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I. Introduction 

The finite strip method serves for the analysis of thin-walled, prismatic 
folded plates made of a linear elastic, orthotropic material subject to small 
displacements. The structure is divided into strips parallel to its generatrices 
by means of the so-called nodal lines (Fig. 1). For each strip, shape functions, 
products of two functions ·with one variable, are assumed, one comprising 
unknown generalized displacements of the nodal lines, the other consisting 
of interpolation polynomials. Nodal line displacements are determined from 
the equilibrium equation system of line forces, to be deduced according to the 
principles either of the virtual displacements or of the minimum potential 
energy. The shape function should be kinematic ally admissible. Thus, this 
procedure is a generalized displacement method. 

In conformity with the shape function, the finite strip method may be 
considered as combined from an analytic method and the method of finite 
elements. The analytic method is decided by the form of the nodal line displaceQ 

ment function. Two fundamental cases may be distinguished [1], [2]: 

a) Orthogonal function series, e.g. Fourier-series; 
b) Non-orthogonal function series. 

In the Fourier-series alternative of the finite strip method, orthogonality 
of shape functions causes the linear algebraic equation system to decompose 
to small equation systems, main advantage of the finite strip method. 

Originally, the method has been developed by applying Fourier-series 
satisfying homogeneous boundary conditions for strip ends. In the follo"\Ving, 
the possibility of satisfying the most frequent strip-end inhomogeneous bound
ary conditions is investigated, keeping the Fourier-series shape functions, 
hence without renouncing of the main advantage of this method. 
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2. Writing boundary conditions hy Galerkin's method 

2.1 Boundary conditions of the plane stress problem 

Constitutive equation of linear elastic orthotropic materials in plane 
stress in concise, and in detailed matrix form is: 

(1) 
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respectively, where 

- normal stresses along x and y, resp.; Ux and ay 

'ixy - shear stress component along y acting on a section with normal x; 

ex and ey 

Yxy 

D ilc 

- normal strains along x and y, resp.; 
- shear strain for normals x and y; 
- well-known coefficients of the generalized Hooke's law 

(i = 1, 2, 3; k = 1, 2, 3). 

Strain-displacement relationships of the plane stress: 

(2) 

Displacements along x, y and z will be denoted by u, v and w, and their 
derivatives with respect to x and y ,vill be indicated by subscripts, e.g.: 
&u &'2u. . . 

= U x' -- = U xv' subscrIpts x and y of other quantltIes (e.g. a, e, q) refer to 
ox ox&y' . ~ 

the direction rather than to the derivative (Fig. 2). 

> A 

it : 
a 

Fig. 2 

Lame's equations for orthotropic materials in plane stress: 

Du Uxx + (D12 D 33) v xy + D33 U yy + qx = O} 
DZ2 Vyy + (D12 + D33 ) llxy + D33 Vxx + qy = 0 

(3) 

where qx and qy are specific body forces along x and )', resp. 

Galerkin's method is a special case of the method of weighted residuals 
'where arbitrary increments of approximate solution functions are chosen as 
weighting functions [3]. Accordingly, orthogonality conditions of differential 
equation system (3) for the approximate solution of u and v can be 'written 
for a rectangular plate of thickness h, with sides 0:::::: x ::;:: a, 0 < Y b, 
subject to in-plane forces (see Fig. 2): 

b a 

h S S {Dll Uxx + Dl2 Vxy + D33 Vxy + D33 Uyy + qx} QU dx dy + 
o 0 

b a 

+ h S S {D22 Vyy + D12 llxy + D33 u xy + D33 VXX + qx} QV dx dy = 0 
o 0 

(4) 
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where DU and DV are arbitrary small increments of functions U and v, resp., 
called virtual displacement systems in engineering mechanics. 

Integrating by parts "v-jth respect to x the first two terms in the first 
figure brackets, and the second two terms in the second figure brackets of 
Eq. (4), and integrating by parts with respect to y the other terms comprising 
derivatives of II and v leads - after arrangement - to: 

b 

[h S {(Du U x + Du vy) DU + D33 (uy 
o 

(5) 

where terms in square brackets contain boundary conditions x = const. and 
y = const.; since Eq. (5) has to be satisfied for any possible OU and OV, the 
terms containing DU and DV must separately vanish at boundaries. First two 
terms of (5) containing a double integral are plainly the internal and external 
virtual work. Galerkin's method is known to lead to equilibrium conditions 
written as the principle of virtual displacements, and to the boundary condi
tions to be satisfied in problems of structural mechanics. 

