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In addition to plastic characteristics, the analysis of structures has to
take uncertain displacements at in-situ joints into consideration. Both phenom-
ena alter the stiffness of the structure and their computation in major siruc-
tures requires much running time. Because of the physical and mathematical
duality between both phenomena, it seemed advisable to develop a running-
time-saving method for tracking the state change of structures, with so-called
generalized conditional joints exhibiting both these phenomena. quite up to
collapse. This method has been applied mainly for frameworks, but, relying
on fundamental relationships in [2], it can be extended to any structure acces-
sible to the finite element stiffness method. This procedure assumes a one-
parameter load but it is also valid to multiparameter load processes, in section-
wise one-parameter steps.

1. Generalized conditional jeints

Recapitulation of physical and mathematical behaviour of generalized
conditional joints relies on relationships in [1].

The elements of a structure whose forces or displacements or their
combinations are limited by prescribed conditions are termed conditional
joints. By nature of the condition, strength, geometry or generalized type
conditional joints may be spoken of.

Figure 1 shows a generalized conditional joint with one degree of freedom,
of a behaviour governed by strength and geometry conditions, such as:

if  —M,< MM, then p =0, and

if | M| = M, then —q, < o < @, furthermore
if o] = @gs then |M,| <|M|<|M,-+ M,. and
if [M| = M, + M, then ¢ is arbitrary.

In stress and displacement state with several degrees of freedom, strength
and geometry conditions can be written as:
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F(s) << 0 and f(r) <O
where s(s;. Sp.....s,) and (f;.f,, ...,t,) are vectors of generalized relative

displacements at the same joint, respectively.

Plotting these conditions in coordinate systems S, S,,....S, and i,
to, ..., 1, vields closed convex hypersurfaces each (Fig. 2). In course of the
loading process, at the instant of each joint activation, end point of vector
& or t corresponding to the joint nature lies on the respective hypersurface.

and the corresponding increment vector dt or ds peints to the outer normal
of the hypersurface.

In the following, linearized conditions depictable by a convex polyhedron
will be considered.
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2. Structures with generalized conditional joints

In the following, frameworks will be considered, making use of funda-
mental relationships and symbols in [2]. Development of the algorithm will
rely on the fundamentals of plasticity described in [5].

The model of the analysis is a structure whose displacements of uncer-
tain nature or yield stresses have been concentrated at the conditional joints,
and in other parts of the structure continuous deformations and elastic behav-
iour have been assumed. Joints may include those of purely strength or
purely geometry type beyond generalized conditional joints. Let the structure
have r generalized joints, then the conditions are:

Fis,) <0 and fi(i,) <0, that is:
Fy(s,) <0, then di,=0 and

if fit,) <0, then ds, =0 but (i=12...,7)
if

Fi(s;,) = 0, then di,| depending on the above
fitn) =0, then ds, conditions, and their order

b e
[

e
L)

where m is the degree of freedom of the joint.
Censidering the fundamental equation of frameworks from [2],

G*T-{ul+Tql=0

G F 8 t
relating given forces g, kinematic loads ¢, resulting displacements u and inter-
nal forces s of the structures, the above conditions may be written in the
following form.

Let the strength condition for the i-th joint be the linearized plasticity

condition [6]:

Fi(sl) = N;sf— ;< 0

where s/ refers to limited internal forces from among those s; at the ith
joint. Matrix N, specifies their combinations by containing normal unit vec-
tors belonging to each hyperplane of the convex polyhedron. Vector k; refers
to the distance of hyperplanes from the origin. If e.g. N, equals the iden-
tity matrix, normals to the hyperplane are exactly the coordinate axes,
thus, the condition involves only numerical comparison between developing
and ultimate stresses,

Let the geometry condition for the i-th joint be the linearized form for
relative displacements:

filth =Mt} —1, <0
t/ referring to limited relative displacements among those t; at the i-th joint.
M, specifies their combinations related to given constants I,
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3. State change analysis of the structure using kinematic loads

State change of the structure is analyzed by tracking the loading process.
Load increments in each step are limited bv the conditions above, hence
for
and for

fle) <0, fild + &) < 0.

