SINGULAR VALUE DECOMPOSITION OF MATRICES AND ITS APPLICATION IN NUMERTCAL ANALYSIS

By
Gy. Popper
Department of Civil Engineering Mechanics, Technical University, Budapest

Received: December 15, 1980

Singular Value Decomposition (SVD)

A real $m \times n$ matrix A with $m \geq n$ can always be written in the form

$$
\begin{equation*}
\mathrm{A}=\mathrm{UDV}^{T}=\prod_{m}^{n} \tag{1}
\end{equation*}
$$

where

$$
\mathbb{U}^{T} \overline{\mathrm{U}}=\overline{\mathrm{V}}^{T} \mathrm{~V}=\overline{\mathrm{V}} \mathbb{V}^{T}=\overline{\mathbb{I}}_{n},
$$

and $\mathbb{D}=\left\langle\sigma_{1}, \ldots, \sigma_{n}\right\rangle$ denotes a diagonal matrix. The matrix \mathbb{U} consists of n orthonormalized eigenvectors associated with the n largest eigenvalues of \mathbb{A}^{T}, and the matrix V consists of the orthonormalized eigenvectors of $\mathbb{A}^{T} \mathbb{A}$. The diagonal elements of \mathbb{D} are the non-negative square roots of the eigenvalues of $\mathbb{A}^{T} \mathbf{A}$; they are called singular values of \mathbf{A}. We shall assume the ordering $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n} \geq 0$. If \mathbf{A} is a matrix of rank r, then $\sigma_{r}>0$ and either $r=n$ or $\sigma_{r+1}=\sigma_{r+2}=\ldots=\sigma_{n}=0$, (i.e. the number of positive singular values is exactly the rank of A).

A constructive proof of SVD is given by the following.
The product $A^{T} A$ is a real symmetric matrix of order n; moreover it is positive semidefinite, since with any vector $x \neq 0, x^{T} A^{T} A x=(A x)^{T}(A x)=$ $=\|\mathbf{A x}\|_{2}^{2} \geq 0$. Consequently, all eigenvalues of $\mathbf{A}^{T} \mathbf{A}$ are non-negative and hence they may be denoted by $\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}$, where $\sigma_{1} \geq \ldots \geq \sigma_{n} \geq 0$. Let r be the subscript for which $\sigma_{r}>0$ and either $r=n$ or $\sigma_{r+1}=\ldots=\sigma_{n}=0$.

A real symmetric matrix is known to be of simple structure and hence there exists a real orthogonal matrix V such that

$$
\begin{equation*}
\mathbf{V}^{T} \mathbf{A}^{T} \mathbf{A V}=\mathbf{D}^{2} \tag{2}
\end{equation*}
$$

where $\mathbb{D}^{2}=\left\langle\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}\right\rangle$ is diagonal and the columns of $\mathrm{V}=\left[\mathrm{\nabla}_{1}, \ldots, \mathbf{v}_{n}\right]$ are the orthonormalized eigenvectors of $\mathrm{A}^{T} \mathrm{~A}$. Eq. (2) may be written in a more detailed form as:

By equating the main diagonal elements in both sides of Eq. (2a) we have $\left(A v_{i}\right)^{T}\left(A v_{i}\right)=\sigma_{i}^{2}$ or

$$
\begin{equation*}
\left\|A v_{i}\right\|_{2}=\sigma_{i}, \quad i=1, \ldots, n \tag{3}
\end{equation*}
$$

and by equating non-diagonal elements, $A v_{1}, \ldots, A v_{n}$ are seen to be muiually orthogonal vectors. According to our previous assumption $\sigma_{1} \geq \ldots \geq \sigma_{r}>0$, $\sigma_{r+1}=\ldots=\sigma_{n}=0$ it follows from Eq. (3) that

$$
\begin{equation*}
\mathrm{Av}_{i} \neq 0 \quad \text { for } \quad i=1, \ldots, r \tag{4a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{Av}_{i}=0 \quad \text { for } \quad i=r+1, \ldots, n \tag{4~b}
\end{equation*}
$$

