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1. Introduciion

The altering state analysis of a structure involves relationships between
the prescribed action of the structure (i.e. the load and the initial strain)
and the response generated by the system (i.e. the displacement and the stres-
ses) [9]. Similar rheology problems of elastic structures have been studied
in detail since long, while the behaviour of structures. especially that of pre-
stressed concrete is essentially influenced by creep and relaxation [5].

Survey of the special literature proves that a secientific team has devel-
oped in this country in the last fifteen vears, concerned with the altering
state analysis of perfecily elastic spatial structures. The methods suggested
by this team have been widely spread in practice mainly in computing centers
[7]. On the other hand, linear visco-elasticity has a well developed literature
based ultimately on numerical methods [11] [12]. that fit mainly the solution
of continuum problems [4]. So it seems necessary to synthetize the results of
both trends.

This paper is intended to generalize the basic equations of skeletons
from Hookean ones to structures consisting of bars each cheying a Boltzmann—
Tolterra-type [2] constitutive equation.

The validity conditions of Picard’s iteration [1] for the altering state
equation are proved, as well. The constitutive law of concrete creep contained
in Hungarian Codes [10] meets one condition.

The effect of permanent action on a gridwork of inhomogeneous construc-
tion will be illustrated by a numerical example. The problem has been solved
by making use of numerical Laplace-retransform [3]. The procedure works
well under the given particular circumstances. and leads to reasonable conse-

quences [8].

2. Integral equations of the skeletons

2.1 The basic equation

The main altering state equation of the structure based on the validity
of the first-order theory is
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[9], where

t — time

q(t) — load vector

d(¢) - initial strain

u(?) - unknown displacement
s(f) — unknown stress

G* — equilibrium matrix
Ag(t) — strain due to a stress.

It has to be mentioned that the rheological behaviour of the material
makes the variables time-dependent even if forces of inertia are neglected
(quasi-static effect). Besides, Ag(t) allows any proper constitutive relationship,
finally (1) is assumed to fulfill certain scleronomic boundary conditions.

2.2 The constitutive equations of uniaxial sirain

Creep and relaxation are the most important properties of visco-elastic
behaviour. They are interdependent thus both of them suit to describe the
criteria of linear visco-elasticity. Therefore the Boltzmann—Volterra constitu-
tive law of uniaxial state of stress in the elementary strength of materials may
be stated either as

e(t) = Y, ¢) o(t) + j K,(t, &) o(t') di’ 2)
0
or as

o(t) = Y (1, 1) e(t) + { K (t. ¢') &(¢') d’ (3)
0

where Y (t,t") denotes the creep compliance effect at a time ¢ due to a load
acting since the instant ¢'; Y, (¢, ¢") is the relaxation modulus; finally

K e) =20 gy = el 8D ()
dit —t') dt —1t')

are the creep and the relaxation kernels, respectively. These formulae valid
to normal stresses can be adopted to the case of pure shear, as well. For sake
of simplicity, the quotient of the creep compliances and those of the relaxation
moduli in shear and in normal stress, respectively, will be assumed to be
constant.

Y. —oY, ; Y.——VY,. (5)

Y T o

This is not an essential assumption.
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2.3 Stress resultants and displacements of a bar

213

Flexibility equations of a straight-axed bar made of a homogeneous
viscoelastic material are easy to develop taking relationships (2) to (5) and the

principles of the elementary strength of materials into consideration.

With notations in Fig. 1 aud considering axial stress:

t

L L, o
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and
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0
respectively. Furthermore, in case of bending,
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J 8,07y ML(E; . t") dt’

(8)

)

respectively. M, is the bending moment varying along the bar axis, fw; is
the variable relative displacement. I;; , is the inertia of the cross section re-
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ferred to the 7-axis. Similar relationships are valid in torsion, too. Finally,
force P;, () acting at the bar end causes a relative displacement:

H
ls" 7 I ?
A p(t) = Y it ) —25 P (2) f K, ult. ) P e de'. (10)

Jikm Jikym 5

2.4 The flexibility integral equation and the relationship of the structure stiffness

The flexibility equation of the bar is a matrix relationship describing
the vector of the relative displacements at the bar end by the vector of ihe
stress history. On the other hand, the stiffness equation describes the vector
of the respective stresses by the vector of the history of the relative displace-
ment. Suppose the bar conneeting nodes j and % not to be direeily loaded.
Let the vector of the relative displacement between the bar ends be