These conditions determine the load increment causing another joint to
be active. In each step, structural joints get rearranged. altering the stiffness
matrix. While the activation of strength-type joints is known to be accompa-
nied by a loss of structural stiffness. this latter increases during activation of
geometry-tvpe joints. In case of generalized conditional joints. stiffness may
alternatively inerease and decrease. Since, in addition, activation of conditional
joinis is a reversible process. alteration of the stiffness matrix may result
from the reinactivation (unloading) of earlier active conditional joints.

Step-wise alteration and repeated decomposition of the stiffness matrix
is rather running-time-consuming, therefore a method has been developed for
analyzing the strueture of step-wise varying stiffness in each step relying on
the stiffness matrix of the original structure. joint activation is replaced by
kinematic loads. reducing the operations to those on free vectors in each step.
Although determination of the step-wise needed kinematic loads requires to
solve a linear equation system in each step. still its step-wise changing size
is by orders less than that of the stiffness matrix.

For the sake of simplicity, the method will be illustrated on a structure
with strength-type conditional joints. In an intermediate step of the loading
process, part s, of internal forces s of the structure belongs to the already
plasticized elements, the other part s, to those still in elastic state (or originally
inconditional ones). For a zero initial kinematic load t, elements in the still
elastic state are under a kinematic load t, = 0, while the maintenance of the
state of the plastic element is assured by t,. The corresponding partition is:

GF G- T+ ¢ =o.
G, F s, 0
— el o -
Gl’i ; Fl{ S/{ t/{

An increment dq of load q increases forces s by ds. Assume — as mostly justi-
fied for one-parameter loads — forces s, not to vary anymore, thus, condition
F(s;) = 0 remains inaltered for the load increment dq. Assume for the force
increment ds, the equality
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to be met at the i-th joint, but the subsistence of this equality for another load
increment /g has to be provided for by a kinematic load At,;. The partition
corresponding to this process is:

erier g || w |+ @ |+ 4[]
srl e e ]
G 7| ) . ds., 0
G, | E s o 0
A g Tl dae = 4g N1=0
0 o 0
o || o | |
_2_ d, i,

Let us consider the third and fourth mairix equations at the instant of activa-
tion of the i-th element:

Gi(u + du) — Fy(s,; + ds;;) = 0
GJfa +du) - F. -5, + (5, —di) =0
and for a further load increment _lq:
Giu - du + du) — Fi(s,; -+ ds,y) + A, = 0
Guu + du 4+ du) -~ Fis, + (i, + di, -+ Jdg) = 0

consequently.
L’]t‘.: = —G; e _"/_]{1

dt, = —G, - du

hence, At, and Ji,; are obtained from Au relying on the original stiffness matrix.
Stress increment ds,; can be determined from the yield condition. making
the load parameter for that step to be known. Kinematic load dt, is obtained
from t, by taking the load parameter into consideration.

Further steps of the computation are similar. In each step, however,
relative displacements at active joints have to be checked since an eventual
sign reversal hints to unloading of the joint to be considered inactive again.

For the sake of illustrativeness, the process has been represented in a
diagram.

In Fig. 3, linear transformations describing relationships between exter-
nal and internal forces and displacements have heen plotted. with norms of
the corresponding vectors indicated on coordinate axes.
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First step of the loading process leads to load value ¢, to that an incre-
ment dg, causes one (or simultaneously several) strength joints to become
active (points A4;, A4,). Load g¢; + dg, involves displacements u; -+ du, and
internal forces s; 4+ ds;. But the internal forces s;; belonging to the joints
becoming just active will take a share in the further load bearing, in compliance
with the respective conditions, consequently the residual forces ds; — s
will be rearranged. Condition for forces s, is reckoned with as kinematic load
t,;. causing, in turn, a displacement Ju; to be added to u; + du,; to obtain
displacement belonging to ¢; -+ dg, of the structure of changed stiffness (point
B;). Transformation corresponding to the new stiffness matrix appears from

line 4,B,. Displacement increment Au, hints to a rearrangement in ds, (point

B,), marking transformation change corresponding to line 4,B,.

