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Four 'ways of representing second-order tensors 'will be presented, refer­
ring to plane stress state, plane strain state, second-order moments of plane 
configurations, in-plane forces of diaphragms and membrane shells, bending 
states of plates, this latter serving to illustrate construction methods. 

The foUl' representation possibilities are: 

1. JliIohr's circle, 2. tensor circle, 3. polar curve, 4. ellipse. 

1. Four methods of representing moment tensors 

Bending state at a point of a plate is described by the moment tensor 111: 

111 = (::x ::) = [~1 :J. (1) 

Principal moments are obtained from 

(2) 

angle of principal direction being: 

(3) 

Moment components in arbitrary directions u, v are given by: 

mx - my cos 2(1; 
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m xy sin 2(1; (4) 
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Fig. 7. Polar plot 

Fig. 4. Tensor circle my = QC, 
mx = CB, mxy = CT 

Fig. 1 

Fig. 9. Ellipse 

Fig. 2. Mohr's circle 

A moment tensor may be considered as determined if moment compo­
nents are given in two sections, e.g. moments mx, m xy in section x, and my, 

m xy in section y, These are three data, namely m xy = - m yx ' The well-kno1V""U 
theorem of invariance: 

(5) 

Any section of a slab is generally acted upon by bending moment and 
twisting moment. Bending moment mx, t"wisting moment mx)" their resultant 
moment mX developing in section x are seen in Fig. 1. 

The bending state is said to be elliptic if principal moments have the 
same sign: ml m 2 > O. Now the plate deformation surface "will be elliptic 
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around the point. The bending is hyperbolic if principal moments are of the 
opposite sign: m 1 m 2 < O. The bending is parabolic if one principal moment is 
zero, a case termed that of uniaxial bending. 

1.1 lvIohr's circle 

Mohr's representation of moment tensors is known to be feasible in a 
coordinate system m b, m t (bending moment - torsion moment) independent 
of the plate (Fig. 2). 

To any section one point belongs on the circle which point has the 
bending and torsional moments as coordinates e.g. X(mx' mXY)' Y(my' myx)' 
In Mohr's circle, principal directions 1 and 2 can be constructed together ",vith 
principal moments m l and m 2 , and so can be moment components belonging 
to the coordinate system It, v rotated from x, y by angle cr. (Fig. 3). The point 
in this construction is that while axis x on the plate is rotated by cr., in Mohr's 

Fig. 3 
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Fig. 6. mu = VD; mv = DU; 

muv= DT 
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circle the radius belonging to point X has to be rotated by (/. in the opposite 
direction to ·yield point U representing direction u. Its coordinates are moments 

1.2 Tensor circle 

The moment tcnsor can be represented by a circle even in the plane 
coordinate system x, y in conformity "with the theorem of invariance stating 
the sum of bending moments acting in perpendicular sections to be constant, 
and now, this ·will equal the diameter of a circle. 

The tensor circle ,.,,-ill be constructed as follows (Fig. 4). m x, my and m xy 
are given, the circle has to be put on axis y. Let us first admeasure distance 
my = OC then mx = CB on axis y. Draw circle i\!I ,v-ith diameter mx + my. 

Then admeasure torsion moment mxy from point C parallel to axis x true to 
sign; if it is positive then in direction The obtained principal point T 
and the circle 111 combine to the moment tensor circle. 

s\ 

T 

/ 
/. 

I 

Fig. 5. my= QC > 0; mx= CB < 0; mxy= CT < 0; ml= HT > 0; m 2= T 1< 0 

Fig. 8. f3: negative bending sector tg f3 = V- m2 

ml 
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Remind that also bending moments have to be admeasured true to 
sign; if they are positive, then along +y, and if negative, then in the opposite 
direction. All three values in Fig. 4 are positive, the bending is elliptic. Figure 
5 shows a tensor circle where my > 0, mx < 0 and m xy < 0, this is a case of 
hyperbolic bending. 

In case of hyperbolic bending, principal point T is outside the circle, 
in elliptic bending it is inside the circle, while in parabolic bending, principal 
point T lies exactly on the circle. 

