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1. Introduction

Frequency of beam vibrations is significantly affected by the static
axial force. In analysing beam system vibrations by the method of finite ele-
ments, this fact is reckoned with by composing stiffness matrix K from the
matrix differential equation

Mi +- Ku=0

from an elastic stiffness matrix and from a so-called geometrical one (contain-
ing normal force IV) [1].

Geometrical stiffness matrix has been introduced in [2] so as to include
all internal forces (IV, M, T for in-plane beams). Deduction omits the effect of
shear deformations.

In dynamic analyses, beam vibrations — especially at higher frequencies
— are much affected by shear deformations. For mass and elastic stiffness
matrices deduced reckoning with the effect of shear deformations we refer to
[1]. In the following, determination of the geometrical stiffness matrix with
respect to the effect of shear deformation will be presented. Analyses refer to
plane structures composed from straight-axed bars of constant cross section,
of homogeneous, isotropic, elastic material. The effect of the internal damping
of the material on vibrations will be neglected.

2. Deduction of geometrical stiffness matrices taking
shear deformation into account

According to the geometrical theory, equilibrium and compatibility
equations of beam systems assuming zero kinematic load are [3]:
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Let us determine geometrical stiffness matrix D according to procedures
found in [2] and [4]. Matrix D will be obtained from

Du = — dufr = dL,

1
du da @)

deduced from the principle of minimum potential energy. where u, is a vector
containing the quadratic term of displacement /u due to load change, and
r is the vector of developed internal forces.

Taking shear deformations into consideration, secondary energy L, may
be written as:

by = — J Oy €x, v — 8‘ Ty Vxy: av (2)
v v

where ¢, and y,, are quadratic terms of the corresponding normal strains and
shear strains, respectively:
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These displacements, in terms of beam axis point displacements, are:
o, y) = v() (5)
cv'(x

u{x, v) = u{x) — ¥ ™

where v(x) and u(x) are beam axis displacements along y and x, v'(x) being
the part due to the bending moment of the beam axis displacement along y.
Substituted into (3) and (4):

1f{8u 2, [0v 2 Bu 0%’ 4% [6%')2 -
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Substituting into (2} yields secondary emergy L,:

17/8 512 2 (62572 21y
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2 {10x | Ox 9x? 8x 02
\%4

__J"t (,6 v’ Bu B (9)
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14

Beginning with integrations along the cross section, these are irrelevant
to ceniroid displacement, permitting their functions to be factorized. For the
remaining parts, the following relationships hold:

f o, dF =N
F
yy o dF = M
F

( 7 dF =T.

F

Values of terms f oy? dF and f T,y dF are also dependent on the cross-sectional
F F

form. If axes y and z, in, and normal to, the cross-sectional plane, respectively.
are symmetry axes (e.g. circular and rectangular cross sections):

[o.y?dF = 2N.
F

(teydF =0

F

(¢ being the cross section inertia radius). Now:

1
:mJV Bu ) 6”} dx—JN—l—iﬂ S N
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(5]
+f1 u &% ;_JTgﬁ?l’_dx (10)
ox 0Ox® dx Ox
0 0
and
[
L, = — | Aviidy,
0
where

* = [N MT]
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Displacement functions of the beam axis can be written in terms of beam

end displacements as:

u(x) =
v'(x) =

vlx) =

where

atwu,
af, u, = afw,

F) S g
(a5, + ai)w, = aju,

a}, and af, are displacements obtained from functions for the bending moment,

and the shear force, respectively.
Stresses in a beam ecross section acted upon by beam end forces alone

may be written as a function of these latter.

N(x) = N,
M(x) = My, + (I — 2T,
T(x) = T,.

Substitutions according to (4) yield for the geometrical stiffness matrix:

! [ 1
D = NOXANdx -+~ M, gAM dx - TOEAde
) 0 0
where
Ay :?f‘_” _aa_; ;_aa_b ?Ei S i262a”' O%a
' dx Ox = Ox O8x = 9x® 92
A - ba, 9%ap N 82al _a_:ﬁ
M Ox 0Oa? 9xr Ox

Displacement functions needed to obtain the matrices are:

mi=[—& 0 | 0 |

S

(11)

(13)

(14)
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af — cl[0[1_352—:-253| 1(5-252+ S

-253ll[£3—52—:%&2@)] (16)

R L R et L e O b L

—2 &4 5@[('33 53——%(5——5‘3)@] l] (17
2
where & 2—?—, ¢y = ! —, O = 1257 (F, being the cross-sectional area

146" GFJl
modified by the form factor, G and E are moduli of elasticity, J is the cross-
sectional moment of inertia).

After integrations, matrix D can be written as seen in Table 1. (The
matrix being symmetrical, the table contains only the lower triangle.)

3. Deduction of the geometrical stiffness mairix from the approximate
frequency-dependent function of displacement

Matrices Ay, A, Ar needed for the calculation of matrix D were seen
in the previous Chapter to be determined using displacement functions (15)
to (17), utilizing bar end displacements to yield the displacements of inner
beam points determined e.g. by solving the beam differential equation. Displace-
ment funetions (15) to (17) comncern static beam end displacements. and their
application in dynamic analyses leads to approximations to be improved by
densifying the nodes. Displacement functions obtained by solving the differen-
tial equation of vibrating beams are rather intricate and unfit to reduce the
vibration problem to a linear eigenvalue problem. Analysis by means of a
so-called approximate dynamic displacement function (1) leads to a double-
size but linear eigenvalue problem, providing for a rapid convergence.