Premultiplying the definition equations of the eigenvalue problem

$$
\begin{equation*}
\mathbb{A}^{T} \mathrm{Av}_{i}=\sigma_{i}^{2} \mathrm{v}_{i}, \quad \dot{\bar{z}}=1, \ldots, n \tag{5}
\end{equation*}
$$

from the left by A, we have

$$
\begin{equation*}
\mathrm{AA}_{i}^{T}\left(\mathrm{Av}_{i}\right)=\sigma_{i}^{0}\left(\mathrm{Av}_{i}\right), \quad i=1, \ldots n \tag{6}
\end{equation*}
$$

Because of (4a), from Eq. (6) it follows that eigenvalues $\sigma_{1}^{2}, \ldots, \sigma_{r}^{2}$ of $\mathbb{A}^{T} \mathbb{A}$ are also eigenvalues of $\mathbb{A A}^{T}$, and the mutually orthogonal vectors $\mathbb{A v}_{i}$, $i=1, \ldots, r$ are eigenvectors of \mathbb{A}^{T}. Hence vectors

$$
\begin{equation*}
\mathrm{u}_{i}=\frac{\mathrm{A} \mathrm{v}_{i}}{\sigma_{i}}, \quad i=1, \ldots, r \tag{7}
\end{equation*}
$$

are orthonormalized eigenvectors of AA^{T}, since Eq. (3) implies $\left\|\boldsymbol{u}_{i}\right\|_{2}=1$, $i=1, \ldots, r$.

Next we shall use the following lemma:
If A is a $m \times n$ matrix of rank r, then $A^{T} A$ and A^{T} are also of rank r.
Proof: Since \mathbb{A} is of rank r, there exist precisely $n-r$ linearly independent solutions of the equation

$$
\begin{equation*}
\mathrm{Ax}=\mathbb{0} \tag{8}
\end{equation*}
$$

These solutions are at the same time non-trivial solutions of equation

$$
\begin{equation*}
\mathrm{A}^{T} \mathrm{Ax}=0 \tag{9}
\end{equation*}
$$

hence they are eigenvectors of $\mathbf{A}^{T} \mathrm{~A}$ corresponding to its zero eigenvalue. Moreover zero is $\mathbb{A}^{T} \mathbb{A}^{\prime}$'s eigenvalue of multiplicity not smaller than $n-r$; hence the rank of $\mathbb{A}^{T} \mathbb{A}$ is at most r. To show that the rank of $A^{T} A$ cannot be even smaller than r, suppose that zero is $A^{T} A^{\prime}$'s eigenvalue of multiplicity $n-r+1$. Then there exists a vector $y \neq 0$ for which

$$
\begin{equation*}
\mathrm{A}^{T} \mathrm{Ay}=0 \tag{10}
\end{equation*}
$$

and $A y \neq 0$ (else y would be one among the eigenvectors obtained by solving Eq. (8)). Since $A y \neq 0$ and $y=0$, we have $\|A y\|_{2}^{2}=y^{T} A^{T} A y>0$, which contradicts Eq. (10). Therefore the zero is an eigenvalue of multiplicity not higher than $n-r$, hence the rank of $\mathbb{A}^{T} \mathbb{A}$ is at least r. So we have proved that the rank of $A^{T} \mathbf{A}$ is exactly r.

Let $B=A^{T}$, then $\mathbb{B}^{T} B=A^{T}$ hence our proof for $A^{T} A$ holds also for A^{T}.

From the lemma it follows that matrix $\mathbb{A}^{T} A$ of order n has the zero as its eigenvalue exactly of multiplicity $n-r$ and matrix $A^{A^{T}}$ of order m has the zero eigenvalue with multiplicity $m-r$. Consequently $\sigma_{1}^{2}, \ldots, \sigma_{r}^{2}$ are the non-zero eigenvalues of both matrices $\mathbf{A}^{T} \mathbf{A}$ and \mathbf{A}^{T}.

Similarly, $\mathbb{A A}^{T}$ is a real symmetric matrix hence of simple structure. Thus $\mathbb{A A}^{T}$ has an orthogonalized eigensystem u_{1}, \ldots, u_{m}. For eigenvectors $u_{i}, i=1, \ldots, r$ corresponding to positive eigenvalues holds (7). Let \mathbb{U} be the $m \times n$ matrix with columns u_{1}, \ldots, u_{n}, orthonormalized eigenvectors of \mathbb{A}^{T} corresponding to eigenvalues $\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}$. Thus $\mathbb{U}^{T} \mathbb{U}=\mathbb{I}_{n}$.