Chapter 3 being concerned ,dth analysis of boundaries where x = const., 
let us ,uite the relevant boundary conditions: 

and 

For x = 0 or x = a, 

b 

h S (Du U x + D12 v y ) OU dy = 0 
o 

b 

h S D33(lly + vJ OV dy = 0 
o 

b 

i.e. h S U x olldy = 0 
o 

b 

i.e. h S Txy Dvdy = O. 
o 

(6) 

(7) 

Let us consider how integrals (6) and (7) can be zero for all possible 
DU and DV, and what is understood by possible virtual displacement systems 
DU and ov. Two basic cases may he realized: 

a) There is a prescribed displacement at the considered edge: for instance, 
v = v(y) for boundary condition (7). Now, Txy " 0 ("reactions"). Integral 
(7) can only be zero if at the edge, locus of prescribed displacement, DV = O. 
This is ohvious for homogeneous houndary condition v = o. But it is clear 
from (7) that OV cannot be other than zero for the inhomogeneous houndary 
condition V = v: of course, function vex, y) has to be found in a form such as 
to a priori satisfy kinematic condition v = v(y) at edges x = const. This is 
why in the displacement method kinematic boundary conditions are termed 
essential bOllndary conditions. 
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Examination of (6) shows the form of static boundary condition Ux = 0 
in terms of displacements to be influenced by kinematic boundary condition 
v = v(y). Namely, prescribing edge displacement v involves also its derivative 
Vy = ey along the edge. Then condition Ux = 0 permits to express the prescribed 
Ux = ex value: 

( ) Dl" - ( ) ux y = - --- v" y 
Du . 

(8) 

form of condition Ux = 0 simultaneous to prescribed displacements v(y). For 
v = 0, (8) simplifies to U x = 0. From (6), displacement function u(x, y) appears 
to satisfy condition (8), namely in case of the static boundary condition for 
ux , at the edge u ~' 0 and 6u .' 0. 

b) There is a prescribed (generalized) force at the considered edge: e.g. for 
(6), Ux = GAy). Then u .' 0, and in general, bu ~ O. Under homogeneous 
condition Ux = 0, condition (6) is satisfied. Under inhomogeneous condition 
U x = ax, term S C1x bu ay, virtual work of prescribed edge forces, is to be put 
into the principle of virtual displacements and the resulting function u(x, y) 
satisfies static boundary condition 'without having satisfied it in its original 
form, provided it has been assumed in a proper form. This is why in the displace
ment method, static boundary conditions are called non-essential or natural 
boundary conditions. 

2.2 Boundary conditions of plates in bending 

Constitutive equation of orthotropic plates of thickness h, made of a 
linear elastic material, in concise and in detailed matrix form is: 

where 

m xy 

Qx and [!y 

Qxy 

h3 

H=-D. 
12 

(9) 

specific bending moments acting on sections with normals x 

and y, resp.; 
specific torque; 
curvatures along x and y, resp.; 
specific distortion; 

Strain-displacement relationships of the plate: 

(10) 
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Differential equation of orthotropic plates: 

Hnwxxxx + 2(H12 + 2H33)WXXYY + H22Wyyyy-P = 0 (11) 

where p = p(x, y) is distributed load in direction z. 

Writing orthogonality condition according to Galerkin's method and 
rearranging at the same time differential equation (11): 

b a 

S .f {Hll Wxxxx 
o 0 

(12) 

Let us integrate by parts twice with respect to x, the first and second 
terms in figure brackets, the third term with respect to x, then to )', the fourth 
term with respect to y, then to x, the fifth and the sixth terms twice v.ith 
respect to y. Thereafter integrating by parts terms obtained from the third 
and the fourth terms and containing simple integral of wxy' multiplying the 
equation by -1, then rearranging yields: 

b a 

- S S {(Hnwxx+H12Wyy) bwxx + (H12WXX + H2ZWyy)bwyy + 4H33WXY bWxy}dx dy+ 
o 0 

b a 

+ J J pbwdxdy 
o 0 

[ l
x=a 
y=b I 4D wxvbw T 

33 . x=o 
Y=O 

(13) 

Again, terms containing double integrals are internal and external virtual work, 
while terms in square brackets are boundary conditions. The first among them 
is the virtual work of concentrated forces resulting from the torque acting at 
plate corners. 

