021 1.l33072 1.187261 ... 
. . . . . . . . . . . . . . . . . . . . . . . ....... .......... 

(Dotted part refers to double symmetry values. Remark that outputs obtained 
by either of both iterations are perfectly identical up to four digits in compli­
ance 'with bounds for 17..) 
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After having successfully tried the program, the effect of div-jsion number 
has been tested on a problem with input data keeping the load to stretching 
force relation constant. 
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Basic data are: 

Lx = 14 m; 

1 a = __ x __ : 

m+ l' 

ly = 20 m; m, n vary. 

b =_l_y_ 
n+1 

k = entier i~) + 1 
\2 

entier I m I + 1 
\2} 

I-I;,; = Hy,m+l-; = 10 a sin in ; 
2l 

(j = 1,2, ... , n) 

(i = 1,2, ... , m). 

Elevation data of edge break points are seen in Fig. 4 (in a projection 
with data), intermediate reaches being straight, the program computed them 
automatically, corresponding to the division numbers. The vertical load was 
2.0 kNjm2• 

The number of iteration steps vs. n has been plotted in Fig. 5. 
Fig. 6 presents the variation of the mid-point elevation vs. division 

number, for m = n. 

Summary 

An iteration method is presented for determining the equilibrium form of cable nets 
stretched over rigid frames, over rectangular ground plane, for the case of cable-'N-ise varying 
stretching forces. The problem may be considered as the finite model of an inextensible membrane 
stressed by varying forces, or as the numerical solution of Poisson's equation describing the 
equilibrium form of tbis membrane. 
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