From (7) and our previous considerations it follows that

$$
\mathrm{Av}_{i}=\sigma_{i} \mathrm{E}_{i}, \quad i=1, \ldots, n
$$

or in form of matrix equation:

$$
\mathrm{A} \mathbb{V}=\mathbb{U} \mathbb{D}
$$

Finally, pre-multiplying this equation from the right by the transpose of orthogonal matrix V results in Eq. (1).

A variant of the SVD theorem for square matrices has been proved by Forsythe and Moler in [2].

ALGOL procedures for computation of the singular values and complete orthogonal decomposition of a real rectangular matrix based on very effective numerical methods have been given by Golub and Reinsce in [1]. FORTRAN variants of the mentioned procedures have been developed at the Department of Civil Engineering Mechanics, Technical University, Budapest.

These procedures may be applied for the numerical solution of a high number of problems; some of them will be presented in the following:

Computation of the pseudoinverse of A

Let A be a real $m \times n$ matrix. An $n \times m$ matrix X is said to be the pseudoinverse of A if \mathbb{A} satisfies the following four properties:

$$
\begin{aligned}
A X A & =A ; & X A X & =X \\
(A X)^{T} & =A X ; & (X A)^{T} & =X A
\end{aligned}
$$

The unique solution is denoted by A^{+}. It is easy to verify that if $A=U D V_{E}^{T}$, then $A^{+}=\mathbb{V} B^{+} \div \mathbb{U}^{T}$ where $D^{+}=\left\langle\sigma_{1}^{+}, \ldots, \sigma_{n}^{+}\right\rangle$and

$$
\sigma_{i}^{+}=\left\{\begin{array}{ccc}
\frac{1}{\sigma_{i}} & \text { for } & \sigma_{i}>0 \\
0 & \text { for } & \sigma_{i}=0
\end{array}\right.
$$

Thus A^{+}, the pseudoinverse of A, is easy to compute if the SVD of A has been accomplished i.e. if matrices \mathbb{U}, \mathbb{D} and V are known.

Solution of homogeneous equations

Let A be a matrix of rank r, and suppose we wish to solve

$$
\mathbb{A}_{\mathbf{r}_{i}}=\mathbb{0} \quad \text { for } \quad i=r+1, \ldots, n
$$

Let

$$
\mathbb{U}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right] \quad \text { and } \quad \mathrm{V}=\left[\mathrm{v}_{1}, \ldots, \mathrm{v}_{n}\right] .
$$

Then, since $\mathrm{Av}_{i}=\sigma_{i} \mathbb{m}_{i}(i=1, \ldots, n)$, and $\sigma_{r+1}=\ldots=\sigma_{n}=0$, we have

$$
\mathrm{Av}_{i}=0 \quad \text { for } \quad i=r+1, \ldots, n
$$

and $x_{i}=\mathbf{v}_{i}$.
If the rank of \mathbb{A} is known, then the system of linear homogeneous equations may be solved by a simpler algorithm.

Solution of linear least squares problems

Let A be a real $m \times n$ matrix with $m>n$ and let b be a given vector with m elements. A vector x with n elements has to be determined so that

$$
\begin{equation*}
\|\mathbf{b}-\mathbf{A} \boldsymbol{x}\|_{2}=\min . \tag{11}
\end{equation*}
$$

If rank r of A is less than n, then there is no unique solution. Thus we require amongst all x which satisfy (11) that

$$
\|\hat{x}\|_{2}=\min
$$

and this solution is unique; further

$$
\dot{x}=A+b=V D+\dot{U}^{T} b .
$$

This statement will be proven by the following. Since $\|B-A x\|_{2}^{2}=$ $=\left({ }^{[}-A x\right)^{T}(b-A x)$, the condition for minimum $\frac{d}{d x}\|b-A x\|_{2}^{2}=0$ leads to

$$
\begin{equation*}
A^{T} A x=A^{T} B \tag{12}
\end{equation*}
$$

Thus our problem is equivalent to solving Eq. (12).
Substituting $A=41 V^{T}$ into Fiq. $^{\text {q. (12) we obtain }}$

$$
V \underbrace{U^{T} U D V^{T}}_{I_{m}}=V D U^{T} \underline{G}
$$

and since V is orihogonal we have

$$
\begin{equation*}
\mathbb{D}^{2} \mathrm{~V}^{T} \mathrm{X}=\mathrm{D} \overline{\mathrm{U}}^{T} \mathrm{~b} \tag{13}
\end{equation*}
$$