Moments belonging to some axis u in the tensor circle have to be con­
structed (Fig. 6) by drawing diameter UV belonging to axis H, and projecting 
principal point T normal1y to it, resulting in moments mu = VD, m" = DU 
and mu'!: = TD. 

The sign of the twisting moment depends on what side of the diameter 
the principal point T is; in our figure it is on side +u, thus, mU!) > O. 

Construction of principal moments starts by dra,v-ing a diameter crossing 
principal point T (Figs 4 and 5), then m1 = n, T and m 2 = I, T. Obtained 
axes 1 and 2 are principal moment directions in their original positions. 

1.3 Polar cune of bending moments 

Plotting bending moments in any direction yields polar curve in Fig. 7. 
Principal moments m1 and m 2 are admeasured in principal moment directions 
1 and 2, respectively. In this figure, both principal moments are positive and 
the bending is an elliptic one. Fig. 8 shows a moment tensor ·w-ith pr:incipal 
moments of opposite sign, the bending is a hyperbolic one, the polar curve 
is a "cloverleaf". 

The polar curve is a good illustration of the bending moment value in 
any direction but does not suit direct construction. It can be drawn by plott­
ing bending moments constructed in the tensor circle (or in Mohr's circle). 

1.4 lV!oment ellipse 

Plotting resultant moment rather than bending moment in every direc­
tion yields the moment ellipse (Fig. 9). For instance, resultant moment mX 

is admeasured to direction x, at angle er indicated also in Fig. 1. Final points 
of resultant moments are aligned on an ellipse. Principal axes of the ellipse 
are principal moments m1 and m 2 in principal directions 1 and 2, respectively. 

2. Tensor circle of the ultimate moment of a reinforced concrete slab 

As an example of application, let us consider the tensor circle presenting 
ultimate moments of a r .c. slab in the general case of skew reinforcement. 

Assume reinforcements in directions ; and 1), including an angle er to 



196 NE~rETH 

he given. Also design moments ml; and m7] are given that are ultimate moments 
if steel hars exist only in one direction (~ or 1)). In the coordinate system of 
Fig. 10 where x coincides with one reinforcement direction, x = ~, compo­
nents of the tensor of ultimate moments are: 

mt = m~ + m7] cos2 cp 

mt = m7] sin2 cp 

m~ = - mtx = m7] cos cp sin cp. (6) 

Tensor circle of ultimate moments "vill he drawn hy consecutively admeas­
ming design moments m'l = OA and ml; = AB on axis y. A circle "vill be 
dra'''ln 'w-ith m'1 + ml; = OB as diameter. This will he tensor circle 111*, \,-ith 
principal point T* ohtained by projecting point A normally on line 7). Normal 
projection of point T* on axis y yields point C, "yielding, in tmn, normal com­
ponents of the tensor: m~ = CB, m; = OC, m~ = CT*. This could he easily veri­
fied by applying Eq. (6) on Fig. 10. 

In this representation, principal point T* of the tensor circle of ultimate 
moments always lies on reinforcement axis 'iJ. 

Invariant of the ultimate moment tensor: mt mi, = m; m; = 

= m; + mTJ equals the sum of design moments, it does not depend on the angle 
cp of the reinforcing bars. 

3. Optimum design of reinforced concrete slahs 

The tensor circle lends itself to complexer constructions, such as the fol­
lowing optimization problem. Let the bending state in a point of the r.c. 
slab be given: ml = +80 kNmfm, m 2 -40 kNmfm and 0: 0 = +60°. It is 
a hyperbolic bending state. Both in top and in bottom of the r.c. slab a mesh 
of steel bars each is needed. Mark out directions ~ and 7) of the reinforcements 
including an angle cp = 105°, as seen in Fig. 11. 

Let us determine now for what particular moments the top and bottom 
reinforcements in directions ~ and 'I) are to be designed to meet both the ulti­
mate condition and the optimum condition ml; + mTJ = min ! 