Ay 6(2) N
_/hv,,-,;;m(f)
Aw; . (2)
A9 1. £(1)
A9, (1)
_AB (1) ]

—
o~
—
—_~
[
foond
—t

Be ij,}, the flexibility matrix of the bar provided Young's modulus
E =1 and let

-1
Sj,l: = Ejr

(12)

be a stiffness matrix. Furthermore, develop the variable flexibility and stiff-
ness matrices as

Filt, 1) = Y, 1) ﬁj,k (13)
Siult: 1) = Y 5, 54(t. 2) §j,l-:' (14)
In addition, apply the matrix kernels

Kt 1) = Kyt ) I
BU}j,}x( ) - I\a ]l;( ,) I (15)

as well (I stands for the unit matrix).
Thus the matrix integral equation of the bar flexibility is written as

t
Agiit) = Fi (e 1) s; () +F, S K, n(t. 1) s, (") dt’ (16)
0
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while the matrix integral equation of the stiffness states
t
88) = St 1) Agy(t) + Sj [ Koyt t) dggult) dt'. 17)
0

Eqs (16) and (17) are valid in turn to each bar in the structure separately.
Making use of hyper-diagonals, they can be compiled into hypermatrix equa-
tions containing as many block equations as there are bars. Thus the flexi-
bility and the stiffness integral equations of the complete structure may be
written in forms (16) and (17), respectively, just subscripts j and k are to be
omitted.

2.5 The integral equaiions of the altering siate

The first integral equation of the altering state for a visco-elastic skeleton
structure can be developed by combining the modified formula (16) and the
basic relationship (1). Rearranged

R0 8 O ) R

This formula can be reduced in a manner guite similar to that used in
the theory of perfecily elastic structures, where matrix equations of the equi-
librium method and the compatibility method are developed by partitioning
the altering state equation.

The procedure delivers the matrix integral equation of the equilibrium
method:

M(t, t) ult) ﬁ/(tt u(t’)dt’' = q(t) — H tt)é(t)—{itt)d(t)df (19)

0
where

G*S(t.t) G = M(, 1) G6*SK (1, 1) G = V(1 t') (20)
G* SK

G* 8(s. t) = H{z. 1) S, 2y = It t).
Developing the integral equation of the compatibility method first,

rows and columns may be suitably reversed, thus (1) holds in a partitioned
form

G G T u(®) q(2)
G, si(t) |+ | dga@) |+ | dyr) | =0 (21)
G, $o(2) Ag,(?) do(2)

8,(t) denotes the stress vector of the release system, s,(z) stands for the redun-
dant stresses while the remaining blocks correspond to those of the stresses.
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The compatibility relationship will be written in a similar manner, that is, in
partitioned form:

Agy(t) = Fy(t, 1) 8,(t) + F fKa 12, 27) 84(2) dt’ (22)
and
t
Ag,(t) = Fu(2, ¢) f () s,(t) dt
g
respestively.
Introducing matrices
w1
[—6,6;* =D ; [Gl } — N (23)
results in the integ equation of the force method:
t
DF(t,t) D*s,(¢) + D f K, (t, ¢") D¥ s,(¢") dt’ +
t
- Dd(r) — DF(s, ¢) N* g(z) — D?S Kz, t)N*q(t') dt' = 0. (24)
0

F(t,t), ¥ and K,(,¢) denote hyperdiagonals compiled from the corresponding
blocks.

3. Computation of the state variables

3.1 The method of iteration and convergence conditions

There are several methods for the solution of the hypermatrix integral
equation of the altering state, here the successive iteration sirategy will be
discussed. Detailing the formulas of the procedure the conditions of its con-
vergence are to be proved. Introducing notations

S .
A1) = [ ¢ E t>} v _[ ?Ke(t,t')}
(1) — u() q(?) (25)
“ L(t)] ”'[ i)
leads to the concise form
Alt, 1) x( fW t,t)x(t’)dt’ + b(t) = 0 (26)

of the original relationship. The following iterative method is based on step-
by-step fictitious elastic solutions obtained by applying the actual nonsingular




ELASTO-VISCOUS SKELETONS 217

value of matrix A(f,7). Every step of the procedure adopts the adequate
form of the response obtained in the previous step as vector x(¢') at each in-
stant ¢. Thus we have the following algorithm:

x(8) = 0; =x,(2) = — A, £)"1b(2) —-th(t, )1 (e, ¢) x;_,{¢) dt
0

E=12,...,n; n— oo). 27
Provided it converges, the approximate solution of Eq. (26) is established.