If \mathbb{A} has a rank $r=n$, then 1 non-singular and so

$$
\mathrm{x}=\mathrm{V} \mathbb{D}^{-1} \mathrm{U}^{T} \mathfrak{B}=\mathbb{V} \mathbb{D}+\mathrm{U}^{T} \mathfrak{B}=\mathbb{A}+\mathfrak{W}
$$

is the unique solution of our problem. For $r<n$, Eq. (13) may be rewritten in partitioned form:

$$
\left[\begin{array}{c:c}
\mathbb{D}_{r}^{2} & 0 \\
\hdashline 0 & 0
\end{array}\right]\left[\begin{array}{c}
\mathrm{y}_{r} \\
\mathrm{y}_{s}
\end{array}\right]=\left[\begin{array}{c:c}
\mathbb{D}_{r} & 0 \\
\hdashline 0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{c}_{r} \\
\mathrm{c}_{s}
\end{array}\right]
$$

where

$$
\mathrm{y}^{T} \mathrm{x}=\mathrm{y}=\left[\begin{array}{l}
\mathrm{y}_{r} \\
\mathrm{y}_{s}
\end{array}\right] \quad \text { and } \quad \mathrm{U}^{T} \overline{\mathrm{~b}}=\mathrm{c}=\left[\begin{array}{c}
\mathrm{c}_{r} \\
\mathbf{c}_{s}
\end{array}\right] .
$$

From the partitioned form of Eq. (13) it follows that y_{r} may be obtained as the unique solution of equation $\mathbb{D}_{r}^{2} \bar{y}_{r}=\mathbb{D}_{r} \mathbb{c}_{r}$ and y_{S} may be chosen arbitrarily. If $\mathrm{y}_{s}=0$ then obviously $\|\hat{\mathrm{y}}\|_{2}=\min$. Then also $\|\hat{\mathrm{x}}\|_{2}=$ min since $\|\hat{\mathbf{x}}\|_{2}=\|\mathbf{V} \hat{\mathbf{y}}\|_{2}=\left(\hat{\mathbf{y}}^{T} \mathbf{V}^{T} \mathbf{V} \hat{\mathbf{y}}\right)^{1 / 2}=\|\hat{\mathbf{y}}\|_{2}$.

Writing equations

$$
\begin{aligned}
& \mathbf{y}_{r}=\mathbf{D}_{r}^{-1} \mathbf{c}_{r} \\
& \mathbf{y}_{s}=\mathbf{0}
\end{aligned}
$$

in the form

$$
\left[\begin{array}{l}
\mathbf{y}_{r} \\
\mathbf{y}_{s}
\end{array}\right]=\left[\begin{array}{cc}
\mathbb{D}_{r}^{-1}, & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{c}_{r} \\
\mathbf{c}_{s}
\end{array}\right]
$$

or

$$
\mathbf{V}^{T} \dot{\mathbf{x}}=\mathbf{D} \div \mathbb{U}^{T} \mathbf{b}
$$

leads to

$$
\hat{\mathbf{x}}=\mathrm{VD}+\mathrm{U}^{T} \mathfrak{b}=\mathrm{A}+\mathbf{b}
$$

and the proof is complete.
Note that if matrix \mathbb{U} is not needed, it would appear that one could apply the usual diagonalization algorithms to symmetric matrix $\mathbb{A}^{T} \mathbb{A}$ which has to be formed explicitly. However, the computation of $A^{T} \mathbb{A}$ involves unnecessary numerical inaccuracy. For example, let