Chapter 4· ,~ill concern conditions for edges x = const., such as: 

For x = 0 and x = a, 

that is 

b 

S {-Hnwxxx-(H12 + 4HdWxyy} awdy = 0 
o 

b 

J bx awdy = 0 
o 

(14) 
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that is 
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b 

J (Hllwxx + H12wyy) oWx dy = 0 
o 

b 

\ mx QWx dy = 0 
b 

bx being the so-called Kirchhoff's shear force. 

Boundary conditions have two basic cases: 
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(15) 

a) There is a prescribed displacement at the considered edge: for instance, 
W = w(y) for (14). Now bx -~ 0, hence OW cannot be other than zero at the 
edge, and function w(x, y) has a priori to satisfy kinematic boundary condition 
w = w(y), an essential boundary condition in the displacement method. 

(15) shows the form of static boundary condition mx = 0 expressed in 
terms of displacements to be influenced by kinematic condition W = w(y), 
it being decisive for the edge curvature, namely Wyy = -Wyy(y). No,''-, condition 
mx = 0 permits to determine the counterpart of the curvature normal to 
the edge: 

(16) 

condition 7nx = 0 in form simultaneous to the prescribed displacement;(y). 
For w = 0, (16) simplifies to 1Vxx = O. Obviously from (15), displacement func
tion w(x, y) has a Friori to satisfy condition (16), namely, under static boundary 
condition for 7nx , Wx "~ 0 and C!wx O. 

h) There is a prescribed force at the considered edge: in (14) e.g. mx = mx(]} 
Now, at the edge Wx 7'- 0 and oWx -:-'- O. Under inhomogeneous condition 
mx = mx, term J mx owxdy as virtual work of prescrihed edge forces has to be 
put into the principle of virtual displacements, and the resulting w(x, y) 
satisfies static boundary condition mx = mx, a non-essential or natural houndary 
condition in the displacement method. 

3. Satisfying various boundary conditions of plane stress strips 

3.1 Homogeneous boundary conditions 

CHEUNG [1] was the first to apply the finite strip method for the analysis 
of prismatic folded plates where edges normal to the generatrices are connected 
to so-called rigid diaphragms, walls infinitely stiff in their plane, and per-
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fectly flexible normally to it. Corresponding boundary conditions for plane 
stress strips are homogeneous (see Fig. 2): 

For x=O or 
x = a'1 

v =0 (17) 
and ltx = 0 J. a = 0 i.e. x 

CHEUNG applied displacement function (18) satisfying homogeneous 
kinematic and static boundary conditions (17): 

[ ~J = i [cos kmx 
v m=1 0 

or. in concise form: 

where 

u = .::2 GmNem 
(;n) 

J:J - number of Fourier terms used for analysis; 

k = m::r. 
rn a ':' 

L] and L2 linear interpolation polY"llomiaJs [2], [4]; 

(18) 

lIim and Uj;n - m-th cosine Fourier coefficients of displacement functions lt of 
nodal lines i and j, resp.; 

Vim and Vj;n - m-th sine FOltrier coefficients of displacement functions v of 
nodal lines i and j, resp. 