Consider the m-th iterative value of the solution, making use of (27):

%,(6) = —A(Z, 1) "1b(z) - f A, )~ 1 W(e, ¢') A(t’, ¢")~1B() i’ —
ot t'O tln—2)
—e - (— j [0 § A2 W, t) A, )2 W (@', ¢)...
500 d
AP, (D) m 1 W (-, 4 (-D) ¢ (28)
XAEO-D, 1 -D) -1 p(s( D) gy di” L. ds -,
with parameters ¢’’,¢""", ..., §7 -0,

Convert the sequence x,(t) into a series
2,(1) = x,(8) 4 x,(8) — =, (8) + ...+ x,() — x,_,(t). (29)

If ||x,(t)|| is bounded, the procedure converges. The analysis is based
on the norm of the difference vector x,.(t) — x,_,(t). Recalling (28):

[ tln—2)
2,(0) — 5@ = (=1 [ [ (o0 [ Al0) "1 W(e,t)A(', ¢) 1 W', ") .
000 0
CA(E D), (1=2) — 1\ (1 -2), =D 5 (30)
XA@TD, (1 =Dy-1h(z=D) dg’ dt” . . . e D,
Obviously, the inverse matrix of A occurring in the procedure has to

be considered as a bounded function, for A must not be singular at any instant.
Let the upper bound of the appropriate norm function be o i.e.:

HAG )] < @ (31)

In addition, suppose that also all the creep compliance kernels K. ;. .(2, ")
of the bar elements in the structure are absolutely bounded, however variable
t and parameter ¢’ had been selected.

| Ko jlts 8 |5 1Koy a8 80 s o o v | Kyt @2, 80 D) | e (32)
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The maximum value of these bounds points to:

WG )] ([WEe 2, @) || < [[F], (33)
where ||F|l is obviously finite. Namely, for instance,
W )| = KE Kt ), FoK @), LB K )] (34)

subscripts referring to the bar number. Hence:

WG 1)1 = [ S 11E Kete ) - (35)
_]:
and
FE )| = 1K, . 0) {IF] < = |[Fl (36)

thus

W< SiEe (37)

i=1

And since

|Bf = |[FLFo . B (38)

(33) is proven. Finally. suppose also the norm of the prescribed vector b(r)
to be bounded:

1@ < B (39)

Now, since (30) contains A~! n times while W only (n — 1) times, we
obtain
fn—2)

{

t Pt
Hx() == < TP [ { 2o R 1 gdede L di D, (40)
000 ¢

The integrand in the right-hand side of (40) is constant, besides
o o

tror tin—3)
tn—l

‘N [ { . J de'de” ... "D = (41)
J ). (n — Dt
0 0 0 1]

thus
(|| E|jt)n-1

I{Xn(t) Xn—1 t)” < 'xﬂ B H ) (-12)

Let
ox |Fll = 7. (43)

then also
n—-1

158) — 5pa(0) || < p 2 (44)

(,_1)1
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Furthermore using (42), (29) delivers

t 12 . tn-l
S T

1! 21 7T (=)

15:(6) ]| < B [1 +3 ]éaﬁe“- (45)
Recalling the intermediary stipulations, conditions of the absolute and
uniform convergence can be stated to be obviously sufficient.

If
a) the fictitious instantaneous values of all the elastic displacements and
stresses can be determined at any instant throughout the analysis hence
al) the skeleton is other than hypostatic,
a%) it contains no completely compliant part thus the creep compliance
function of each bar is bounded,
a’) provided the struciure iiself is hyperstatic it contains ai leasi one primary
system whick is noi completely stiff.

furthermore if
b) all the creep compliance kernels of each bar material are absolutely
bounded,
¢) norms of both the load vector and the initial strain vector are bounded
up to the end of the analysis,

then algorithm (27) describes a convergent procedure.