This problem can analytically be solved by calculating the follo\\-ing 
formula pairs referring to the four cases: 

case a}: 

cos cp 1 - 2 cos cp 
me = mx-my + m xy 89.2 

1 + cos cp sin cp 

1 1 
m7J = my + mxy -. - = + 121.3 

1 + cos cp sm cp 
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Fig. 12.11: applied moment tensor. my = AC= + 50, mx = CB = -10; mxy = q = + 52; 
M*: bottom resisting moment tensor, me = CE = +89.2; m1] = AC = 121.3; 11:f: bottom 
reserve moment tensor; M*): top resisting moment tensor mE = C'E' = - 46.2; m'f} = AC' = 

= -14.1; M-': top reserve moment tensor 
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case b).: 

case ~): 

caser]) : 
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cos cp 
m" ---'-­

. 1- cos cp 

1 
mx)' -----'- = - 46.2 

sin cp 

1 1 
m", = mv - m xy --- = - 14.1 

, . 1 - cos cp sin cp 

m~ = 0 

m7)= O. 

miy = _ 64.1 
my 

o 
mxmy - Tnxy = _ 160.0. m = 7) 

Tnx sin2 rr + my cos:? cp - m xy sin 2rp 

Case a) refers to the design of the bottom reinforcement (m< + mr; = 

= 210.5). Case b) yields optimum design moments of the top reinforcement 
(m~ + m'l = -60.3). Both cases ~) and '1]) refer to the top reinforcem8nt 
(design moments are negative) assumed to comprise bars in. direction ~ orr] 

alone. These solutions are, however, other than optima, case h) heing the more 
favourable (60.3 < 64.1 and 60.3 < 160.0). 

Graphic solution of the same prohlem is seen in Fig. 12. Circle jj;1 with 
principal point T represents the given applied moment tensor. Resisting mo­
ment tensor circles Al* and 111*' corresponding to cases a) and h), resp., have 
been constructed as follows: 

A line parallel to axis )' is drawn from point T, along that the centre of 
a circle passing through point T and contacting line 'r] is to he found. There 
are two such circles, .Li1 and M', with centres 0 and 0'. Contact points T* 
and T*' will he principal points of optimum resisting moment tensors iVI* 
and 1\1[*', respectively. Centres 0* and 0*' are ohtained hy drawing lines through 
points 0 and 0' parallel to OT, intersecting axis y at the centres. Now, normals 
to '1] are drawn froL'l 0 and 0' cutting out points C and C'. Then, design mo­
ments are: 

case a) m; = CE = + 89.2, :m1] = AC = + 121.3 

case b) m; = C'E' = -4.6.2, m'l = AC' = -14.1. 

Figure 12 shows construction of applied moment tensor circle lVI, resisting 
moment tensor circles 1v1* and 1\11*' for cases a) and b), and in addition, circles 
JI and If£'. These are tensor circles of reserve moments: JJ1 = lVI* - 111 and 
M' = 1i1*' = lvI, differences of ultimate and applied moments. 
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bending 

Fig. 13. 11: applied moment tensor. m 1 = +80; m2 = -40; M"': bottom resisting moment 
tensor; M*): top resisting moment tensor 

Figure 13 sho"ws polar curves of the same problem. A bigger positive mo­
ment acts in principal direction 1 of applied moments lvI, and a lower negative 
moment in principal direction 2. Also the segment with negative bending is 
seen. 

Polar plot lk[* is curve of positive ultimate moments for the bottom rein­
forcement (case a). Where it contacts the curve of the applied moment tensor, 
hence where the ultimate moment equals the applied bending moment, there 
the positive (bottom) yield line develops. Polar plot 11:1"*' is the curve of nega~ 
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tive ultimate moments for the top reinforcement (case h). In the direction 
of its contact wi.th the negative limh of applied moments, the negative (top) 
:yield line develops. 

Summary 

Four methods of representing second-order tensors are illustrated on the moment 
tensor of a slab. Beside the well-known Mohr's circle, the well constructible tensor circle, the 
polar curve of bending moments clearly illustrating the bending state, and the ellipse of 
resultant moments are involved. Application examples include the ultimate moment tensor 
circle of a r.c. slab , .. ith skew reinforcement, as well as the optimum solution of a r.c. slab 
problem. 
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