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 1 \\
\alpha & 0 \\
0 & \alpha
\end{array}\right], \quad \text { then } \quad \mathbf{A}^{T} \mathbf{A}=\left[\begin{array}{cc}
1+\alpha^{2}, & 1 \\
1 & 1+\alpha^{2}
\end{array}\right]
$$

so that $\sigma_{1}(\mathbb{A})=\sqrt{2+\alpha^{2}}, \sigma_{2}(\mathbb{A})=|\alpha|$. If $\alpha^{2}<\varepsilon$, the computer precision, the computed $A^{T} A$ has the form $\left[\begin{array}{ll}1, & 1 \\ 1, & 1\end{array}\right]$ and the best one obtained by diagonaliza$\dot{\text { tion }}$ is $\tilde{\sigma}_{1}(\mathrm{~A})=\sqrt{2}, \tilde{\sigma}(\mathrm{~A})_{2}=0$.

Some properties of square matrices

Consider a linear mapping $A: X \rightarrow Y$ between two n-dimensional spaces X and Y, where A is represented by a square matrix A of order n. This means that to every $x \in X$ there is a $y=A x \in Y$. Using the singular value decomposition of A we have

$$
\mathrm{y}=\mathrm{Ax}_{\mathrm{L}}=\mathrm{UDV}^{T} \mathrm{x}
$$

or

$$
\underbrace{\mathbb{U}^{T} \mathrm{y}}_{\mathrm{y}^{\prime}}=\underbrace{\mathbb{D} \mathbb{Y}^{T_{\mathrm{x}}}}_{\mathrm{z}^{\prime}} .
$$

By $x^{\prime}=\mathbb{V}^{T} x$ and $y^{\prime}=\mathbb{U}^{T} y$ we have only introduced orthogonal change of variables in spaces X and Y. Then $\left\|x^{\prime}\right\|_{2}=\left\|V^{T} s\right\|_{2}=\sqrt{x^{T} V V^{T} x}=\sqrt{\bar{x}^{T} x}=$ $=\|x\|_{2}$ and analogously $\left\|y^{\prime}\right\|_{2}=\|y\|_{2} ;$ this means that orthogonal transformations have left the Euclidean norm of vectors unehanged.

The orthogonal change of variables in both spaces X and Y caused the original transformation A to take a new diagonal matrix form:

$$
\begin{equation*}
\mathrm{y}^{\prime}=\mathbb{D} \mathbf{x}^{\prime} \tag{14}
\end{equation*}
$$

or written more detailed:

$$
\left.\begin{array}{c}
y_{1}^{\prime}=\sigma_{1} x_{1}^{\prime} \tag{15}\\
\vdots \\
y_{r}^{\prime}=\sigma_{r} x_{r}^{\prime} \\
y_{r+1}^{\prime}=0 \\
\vdots \\
y_{n}^{\prime}= \\
\vdots \\
0
\end{array}\right\}
$$

where r denotes the rank of A.

Using (15) it is easy to see that the unit hypersphere $\left\{\mathbf{x}^{\prime}:\left\|\mathbf{x}^{\prime}\right\|_{2}=1\right\}$ i.e. $x_{1}^{\prime 2}+\ldots+x_{n}^{\prime 2}=1$ after transformation by \mathbb{D} will take the form of an r-dimensional hyperellipse

$$
\frac{y_{1}^{\prime 2}}{\sigma_{1}^{2}}+\ldots+\frac{y_{n}^{\prime 2}}{\sigma_{n}^{2}}=1 \quad \text { if } \quad r=n
$$

or

$$
\begin{aligned}
& \frac{y_{1}^{\prime 2}}{\sigma_{1}^{2}}+\ldots+\frac{y_{r}^{\prime 2}}{\sigma_{r}^{2}} \leqq 1 \quad \text { and } \quad y_{r+1}^{\prime}=\ldots=y_{n}^{\prime}=0 \\
& \\
& \text { if } \quad \tau<n .
\end{aligned}
$$

One of the farthest points of the hyperellipse from the origin is that with coordinates $\left(\sigma_{1}, 0, \ldots, 0\right)$. If $r<n$, then the origin is a point of the hyperellipse. If $T=n$, the origin is not a point of the hyperellipse and one of its points nearest to the origin is that with coordinates $\left(0, \ldots, 0, \sigma_{n}\right)$.