3.2 Concrete in ageing

Dischinger’s theory describing the creep of ageing concrete fulfills those
among the conditions above that concern the creep compliance function.
Dischinger’s theory is founded basically on three assumptions:

a) In case of permanent stresses, that is, in the proper case of creep,
the material obeys an exponential law.

b) Storage of the material increases the initial stiffness (also describable
by an exponential function of time).

¢) Besides, ageing reduces the visco-elastic after-effect to be taken into
consideration by depressing the compliance curves along the time axis.

Hence the rheological function is of the form:

AN 1 EO(O) _ 4 4
Yo ¥) = g (s T PO — ) (46)
the creep function being:
plt) = A(L— ™). (47)

The initial modulus of elasticity is expressed as:

Ey(t') = [Eo(o=) — Eg(0)] (1 — ™) 4 E((0) (48)
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with
Ey0) >0 Eyloo) — Eyf0) >0 40 B>0. (49)
Substituting (47) and (48) into (46) we obtain
1 1 , )
Y, (2 t) = 4 A(e~t —e™) (50)
Eo0) | 1, Eolo) —Bo0) ) —ary )

1+

E(0)

and considering (49), (50) appears to be a bounded nonzero quantity in the
interval (0, o=).

The creep compliance kernel belonging to (50) is

K (if. i’) —_ 1 {EO(OC) '—EO(G) Be~ 5 _ + ‘4e—f’}
o E(0) E(0) {1 o Eo(e=) —E(0) (1 —e-B7) J
| E«0)

(5%)
again bounded in (0, o<) and vanishing for ¢’. Thus, iteration suits in case of
the concrete of r.c. skeletons.

3.3 Analysis of a simple gridwork

The constitutive law of Dischinger’s theory can be reduced to that of
the three-parameter solid subject to permanent load. Now the matrix integral
equations of the altering state can be turned via Laplace-transforms into the
equations of the matrix displacement method and of the matrix force method
[6], these consist, however, of variable vectors and matrices. In case the
structure has many degrees of freedom, analytic retransformation is cumber-
some, next to impossible. Therefore one of the numerical methods of retrans-
formation has to be applied, essentially solving the transformed equation start-
ing from suitably selected values of the independent variable. Results will
undergo Lagrangion interpolation leading to approximate polynomials similar
to the Laurent-series, easy to retransform.

The procedure was tested on the problem of an elastically supported
reetangular gridwork with significant stiffness to twisting. The calculations
were carried out on the computer CDC 3300 of the Hungarian Academy of
Sciences [8].

The arrangement of the gridwork is shown in Fig. 2. The structure con-
gists of two main girders of rectangular cross section and three cross-beams.
The main girders have a cross section of 0.5X1.0 m and the cross-beams
0.4<0.6 m.

The gridwork supported at the four corner nodes models a bridge strue-
ture. In addition, 7 other fictitious mid-bar nodes were selected.
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~485i0¢cm

The supports were supposed ideally elastic with a uniform spring con-
stant of 50000 kIN/m. The constitutive laws of the material of the longitudi-
nal girders differed from those of the cross-beams, so the structure was
considered as a heterogeneous system of three-parameter solids. The constitu-
tive equations of the bars conform to the particular case of concrete creep
under permanent stress involved in the Hungarian Code for Highway Bridges.

The initial modulus of elasticity of concrete was calculated from the
cube strength as:

K EN
E,= 5500 ————— E)l=—. 52
(=0 B = 52)
The compliance funetion
Y1) = _; (14 ge(l— )} (53)

0

is applied, as well. ¢, is a constant depending on the concrete age and connected
with the phenomenon of ageing, but irrelevant to Poynting—Thomson mate-



rials. The value of the delay factor amounts to 0.12

ROLLER

mont

. Longitudinal

main girders and cross-beams are made of concrete grades B40 and B28 in-
volving ¢_ == 2.0 and ¢_ = 2.55 corresponding to storage times of 28 days
and 7 days, respectively. The modulus of elasticity G, was calculated using
a Poisson’s ratio of 1/6.