Expanding loads qx and qv into cosine and sine Fourier series, respecti
vely, and substituting both these and displacement function (18) into (5) 
for virtual work yields the equilibrium equation system of the plane stress 
strip, decomposing into Fourier terms. The m-th equilibrium equation system 
is of the form: 

(19) 

where 

K~ m-th stiffness matrix of the plane stress strip; 

t;n - m-th load vector of the plane stress strip, 

formulae see in [2]. 
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3.2 Inhomogeneous static boundary conditions 

In the analysis of continuous structures [4] it is essential to calculate 
the influence of distributed forces Qo and Qa on the strip ends (see Fig. 3). 
For sufficiently narrow strips, these forces may be of strip-wise constant 
intensity. For Qo and Qa acting on the edge supported by a rigid diaphragm 
described in the previous chapter, boundary conditions become: 

For x = 0 v:- 0 x = a, l 
ay = Qo or a,. = Qa J' .. h ., h 

and (20) 

Substitution of the virtual work of end forces (6) into the principle of 
virtual displacements yields the load vector in the moth equilibrium equation 
system type (19) due to end forces, in the form: 

(21) 

Remind that diaphragm supports are unable to reaction along x thus 
load projection sum along x has to be zero. If also displacements along x 
have to be determined, then the zeroth Fourier term of shape function has 
to be taken into consideration, and the relevant equation system type (19) 
to be solved. This problem has comprehensively been dealt "with in [4]. 

_0_0 ... ______ ..,..;.;h ____ ~ 

0) 

>A 

§j ="1 ~ Et ----~- -[0----1---------~; 
~Ir---W--------~r------m- j, I x,uD> 

b) 

Fig. 3 
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3.3 Inhomogeneous kinematic boundary conditions 

For the edge supported by a rigid diaphragm under 3.1, displacements 
along y may be prescribed [5]. No"w, boundary conditions become: 

For x=O or 
x =~' l 

v = vo(y) or v = va(y) r (22) 
and 

G x = ° 
This latter can be 'written for edges x = 0 or x = a according to (8) as: 

u ox()-) = - Dl2 vov(Y) or uaAy) = - Dl2 vavCy). 
Dll .. Dll .. 

(23) 

Support displacement functions vo(y) and vaC;:) are given as seen in 
Fig. 3b, in terms of discrete values at the nodal lines, assuming the displace
ment to linearly vary between nodal lines: 

V'-VO' V (y-) = Lv, + Lo v ,= v ,-L OJ 1 V o I 01.. - 0 j 0, 'b. 

-; ( _) _ L I L . _ 1 Vaj - Vai , 
Va Y - I Vai""l 2 Vaj - Voi ""I b Y 

permitting conditions (23) to be 'written as: 

(24) 

In the case of displacements prescribed according to comments on boundary 
conditions (6) and (7) under 2.1, the shape function has to satisfy both con
ditions (22) and (24). Hence to function (18) .... vill be added a function U(l} 
so as their sum satisfies (22), and a function u(2} so as their sum satisfies con
ditions (22) and (24). u(l} is advisably linear function of x, and u(2) is inde
pendent of y: 

(25) 

where 

eO=foJ ea=[O'J V01 V 01 

o 0 

VOj Voj 

[ 

Cax - cOx I a ) ] 
(2) _ 9 ""I cOx X - -8 (3 cOx + Cax 

U - ~a • 

o 
(26) 
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The total shape function is sum of three functions: 

U(T)(X, y) = U(X, y) + U(l)(X, y) + n(2)(x). (27) 

Applying this function U(T) for '\Titing virtual work principle (5), to 
the load vector of the moth equation system type (19) a term due to support 
displacements is superposed: 

o 

o 
(28) 

D _m2 
22 D 

11 

DI2 D 
-D - 22 

11 

This load vector can be demonstrated to be zero in case of rigid-body 
displacements and pUle shear strains of the strip. 

4. Satisfying different boundary conditions of plate strips in bending 

4.1 Homogeneous boundary conditions 

The diaphragm support under 3.1 corresponds to simply supported 
edges of plates under homogeneous boundary conditions (see Fig. 2): 

For x = 0, or x = a, 1 
W= 0 .. 

mx = 0 i.e. w"x = 0 J 

(29) 
and 

CHEUNG applied shape function (30) satisfying these conditions: 

(30) 

or, in concise form: 

where 

L 3 , L 4, L5, L6 
Wim and Wjm 

W = c* ..:2 Wm sin km X 

(m) 

cubic Hermitian interpolation polynomials (see Fig. 2); 
moth sine Fourier coefficient of displacement function w 

of i-th and j-th nodal lines, resp.; 
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moth sine Fourier coefficients of rotation function of nodal 
lines i and j, resp., parallel to plane yz. 