A further load increase to g, activates another joint, and part s, of
internal forces ds, belonging to load increment dg, becomes limited. Conditions
prescribed for s,, or still prevailing for jeoints activated in the previous step
are provided for by a kinematie load i,, resulting in a displacement increment
Au, (points Dy, D,). Thus, the change of transformations is indicated by
lines C,D;, C,D,.

The procedure is continued in similar steps until the structure or a part
of it becomes unstable, appearing from zeroing of the internal forces s,; belong-
ing to the next load increment dg; i.e. s;; = 0, and for Aq;, du; = co. Namely
then no further joint is activated, the structure is unable to take further loads
and internal forces, and performs arbitrary displacements.

Gradual decrease of the structure stiffness along the loading process
clearly appears in the figure, nevertheless analysis of the structure of varying
stiffness relies throughout on the original stiffness matrix. The linear equation
system for determining the kinematic load in each step is of a size equal to
the number of already active joints, much less than the order of the stiffness
matrix of the complete structure.

Analysis of structures with geometry-type joints may follow similar lines.
Now, computation relies on the structure stiffness matrix belonging to the
active state of all geometry joints (perfect closure), while the real initial state
where all joints are still inactive is provided for by kinematic loads. Let us
consider an intermediate step of the loading process where inactive geometry
joints involve internal forces s, = 0, and joint inactivity is provided for by
kinematic loads t,. At activated geometry joints, the corresponding element
of s, may be arbitrary. Let us notice that s, comprises forces both at already
activated joints and at originally conditioned joints. Since the initial load
on the structure did not involve kinematic loads, the corresponding elements

I

t/, of t, are under condition f(t;} = 0.
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Increment dq of load q reduces the kinematic loads ¢, by dt,. Assume
kinematic load i; not to vary any more, condition f(i]) = 0 being unchanged
for a load inerement dg, and assume relative displacement change di, o meet

= ~ &
equality
f(tgi =+ dtgi) =0

at joint 1, subsistence of which for another load increment /g means rearrange-
ment of the remaining kinematic loads. Thisinvolvesthe following partitioning:

erigtiey | (| v || an |+] g |+
G | F i | ds, ds,
Sk T S i s
i ey i - - -

L% R0 o] LY.
+ @ |+| dq |+] 4q |}=0

t, ) 0
By diy 0
£ 1t Yars

Let us consider the third and the fourth matrix equation at the instant
of the i-th joint activation:
Gi(u "L du) + tgz' —;" dtgi =0
Ggu 4 du) + ¢, +dg, =0
and for a further load increment Aq:

gi gi
Gy(u + du 4 /u) + e +dty + 1, =0
thus:
Fids; = —G; Ju
Aty = —-Gg du

hence, 4s; and 4t, can be produced from Ju on the basis of the original stiff-
ness matrix. Relative displacement increment dt,; can be determined from the
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condition prescribed for the joint making the load parameter pertaining to
the step to be known, hence dtg can be obtained from t, with respect to the
parameter.

Further computation steps are similar but in each step, siresses in
earlier activated elements have to be checked, since an eventual sign reversal
hints to the unloading of the joint to be considered as inactive again.

The procedure has graphically been represented in Fig. 4, where load ¢,
comprises kinematic loads providing for the inactivity of all geometry joints.
Assume a geometry joint to become active under a load increment dg, to
load g,. hence at the activated elements new forces s,; to rise besides the inter-
nal force increment ds, corresponding to dg,. Thereby the number of inactive
joints decreases, and so does the kinematic load ¢, to ¢,,. Thereby also displace-

ments decrease by Ju, corresponding to ¢, — 1,,;,. Now. gy + dg, has u;, -+ du; —

— Au, as counterpart (point B,). involving the change of the stiffness trans-
1 P P 1 g g

formation (line A4,B,). Displacement change Adu, yields transformation chaunge
for the forces (line 4,B.,).

