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SiiJlgular V rune Decomposition (SVD) 

A real m X n matrix A with m n can always be ,uitten in the form 

n 'n 

A=UDV' = 
m 

where 

and D = <a1, ••• , an> denotes a diagonal matrix. The matrix U consists of n 
orthonormalized eigenvectors associated v,ith the n largest eigenvalues of 
M T

, and the matrix V consists of the orthonormalized eigenvectors of A.TA. 
The diagonal elements of D are the non-negative square roots of the eigen
values of _4.TA; they are called singular values of A. We shall assume the or
dering a1 ;::::: a2 an O. If A is a matrix of rank r, then ar > 0 and 
either r = n or O'r+l = O'r+2 = ... = an = 0, (i.e. the number of positive sin
gular values is exactly the rank of A). 

A constructive proof of SVD is given by the follovving. 

The product AT A is a real symmetric matrix of order n; moreover it is 
positive semidefinite, since 'with any vector x ~ ~ 0, xT AT Ax = (Ax)T (Ax) = 

= IIAxll~ > O. Consequently, all eigenvalues of AT A are non-negative and 
hence they may be denoted by ai, ... , a~, where 0'1 > ... > an O. Let T 

be the subscript for which ar > 0 and either r = n or ar +1 = ... = an = O. 
A real symmetric matrix is known to be of simple structure and hence 

there exists a real orthogonal matrix V such that 

VT AT AV = D2 (2) 
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-h D2 - < 2 2) . d' I d h I f V [ ] "Were - 0'10"" an IS lagon a an t e co umns 0 = V l' ... , V n 

are the orthonormalized eigenvectors of .4? A. Eq. (2) may be written in a 
more detailed form as: 

(2a) 

By equating the main diagonal elements in both sides of Eq. (2a) we have 
(AVif (Avi) = a; or 

i = 1, ... , n (3) 

and by equating non-diagonal elements, Av1, ••• , AVn are seen to be mutually 
orthogonal vectors. According to our pre,ious assumption 0'1 ••• > ar > 0, 
O'r+1 = ... = an = 0 it follows from Eq. (3) that 

o for i = 1, ... , T (4a) 

and 

AVi= 0 for i = T + 1, ... , n. (4b) 

Premultiplying the definition equations of the eigenvalue problem 

i = 1, ... , n (5) 

from the left by A, we have 

[AA[(AvJ = ar(AvJ, i = 1,.,., n. (6) 

Because of (4a), from Eq. (6) it follows that eigenvalues ai, ... , a; of AT A 
are also eigenvalues of AAT , and the mutually orthogonal vectors Av i , 

i = 1, ... , Tare eigenvectors of Ai>;? Hence vectors 

Av; 
Ui=--' 

ai 
i = 1, ... , r (7) 

are orthonormalized eigenvectors of AAT , since Eq. (3) implies Ilud 12 = 1, 
i = 1, ... , r. 

Next we shall use the following lemma: 
If A is a m X n matrix of rank T, then .4...T A and AAT are also of rank T. 

Proof: Since A is of rank T, there exist precisely n-T linearly independent 
solutions of the equation 

A...~ = O. (8) 

These solutions are at the same time non-trivial solutions of equation 

(9) 
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hence they are eigenvectors of A? A corresponding to its zero eigenvalue. 
Moreover zero is ATA's eigenvalue of multiplicity not smaller than n - T; 

hence the rank of AT A is at most To To show that the rank of ATA cannot be 
even smaller than T, suppose that zero is AT A's eigenvalue of multiplicity 
n - T + 1. Then there exists a vector y ~' 0 for which 

},,.TAy = 0 (10) 

and Ay -~ 0 (else y would be one among the eigenvectors obtained by solving 
Eq. (8)). Since Ay . ' 0 and y 0, we have IIAyll~ = yTl!?Ay > 0, which 
contradicts Eq. (10). Therefore the zero is an eigenvalue of multiplicity not 
higher than n - T, hence the rank of is at least T. SO we have proved 
that the rank of is exacth- r. 

Let B = hence our proof for holds also 
for AAT. 

From the lemma it foHo\,-s that matrix ATA of order n has the zero as 
its eigenvalue exactly of multiplicity n - r and matrix AAT of order m has 
the zero eigenvalue with multiplicity m T. Consequently ai, ... , a; are 
the non-zero eigenvalues of both matrices AT A and AAT. 

Similarly, AAT is a real symmetric matrix hence of simple structure. 
Thus AAT has an orthogonalized eigensystem U I ' ••. ,Urn' For eigenvectors 
Ui' i = 1, ... , T corresponding to positive eigenvalues holds (7). Let U be 
the m X n matrix "with columns U I ' .•• ,Un' orthonormalized eigenvectors of 
AAT corresponding to eigenvalues ai, ... , a;. Thus UTU = In' 

From (7) and our previous considerations it foHows that 

i = 1, ... , n 

or in form of matrix equation: 

AV = UD. 

Finally, pre-multiplying this equation from the right by the transpose of 
orthogonal matrix V results in Eq. (1). 