If $r<n$ then both \mathbb{D} and $A=$ UDV T are singular matrices. If $r=n$ then $\mathbb{D}=\left\langle\sigma_{1}, \ldots, \sigma_{n}\right\rangle$ and \mathbb{A} are non-singular and it follows from (14) or (15) that $\mathbb{D}^{-1}=\left\langle\sigma_{1}^{-1}, \ldots, \sigma_{n}^{-1}\right\rangle$. Since $\mathbb{A}^{-1}=\left(\mathbb{U D} V^{T}\right)^{-1}=\left(\mathbb{V}^{T}\right)^{-1} \mathbb{D}^{-1} \mathbb{U}^{-1}=$ $=\mathbb{V} \mathbb{D}^{-1} \mathbb{U}^{T}$, hence the singular values of \mathbb{A}^{-1} are values $\sigma_{1}^{-1}, \ldots, \sigma_{n}^{-1}$.

Corresponding to any vector norm $\|\cdot\|$ for any real matrix A of order n the matrix-norm (Hilbert-norm) may be defined by the quantity

$$
\begin{equation*}
\|\mathbf{A}\|=\max _{\mathrm{x} \neq 0} \frac{\|\mathrm{Ax}\|}{\|\mathrm{x}\|}=\max _{\|x\|=1}\|\mathbf{A x}\| . \tag{16}
\end{equation*}
$$

Note that (16) implies

$$
\begin{equation*}
\|A \mathbb{x}\| \leqq\|\mathbb{A}\|\|x\| . \tag{17}
\end{equation*}
$$

The geometric interpretation of matrix norm (16) is that \|A\| is the maximum length of a unit vector after transformation by A. But, using the Euclidean vector norm $\|\cdot\| \|_{2}$ the unit hypersphere $\left\{\mathrm{x}:\|\mathrm{x}\|_{2}=1\right\}$ after transformation by A is seen to become a hyperellipse, where the length of the major halfaxis is equal to σ_{1}, hence

$$
\begin{equation*}
\|\mathbf{A}\|_{2}=\max _{\|\mathbf{x}\|:=1}\|\mathbf{A x}\|_{2}=\|\mathbf{D}\|_{2}=\sigma_{1} \tag{18}
\end{equation*}
$$

$\|\mathbf{A}\|_{2}$ is also called the spectral norm of \mathbf{A}.
In conformity with the above, the singular values of \mathbf{A}^{-1} are $\sigma_{1}^{-1}, \ldots, \sigma_{n}^{-1}$. Since at the same time $\max \left\{\sigma_{1_{4}}^{-1}, \ldots, \sigma_{n}^{-1}\right\}=\sigma_{n}^{-1}$, for $r=n$ we have

$$
\begin{equation*}
\left\|\mathbf{A}^{-1}\right\|_{2}=\left\|\mathbb{D}^{-1}\right\|_{2}=\sigma_{n}^{-1} . \tag{19}
\end{equation*}
$$

From these facts and their geometric interpretations if follows that the maximum possible deformation on the unit hypersphere after transformation by A may be expressed as ratio σ_{1} / σ_{n}.

On the other hand, for any square matrix A, the condition of A with respect to inversion and to the particular norm used by the condition number may be defined as:

$$
\operatorname{cond}(\mathbb{A})=\left\{\begin{array}{cl}
\|\mathbb{A}\|\left\|\mathbb{A}^{-1}\right\| & \text { if } \mathbb{A} \text { is non-singular } \\
+\infty & \text { if } \mathbb{A} \text { is singular } .
\end{array}\right.
$$

For the spectral norm it follows from (18) and (19) that

$$
\begin{equation*}
\operatorname{cond}_{2}(\mathbb{A})=\|\mathbb{A}\|_{2}\left\|\mathbb{A}^{-1}\right\|_{2}=\frac{\sigma_{1}}{\sigma_{n}} \geq 1 \tag{20}
\end{equation*}
$$

where σ_{1} and σ_{n} are maximum and minimum singular values of \mathbb{A}, respectively. Hence cond ${ }_{2}(\mathbb{A})$ is the measure of the maximum possible deformation of the unit hypersphere after transformation by A. For the sake of completeness let us note that for any non-singular symmetric matrix A, (20) implies cond $_{2}(A)=\left.|\lambda|_{\max }| | \lambda\right|_{\min }$, where $|\lambda|_{\max }$ and $|\lambda|_{\text {min }}$ are maximum and minimum eigenvalues in modulus of A, respectively.