Upon further load inerease to q,, another joint gets activated, and beyond
forces ds, belonging to load increment dg,, further forces s;, arise at newly
activated joints. Thereby the number of forces limited by the conditions
decreases, and so does the kinematic load replacing inactive joints, caus-
ing a displacement reduction Ju, equal to the transformation changes
(ines C,D,, C,D,).

The procedure continues along these lines until every joint becomes
active if it ever can. In that event the next load increment dg, causes no
internal foree increment any more, i.e. s,; = 0, all joints have become activated
so that the kinematic load providing for inactivity is zeroed. Now Ag; =
= Ju; = 0 and the structure stiffness equals that of the substituting structure,
both stiffness transformations run parallel. Actually the structure, with a
stiffness corresponding to the last state, has an arbitrary load capacity —
to a given limit.

Analysis of the structure of step-wise increasing stiffness relies in each
step on the original stiffness matrix. The size of the linear equation system
for determining the kinematic load for each step equals only the number of
the still inactive joints.

Analysis of the structures with generalized conditional joints is the com-
bination of both former methods.

The stiffness matrix underlying the method is that of a structure that
would arise if all its conditional joints were inactive for strength but active
for geometry. Therefore first the kinematic loads providing for geometric
inactivity in a state of strength inactivity will be determined.

The resulting structure of identically inactive joints is the starting step
of the loading process.
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The type of the conditional joint first becoming active in course of the
load increase, and the relevant load value, depend on the relation between
the stress or displacement state developing in each joint and the condition
prescribed for the given joint type.
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Behaviour of a structure with generalized conditional joints in course
of the loading process has been plotted in Fig. 5. It is irrelevant for the analysis
whether strength or geometry-type joints occur together in the same cross
section of the structure (generalized joint) or separately, in different cross
sections. Comprehensive survey of Figs 3 and 4 yields a clue to Fig. 5 without
further comments.

Joint activation in each step goes on in ideal cases up to the specified
Ioad value or up to the total or partial instability of the structure. Instability
may result from the development of plastic joints in itself, but also from the
coincidence of already plastic and still not closed joints. Also an unloading
at certain spois, due to step-wise stress rearrangement, may be realized,
causing a strength-type joint to be elastic again, and a geomeiry-type joint
previously closed to reopen. This occurrence has to be checked step by step.

.

4. Structural state change analysis with mathematical programming
Approximation of state change analysis by mathematical programming
relies on fundamentals in [8].
Increment wvectors arising in joint activations (Fig. 2) are:

a [aYchd
s =0 ana ar—an®®
ot JOs

where A and /1 are so-called strength and geometry multipliers, resp., for the
combinations of the arising internal force and relative displacement compo-
nents. For joints of one degree of freedom they equal the increment itself.

In course of the loading process, relationship between velocities (incre-

ments) of the state characteristics q, £, w, s, A and A in the process of sirength-
type activation of generalized conditional joints are:

6 6 0 7].[ualx g ]=0
¢ F N § i (a)
0 Ny O AK —&x

where K is the set of subscripts where &, = 0. Furthermore:

and for elements in state Fz << 0

Az =0

where K is the complementary set of K for the set of all subscripts affected
by the conditions.
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Relationships (a) comprise equations for equilibrium, compatibility and
joint strength conditions. Alongside with the strength activation of joints,
the compatibility equation is seen to be completed by the relative displace-
ment velocities at active joints.

Relationships hetween state change velocities in the process of geometry-
type activation of generalized conditional joints are:

0  G* &My iy_ =0
G F ¢ B (b)
i | .

o 1 %] L_-zjj

furthermore:

L, >0, {, <0 and 3\]5/:0

S -
and in elements in state F] < 0
‘/\j m O

Relationships (b) comprise equilibrium, compatibility and joint geometry
condition equations. In eourse of the geometry-type activation of joints, the
equilibrium equation is seen to be completed by the velocity of internal forces
arising at active joints.