A variant of thc SVD theorem for square matrices has been proved by 
FORSYTHE and MOLER in [2]. 

ALGOL procedures for computation of the singular values and complete 
orthogonal decomposition of a real rectangular matrix based on very effective 
numerical methods have beeu given by GOLUB and REINSCH in [1]. FORTRAN 
variants of the mentioned procedures have been developed at the Department 
of Civil Engineering Mechanics, Technical University, Budapest. 

These procedures may be applied for the numerical solution of a high 
number of problems; some of them , ... ill be presented in the following: 
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Computation of the pseudoinverse of A 

Let A be a real m X n matrix. An n X m matrix X is said to be the pseudo
inverse of A if X satisfies the following four properties: 

AXA= A; 

(AX)T = AX; 

XA_X = X; 

(XA)T = XA. 

The unique solution is denoted by A +. It is easy to verify that if 
A = then A + = VD+UT where D+ = <at, ... ,a;;> and 

for ai >0 
for 

Thus A +, the pseuo.omverse of A, is easy to compute if the SVD of A has 
been accomplished i.e. if matrices U, D and V are known. 

Solution of homogeneous equations 

Let A be a matrix of rank T, and suppose we wish to solve 

for i = T + 1, ... , n. 

Let 

Then, since AVi = uiui (i = 1, ..• ,n), and ur +l = ... = Un = 0, we have 

AVi= 0 for i = T + 1, ... , n 

and Xi = vi' 
If the rank of A is known, then the system of linear homogeneous equa

tions may be solved by a simpler algorithm. 

Solution of linear least squares problems 

Let A be a real m X n matrix ,..,-jth m > n and let h be a given vector 
,..,-jth m elements. A vector x ,vith n elements has to be determined so that 

lib - Axl i~ = min. (11) 

If rank T of A is less than n, then there is no unique solution. Thus we 
require amongst all x which satisfy (11) that 
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and this solution is unique: further 

x = A+h = VD-,-DTh. 

This statement will be proven by the following. Since \1 b Ax II~ = 

= (b - Axf (h - Ax), the condition for minimum ! 11 b - Ax 11; = 0 leads to 

h. (12) 

Thus our problem is equivalent to solving Eq. (12). 

Substituting A = into Eq. (12) we obtain 

and since V is orthogonal 'Ne have 

h. (13) 

If A has a rank T = n, then D is non-singular and so 

x = VD -1 Qjl h = VD + Qjl b = A + h 

is the unique solution of our problem. For r < n, Eq. (13) may be re'written 
in partitioned form: 

[-~~\-~-J [ Yr 1 = [-~-l-~-l [ Cr 1 o ; 0 Ys 0 I 0 Cs 

where 

yTX=Y=[~:J and UTh=c=[::l 

From the partitioned form of Eq. (13) it follows that Yr may be obtained 
as the unique solution of equation D; Yr = Dr Cr and Ys may be chosen arbitra
rily. If Ys = 0 then obviously IIyll2 = min. TheJa also Ili112= min since 
IIil12 = IIYyl12 = (yTyTYy)1/2 = lIy112' 

Writing equations 

in the form 

or 

Yr = D;:-lCr 

Ys = 0 
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leads to 
i = VD+UTh = A+b 

and the proof is complete. 
Note that if matrix U is not needed, it would appear that one could 

apply the usual diagonalization algorithms to symmetric matrix AT A which 
has to be formed explicitly. Ho,,'ever, the computation of AT A involves 
unnecessary numerical inaccuracy. For example, let 

then II 0:2 
ATA = l' 

SO that ul(A) = , u2(A) = 10:1. If 0:2< e, the computer precision, the 

[1 IJ computed has the form 1:: 1: and the best one obtained by diagonaliza-

- (7j -tion is uI(A) = V 2, U(A)2 = O. 

Some properties of square matrices 

Consider a linear mapping A : X --+ Y bet,,,-een two n-dimensional spaces 
X and Y, where A is represented by a square matrix A of order n. This means 
that to every x E X there is a y = A.x E Y. Using the singular value decomposi
tion of A we have 

or 
y = Ax = UDVT x 

lJTy = Dvrx. 
-.-- --

y' x' 

By x' = V T x and y' = UT y we have only introduced orthogonal change of 
variables in spaces X and Y. Then Ilx'112= IIVT xI12=VXTVVTX= VxTx = 
= 11 X 112 and analogously 11 y'I12 = 11 y 112; this means that orthogonal transfor
mations have left the Euclidean norm of vectors unchanged. 

The orthogonal change of variables in both spaces X and Y caused the 
original transformation A to take a new diagonal matrix form: 

or wTitten more detailed: 

y' = Dx' 

~l = fIXlJ 
Y; = urx; 

~;+l =? I 
Y~ = 0 

where r denotes the rank of A. 

(14) 

(15) 
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Using (IS) it is easy to see that the unit hypersphere {x': l!x'112 = I} 
i.e. X{2 + ... + X~2 = I after transformation by D will take the form of an 
r-dimensional hyperellipse 

YJ.2 I 
-i··· ay 

or 

1 and Y;+l = ... = Y~ = 0, 

if r < n. 