It is easy to see why cond(A) plays a dominant role as a reliable measure of the conditioning (stability) of the solution of the system of linear equations

$$
\begin{equation*}
A x=b \tag{21}
\end{equation*}
$$

Assume \mathbb{A} to be no\#-singular hence (21) to have a unique solution $x=A^{-1} b$. Let us see how small changes in the data of Eq. (21) affect its solution. Perturbation of the elements of vector b alone leads to:

$$
\mathbb{A}(\mathbf{x}+\delta x)=\mathbf{b}+\delta \mathbf{b}
$$

and subtracting Eq. (21) from the last equation, we have $\mathrm{A} \delta \underline{\mathrm{E}}=\delta \mathrm{b}$ or

$$
\delta \mathbf{x}=\mathbf{A}^{-1} \delta \mathbf{b}
$$

Applying inequality (17) to the last equation and to Eq. (21) yields:

$$
\|\delta \mathbf{x}\| \leqq\left\|\mathbf{A}^{-1}\right\|\|\delta \mathbf{b}\| \text { and }\|\mathbf{b}\| \leqq\|\mathbf{A}\|\|\mathbf{x}\|
$$

The product of the two inequalities above is:

$$
\|\delta \mathbf{x}\|\|\mathbf{b}\| \leq\|\mathbb{A}\|\left\|\mathbb{A}^{-1}\right\|\|\delta \mathbf{b}\|\|\mathbf{x}\|
$$

so that

$$
\left.\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leqq \operatorname{cond}(\mathbf{A}) \right\rvert\, \frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|}
$$

This result shows the possibility of a large relative error in x even for a small relative error in \mathbf{b} if the condition number of \mathbf{A} is high.

The following simple example will illustrate the dangers inherent in solving ill-conditioned systems. Consider the system

$$
\left[\begin{array}{ll}
2, & 6 \\
2, & 6.00001
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
8 \\
8.00001
\end{array}\right]
$$

with exact solution $x_{1}=x_{2}=1$, and the perturbed system

$$
\left[\begin{array}{ll}
2, & 6 \\
2, & 5.99999
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
8 \\
8.00002
\end{array}\right]
$$

which has the solution $x_{1}=10, x_{2}=-2$. Here changes of 2×10^{-5} in a_{22} and 10^{-5} in b_{2} have caused a gross change in the solution.

The coefficient matrices described above are seen to be almost singular. But let us underline that in general the ill-condition of a matrix is independent of the smallness of its determinant. In fact, if, for instance $\sigma_{1}=\ldots=\sigma_{n}=$ $=10^{-30}$, then the singular value decomposition of A and the fact that determinants of orthogonal matrices are equal to ± 1 imply

$$
|\operatorname{det}(\mathbb{A})|=\operatorname{det}(\mathbb{U}) \operatorname{det}(\mathbb{D}) \operatorname{det}\left(\mathbb{V}^{T}\right)=\sigma_{1}, \ldots, \sigma_{n}=10^{-30 n}
$$

which is a very small number. Nevertheless cond $(\mathbb{A})=\sigma_{1} / \sigma_{n}=1$ hence \mathbf{A} is perfectly conditioned.

Summary

A constructive proof of the singular value decomposition theorem and its application to the numerical solution and analysis of some linear algebraic problems have been presented.

References

1. Golub, G. H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Numer. Math. 14, 403-420, 1970.
2. Forsythe, G. E., Moler, C. B.: Computer Solution of Linear Algebraic Systems. Englewood Cliffs, New Jersey, Prentice-Hall, 1967.
3. Ortega, J. M.: Numerical Analysis. Academic Press, New York, London 1972.
4. Ralston, A.: A First Course in Numerical Analysis. McGraw-Hill, New York 1965.

Dr. György Popper, Cand. Techn. Sci., Senior research officer, H-1521 Budapest