Let us consider now the relationship between state characteristic veloci-
ties for the case where both strength and geometry activations arise in the

structure:
G G* 0O G”Mj . 7 -+ q =0
¢ Ny 6 ¢ A:K —gy‘ K
i M J‘G ¢ ¢ O A 7 —f 7
furthermore:

‘[;’\ >o0| | <0and [A; A]| OF | = 0.
7\J J =7

In this case both equilibrium and compatibility equations are seen to

. @n.
iy

be completed by the corresponding stress and relative displacement velocities.
In the following. subscripts J and K will be omitted.
Eliminating the non-sign-dependent unknowns from Eqs (¢) vields:
NE-1GE I G*FIN* —NF-IN¥| A |+

I
{
1
I

MGK —1G*3* A

L[ —N[F1GK-(f — 6*F-1§) - F-1i] —§ =0

S —— - (d)
M [K-1(§—G*F-1§)] —f
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or, in a simpler form:

NN

still simpler:

where

£>0 y< 0 and x%y = 0.

This problem eorresponds to a linear complementary problem:
LK: Pt —3+d=0.5>0, £<0 3*y =0}

equivalent to the primal-dual problem couple of the quadratic programming
problem:

K1: min{%—i*]{)k —}—é*_‘;’ x> 0}

The linear programming problem, equivalent to the linear complementary
problem, has been solved relying on a procedure equivalent to the simplex
algorithm, with a physical purport corresponding to the solution by kinematie
loads described in the previous chapter.

5. Applications

Computer programs have been established for the application of the
presented method.

The program reckoning with strength-type joints has been applied for
the analysis of plastic load capacity of frameworks. The program handled
big-size problems, leading to numerical comparisons concerning the running
time saving due to this method [3].

The program reckoning with geometry-type joints has been applied for
the analysis of in-situ joints in preeast frameworks and panel buildings [4].

The program reckoning with generalized conditional joints has been
applied for the analysis of structures bedded on elastic soil, modelled by frame-
works., Some numerical examples will be presented.
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Example 1
Framework seen in Fig. 6a models a structure composed of precast beams with datax
Cross section Moment of
area inertia
(=% (m)
Sole beam 1.2 0.06
Higher beams 0.6 0.03
Internal columns 0.4 0.02
Outer columns 0.2 0.01

Taking elastic properties by Ohde’s method into consideration, the characteristics are:

Ege =3 - 10" kN/m? Egy; = 109 kN/m®% vy = vy = 0.15.
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Generalized conditional joints have been assumed at final cross sections of middle and
upper horizontal beams uniformly prescribing relative rotation limit |g,} = 2 - 10~% and plastic
moment |[Mpl = 100 kNm. Thereby the generalized joint of one degree of freedom has
the following characteristies (Fig. 6b): if —2- 10" < @< 2105 then M = 0 and if
[o| =2 -10-% then —100 kNm < M < 100 kNm, furthermore if |1} = 100 kNm, then
p 1s arbitrary.

Besides, final cross sections of columns and sole beams were assumed to have pure
strength joints, with plastic moment | M| = 100 kNm. Load was assumed at F = 100 kN.

The structurs was examined by tracking the loading process. In course of the first
eight steps, generalized joints got activated geometrically, then in further thirteen steps -
alternately with pure strength joints, — they were also activated from strength aspect. Acti-
vation order is seen in Fig. 6¢, while Fig. 6d shows the produced vield mechanism and load
parameters belonging to activation steps.

Figure 7 tracks state changes of end cross sections with generalized joints of beams
A—B and C—D during loading. In load increments, closure rate is linear increasing. Before
closuze. cross-sectional bending moments are zero, after closure they increase section-wise
linearly for each load increment until formation of a plastic hinge at the plastic moment. In
case of further load increase, subsistence of the vield condition is provided for by kinematic
loads, in the actual case, by relative rotation. In course of the loading process. this step-wise
changing kinematic load has proven to be of the same sign as the relative rotation in the for-
mer closure process, excluding unloading of the already closed joint. The introduced kinematic
load is, by physical purport, simply a relative rotation at a plastic hinge.
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State change of the complete structure has been illustrated in Fig. 8 by tracking nodal
displacements all along the loading process. During activation of the geometry Joints, structural
stiffness can be read off to increase, then, with inereasing development of pla~t1c joints, to
decrease. This is apparent from the variation of dlsplacement components g4, pB, v, while
variation of v5 hints to the increase of stiffness even in the plastic range. hamely, “ertical
displacements mainly depend on soil rigidity, relatively increasing in the decreasing stage of
structural stiffness.