In this case:

au*u = aiﬂ + 602 a”i (18)
af =ay + w?af (20)

where first terms are displacement functions (15) to (17), while displacement
functions in the second terms have been presented in (1) and (5) omitting,
and reckoning with, shear deformations, respectively. In this latter case:
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af, = ¢, [26 —382 4 &[0]0|&—&]0]0]

ai =al -+ cg[o | D(6382 — 14753 L 10552 — 215)

where ¢, =

oFI* (o—density);
2520 EJ (1 - @) (F—cross section area).

Cq =

Substituting displacement functions (18) to (20) into (12) to (14) vields
matrices A, A, and A, in turn, yield matrix D:

B=D,+wD, -0'D, 21y

In the matrix sum, D, is matrix compiled in Table 1, matrices I, and
D, being compiled in Tables 2 and 3.

4. Statement of the mairix eigenvalue problem

Free vibrations of a moderately vibrating structure ave described by
matrix differential equation

Mz - Kx=0. (22)

Assuming x = v sin of leads, after substitutions, to the eigenvalue problem

—? My L Kv=10 (23)
K*TMv= 1 v

o2
Av = lv

yielding, after solution, the natural frequencies and the first modes. Mass and
stiffness matrices of the structure will be composed from mass and stiffness
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matrices of each beam. Unit mass and stiffness matrices taking also shear
deformations into consideration are found in [1].
If also initial static stresses of the structure have to be reckoned with,

then differential equation
Mx L (KE+-D)x=0

will be started from. with D taken from Table 1. The problem will be solved

as ahove.
In the case of approximate dynamic displacement functions, the mass

matrix becomes
BE = M, 4+ 0?3,

omitting the term multiplied by o*: and the stiffness matrix:
E=K, +o'&,

3, and K being matrices obtained from the static displacement function,ident-
ical to those in the preceding problem.

Matrices B, and K, taking shear displacement into consideration ave
found in [5].

Solution of the homogeneous equation

(—o* M, —otM)v - (K, - o'K)v=20
[K,— oM, — oM, —K,)]v=10 (25)

may be obtained by iteration [1], using results of problem (23), or by solving

a double-size eigenvalue problem [1]. [5].
Provided the analysis by an approximate dynamic displacement fune-
tion is wanted to take the initial static stresses into account. stiffness matrix

has to be increased by matrix D under (21).
K=K, - D, + D, + oK, -+ D).
Now, the homogeneous equation delivering natural frequencies is:
K, + Dy —o*M,—D,) — (3, — K; —Dy)]lv=20
[A—0*B—!Clv=20 (26)

and the double-size matrix eigenvalue problem:

[C“?A —CEB} [;]:”[:] (27
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5. Evaluation of numerical resulis

The beam seen in Fig. 2, with the given cross-sectional dimensions, has
been divided into four parts. In each beam, internal forces seen in the stress
diagrams have been assumed. First, the case of normal force alone has been
investigated. Analyses involved matrices determined by the static displacement
funetion. w? values belonging to the first three bending vibrations due to increas-
ing normal forces, taking shear deformations into consideration, have been
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compiled in rows 1 to 3 of Table 4. For frequencies in rows 4 to 6, the effect
of shear deformation has been neglected in matrix D, it being fully neglected
in rows 7 to 9. Tables point out the significance of taking shear deformations
into consideration. it being of course greater for stout, and less for flexible,
heams. '

The table contains squares of natural circular frequencies multiplied
by 1078,

Table 4
) \\\ : 0 0.1 N 0.5 N N
~
1 13476 L1941 | 0.5701 —0.2491
2 8.5159 79501 | 5.6841 2.8449
3 28117 26.8270 21.638 15.195
4 13476 1.1897 0.5496 —0.2902
5 85159  7.9009 5.4381 2.3514
6 28117 26.020 205210 12887
7 Lesl 14819 | 0.8252 —0.0201
8 | 1198 = 11.3960 9.0326 6.0684
9 f 43.037 | 41.8060 36.8890  30.755

3F
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The tabulated natural circular frequencies may be considered as approxi-
mations refinable by increasing the number of nodes. For instance, five nodes
yield 1.6446, 11.819 and 42.099 in first columns of rows 7—8—9. Negative
values in the last column of the table mean that the normal force exceeds the
first critical value.

Examination of the effects of bending moment and shear force showed
them to be rather irrelevant, except for moments several times the ultimate
one for the given structure.

A framework made from beams with cross-sectional characteristics
indicated in the former example is seen in Fig. 3. Columns are assumed to
develop normal forces P. Analysis involved {irst matrices obtained from the

Table 5
N a) b) <)
1 —0.01822 —0.01857 —0.01875
2 0.5983 0.5865 0.5802
3 2.5838 2.5689 2.5319
4 3.5929 3.5067 3.4360
5 6.3939 6.2577 6.1758
!
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static displacement function, assuming nodes a) at framework nodes (6 nodes)
and b) at framework nodes and at mid-columns (12 nodes). The analysis was
remade by applying the matrix determined by approximate dynamic displace-
ment functions (case ¢) with framework nodes (6 nodes).

Table 5 contains the squares of the first five natural circular frequencies
multiplied by 1075 under a compressive force P = 25 - 10* kN. Tabulated
values of the natural circular frequencies are approximations from above.
Analysis by the dynamic displacement function is seen to be the exacter.

Summary

Frequency-dependent geometrical stiffness matrices of beams have been deduced by
taking shear deformations into consideration. Numerical analyses showed shear deformations
to significantly affect the natural frequencies of the tested beams. At the same time, the effect
of initial static bending moments and shear forces on the natural frequency is negligible.
Accuracy of the vibration analysis of structures is improved by stiffness and mass matrices
obtained from dynamic displacement functions. Geometrical stiffness matrices have been
deduced using dynamic displacement functions. Analyses involving the deduced matrices
demonstrated the purposefulness of the method.
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