Table 1
Node | 105 - oy 16w,
1 2.09094 3.45217 ~-0.568019
2 1.33967 2.25757 —0.250000
3 2.09094 1.06297 0.068019
4 3.10991 3.02080 —1.568014
5 3.10991 0.75798 —0.212895
6 4,12887 1.42757 —2.264310
7 5.09290 0.78485 —1.309999
8 4.12887 0.14217 —0.355688
9 3.84031 —1.57515 ~2.287612
10 3.84031 —0.53697 —0.287842
11 3.55174 —3.45021 —1.431981
12 3.33899 —2.16060 —0.750000
13 i 3.55174 —0.87100 —0.068019
Table 2
Node 10° - g 10° - g,
1 2.73204 9.17970 —0.525008
2 0.69654 5.93939 —0.250000
3 2.73204 2.69908 0.025008
4 5.06509 7.718819 —3.156912
5 5.06509 1.88150 —0.685814
6 7.39815 2.92791 —4.851046
7 10.70878 1.52121 —2.929998
8 7.39815 0.11452 —1.008951
9 5.93660 —6.20409 —4.493926
10 5.93660 - 1,79893 —0.732434
11 4.47505 —11.87208 —1.474992
12 3.19991 —17.31515 - 0.750000
13 447505 —2.75822 —0.025008
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The load is due to a single concentrated permanent force acting at the
fictitious node No. 9. Let us examine the nodal displacements and the stress
resultants.

Some of the results of the computation are presented below.

Elements of the nodal displacement vector at times ¢ = 0 and ¢t — <o
have been compiled in Tables 1 and 2, respectively,in radian and cm units.
The displacements have been determined by making use of appropriate moduli,
that is,

E(0) = 3208.333 kN/em® and E(=c) = 903.756 kN/em? for the cross-beams.

The displacements at ¢ = 5 years obtained by 10-point interpolation
are shown in Table 3.

Tabie 3
Node | 100 gy ; 10° oy
1 2.73807 9.16176 - —0.52743
2 0.71225 5.03099 | —0.24993
3 273802 2.70021 0.02755
4 | 5.06382 777279 | —3.15418
5 1 5.06383 1.88358 —0.68371
6 | 7.38958 2.92051 —4.84475
7 10.69397 1.51969 —2.92626
8 7.38965 0.11883 —1.00775
9 5.92681 —6.19709 —4.48737
10 5.92684 179235 —0.73289
11 4.46400 —11.85629 —1.47230
12 3.18549 | —7.30351 —0.74995
13 4.46410 t —2.75070 —0.27597

!

The results have been plotted in graphs: Fig. 3 contains the elements
of the vertical displacements along the bar axis in both the initial and the
final states, drawn in broken and in continuous line, respectively. Figure 4 shows
the histories of the displacement components ¢, .. ¢y, ,, vs. and v, , to semilog
scale. In Fig. 5, bending moments on the bar axes have been plotted in initial
and final states.

The following conclusions have been drawn:

a) Bach displacement developed similarly as the creep of Poynting—
Thomson-type materials. The values at the first and the last selected instant
caleulated by the approximate method are in fair agreement with those obtained

7
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in a quite other way for the initial and the permanent stages, respectively.
Also they remain within the bounds assigned by these latter (compare Tables
2 and 3). So the approximate computation delivers fairly realistic results and
can be considered as suitable. Also the interval of observation has been correct
and it proves really typical.

b) There is no significant difference between the initial and the perma-
nent stress values. The bending moment diagram of the main girders — of
outstanding importance —— develops in such a way that the loaded main
girder carries a somewhat greater part of the load in the steady than in the
initial state. Both circumstances point to the fact that the transverse load
distribution of medium degree is little influenced by either the heterogeneity
of the system or the creep processitself. Or else, interaction between the longi-
tudinal girders decreases since the cross-beams are more prone to “yield”
than are the longitudinal ones. Mind that the supports are rather stiff, besides
the difference between the district creep parameters ¢, is negligible, the
results obtained are considered reasonable.

Summary

Basic equations of structures of visco-elastic bars described by a Boltzmann-Volterra-
type constitutive equation each can be generalized, provided the convergence conditions of
Picard’s iteration applied to the solution of the altering state equation are met.

The constitutive law of concrete creep involved in the Hungarian code usually means
fulfillment of these conditions.

The theory has been applied on the analysis of a gridwork subject to a permanent
load. The problem has been solved by means of a numerical variant of Laplace-retransform.
The procedure works well under certain particular circumstances as well and it yields reason-
able conclusions.

7*
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