One of the farthest points of the hyperellipse from the onglll is that ,vith 
coordinates (a l , 0, ... ,0). If r < n, then the origin is a point of the hyper
ellipse. If r = n, the origin is not a point of the hyperelIipse and one of its 
points nearest to the origin is that , .. ith coordinates (0, ... , 0, an)' 

If r < n then both D and A = UDyT are singular matrices. If r = n 

then D = (aI' ... , an> and A are non-singular and it follows from (14) or 
(15) that D-l = (all, ... , a;;-l>. Since A-I = (UDyT)-l = (VT)-lD-l U-I = 
= VD-I UT, hence the singular values of A-I are values all, ... , a;;-l. 

Corresponding to any vector norm 11.11 for any real matrix A of order n 
the matrix-norm (Hilbert-norm) may be defined by the quantity 

II
A I .1!A.xll - !A " .~[ = max-,-, -= max I i·'i..Xfi· 

x"",G Ilxli !!x!i=l 
(16) 

Note that (16) implics 

ilAxli I
' A " I I I I Ifti I1 XI • (17) 

The geometric interpretation of matrix norm (16) is that r IAII is the maximum 
length of a unit vector after transformation hy A. But, using the Euclidean 
vector norm 11.112 the unit hypersphere {x : II x 112 = I} aftel' transformation 
by A is seen to become a hyperellipse, where the length of the major half
axis is equal to aI' hence 

IIAI12 = max 1 1·4-x l 12 = IIDII2 = al' 
11"11,=1 

(18) 

IIA 112 is also called the spectral norm of A. 

In conformity with the above, the singular values of A -1 are all, ... , a;;-l. 
Since at the same time max {ai,{ ... , a;;-l} = a;; 1, for r = n we have 

IIA-III' 'iD-Ill -1 I 2 = 1 2 = an . (19) 

From these facts and their geometric interpretations if follows that the maxi
mum possible deformation on the unit hypersphere after transformation by 
A may be expressed as ratio aI/an-

6 
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On the other hand, for any square matrix A, the condition of A ",ith 
respect to inversion and to the particular norm used by the condition number 
may be defined as: 

cond (A) = f IIAI i IIA -111 
l +00 

if A is non-singular 

if A is singular. 

For the spectral norm it follows from (18) and (19) that 

cond2(A) = IIA llz1IA-1112 = :1> 1, 
n 

(20) 

where 0'1 and all are maximum and minimum singular values of A, respectively. 
Hence cond 2(A) is the measure of the maximum possible deformation of the 
unit hypersphere after transformation by A. For the sake of completeness 
let us note that for any non-singular symmetric matrix A, (20) implies 
condz(A) = j).lmax/p.lmin, where 1}.lmax and I?!min are maximum and minimum 
eigenvalues in modulus of A, respectively. 

It is easy to see why cond(A) plays a dominant role as a reliable measure 
of the conditioning (stability) of the solution of the system of linear equations 

.4.x = h. (21) 

Assume A to be non-singular hence (21) to have a unique solution x = A-I h. 
Let us see how small changes in the data of Eq. (21) affect its solution. Pertur
bation of the elements of vector h alone leads to: 

A(x + bx) = h + bb 

and subtracting Eq. (21) from the last equation, we have Abx = bh or 

bx = A-1bh. 

Applying inequality (17) to the last equation and to Eq. (21) yields: 

floxll < IIA-11111 8b ll and Ilbll < IIAllllxll. 

The product of the two inequalities above is: 

11 ox 1111 b 11 IIA i11lA- 1 1l11bb ll Ilxll 

so that 

~< cond (A)lllbbll. 
II x ll ~ Ilhll 

This result shows the possibility of a large relative error in x even for a small 
relative error in h if the condition number of A is high. 
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The follov,.ing simple example will illustrate the dangers inherent in 
solving ill-conditioned systems. Consider the system 

[
2, 

2, 
6 1 [Xl] [8 ] 
6.00001 J X 2 = 8.00001 

with exact solution Xl = X 2 = 1, and the perturbed system 

[~: ~.99999 ] [ ::] = [~.00002 ] 
which has the solution Xl = 10, X z = -2. Here changes of 2 X 10-5 in an 
and 10-5 in h2 have caused a gross change in the solution. 

The coefficient matrices described above are seen to be almost singular. 
But let us underline that in general the ill-condition of a matrix is independent 
of the smallness of its determinant. In fact, if, for instance a l = ... = an = 

= 10-3°, then the singular value decomposition of A and the fact that deter
minants of orthogonal matrices are equal to : 1 imply 

I det(A)! = det (U) det (D) det (VT) = ar. ... ,an = lO-30n, 

which is a very small numher. Nevertheless cond 2(A) = aI/an = 1 hence A 
is perfectly conditioned. 

Summary 

A constructive proof of the singular value decomposition theorem and its application 
to the numerical solution and analysis of some linear algebraic problems have been presented. 
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