Finally, behaviour of a conditional pure strength joint, cross section A in Fig. 9, has
been plotted. Up to plastic moment, beam end rigidly joined to the node performs the same
absolute rotation. Relative rotation at the formation of a plastic hinge corresponds to the intro-
duced kinematicload, and the beam end undergoes an absolute rotation independent of the node.

Example 2

Let us consider a framework with conditional joints in Fig. 10, with further data:

Cross section Moment of
area inertia
[m?] [m]
Sole beam 0.6 0.03
Upper beams 0.6 0.03
Columns ; 1.2 0.06
| 2F (2F)
I at
- (F
£
& | LF (2F) | 2F (2F)
2F. h:d v
e u
£
« | 6F (2F) | 4F (2F) | 2F (2F)
_!‘“_2_}_7 ¥ ~{ 4 k4
Gl =
£
™
S
3 K 3
3m L 3m L 3m-l 3m L 3m L 3m L
n ; g . : ’
M AN
b
“r‘“'—"—l“*Fl S I .
g v = 4 N
— d R A
(9ol %o | ! -eol eol
i Qi
a9 1| 004
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| 2F 3| 00266
. 4§ 00488
51 0.0%963
13 6] 00623
LZ 71 00866
8| 00918
91.01780
L) lzr 10! 02008
275 11| 02043
I 12| 02208
10 7| 0.2222
H
b)
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Furthermore:

Egr = 3 - 10" kN/m?% Egy = 10% kN/m?% vy = vy = 0.15
and

Ipol = 10-° radians; |eo| = 10~ m; |AL,| = 100 kNm; F = 100 kN.

During the gradual load increase, in the first eight s
got geometrically activated. Thereafter, in mere five step
plastic condition, or better, a partial vield mechanism has
@ == 0.222 as seen in Fig. 10b.

Behaviour of some joints vs. load parameter is seen in Fig. 11. As soon as respective
displacement components of joints are at closure value, the to then zero stress tends to increase.
Beyond eventual prescribed stress limits again displacements occur. Assuming load values
in parentheses in Fig. 10 causes the structure to get much slower to the ultimate condition
for load parameter @ == 0.5, as seen from Fig. 12 together with the order of closure and the
alternative mechanisms with and without taking geometrical unloading into consideration.
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Fig. 13
Example 3

The described computation method permits to analyse multiparameter-type loading
processes even if they are section-wise one-parameter ones. Thereby state change of a building
under multiparameter loads due to the consecutive lifting in of panels in course of the loading
process can be tracked. For example, let us consider a wall assembled from panels, modelled
by the framework in Fig. 6. Characteristics of the structural material and of soil elasticity are
the same as those in the figure.

Figure 13 shows the lift-in process of panels, testing in each step the change due to the
newly lifted-in panel in the connection state developed in conformity with the loading on the
building erected to then. This is a set of analyses of one-parameter loads separately analysing
eachload increment. The first few panel lifting-in steps of the loading process have been tracked
in the figure, indicating connection states, and support settlement changes.
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Summary

In the analysis of load-bearing structures, beside plastic characteristics, reckoning
with uncertain displacements at in-situ joints is justified by the increasing use of prefabrica-
tion. Both phenomena affect stiffness of the structure and to reckon with them makes the
problem rather running time consuming. The physical and mathematical duality between both
phenomena suggested to develop a running time saving method for tracking the state change
of structures with generalized conditional joints comprising both phenomena above, quite
up to collapse.

This method, primarily devised for frameworks, can be extended to any structure
aceessible to the finite element stiffness method.
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