Expanding also load p into a sine Fourier series and substituting both 
it and displacement function (30) into (13) for virtual work yields the moth 
equilibrium equation system of the plate strip in bending: 

(31) 

where 

K~, moth stiffness matrix of the plate strip in bending; 
t~ moth load vector of the strip, 

formulae see in [2]. 

4.2 Inhomogeneous static boundary conditions 

Analysis of continuous structm'es [4] has to reckon with strip-end 
distributed couple systems Ro and Ra (Fig. 4,). For sufficiently narrow strjps, 
Ro and Ra may be uniformly distributed. Simply supported edge with Ro 
and Ra involves the boundary conditions: 

For x=O or x a, 1 
w=O (32) 

and 
Ra J' mx = Ro or mx 

Substituting virtual work (15) of these couple systems into the principle 
Df virtual displacements yields the load vector in (31) due to strip end couples: 

b 

t~'R = {Ro - (_I)m Ra} J c dy. (33) 
o 

80, 
Ay y~ YT L a " t)cJ 

\Jw,:) Rc'l CD I Rc 
§§ 

DJ D! I w(1; 

El 
<I CD I 

I> 
z,w Wci x'" WCl z,W 

(i,,4..RO h Ra"::\ : hI I> 

~ ~ 
x 

z, 

Wo; f w~1) 
jWOj 

x" 
, 

Fig. 4 
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4.3 Inhomogeneous kinematic boundary conditions 

For simply supported edges, displacements normal to the middle surface 
may be prescribed [5]. Now, boundary conditions hecome: 

and 

For x = 0 or x = a. ) 

W = wo(y) or W = Wa(Y)f t . 
m" 0 

(34) 

This latter can be ,Yritten for edges x = 0 and x = a, resp., according 
to (16) as: 

HI? - () 
W o:o: = - H ''-It'OYy Y or 

--tl 

(35) 

Support displacement functions Wo and wa are given in terms of discrete 
values at nodal lines (wOi' WOj' Wa;, Waj) and of derivatives ,vith respect to 
,I' (80i , 8oj, 8ai , 8aj) as seen in Fig. 4. For sufficiently narrow strips, edge curva
tures may be assumed to be strip-,vise constant: 

Accordingly, conditions (35) become: 

H12 eOj - eo; 
Goy = - Waxx = -- --"---- .. .. Hll b 

(36) 

For displacements prescribed in conformity with comments on boundary 
conditions (14) and (15) under 2.2, the shape function has to satisfy both 
conditions (34) and (36). Hence to function w in (30) is added a function 
w(l) so as to have their sum satisfy (34), and a function w(2) to have their sum 
satisfy both (34) and (36). w(l) is advisahly linear function of x and u/2) inde
pendent of y: 

~ (w - w )} = c* "" w(ll sin k x a a 0 ..,,;;;,. m m 
(m) 

(37) 

where 

8 
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w~) heing column vector composed of sine Fourier coefficients of functions 
in figure hrackets. 

(38) 

Thus, the total shape function ,,,ill he sum of three functions: 

1O(T)(X, y) =1O(X, y) + 1O(l)(X, y) - 1O(2)(X). (39) 

Writing the principle of virtual work (13) in terms of this function 
1O(T) yields for the load vector in Eqs (31) due to the prescrihed displacement: 

~" ILnnv 

I) 

-.J d') '" } d- c- c d .(1'1 
--, --0- Y Wm' 
dy~ dy-

where Qxm is the m-th sine Fourier coefficient of function 

(-10) 

This load vector can be shmm to be zero for rigid body displacements 
and pure distortion of the plate strip. 

5. Numerical results 

The presented methods permit efficient computer treatment (If contin
uous folded plates and box girders exposed to arbitrary loads and support 
displacements. Nume-rical examples for loads are found in [4-]. The Author 
did not find any puhlished numerical prohlem for stresses in continuous 
structu-res due to support displacements, therefore here a problem will he pre
sented, the results of which can partly he checked hy manual approximate 
analysis. 

Two·span continuous plate in Fig. 5 has free edges Y comt., and simply supported 
edges X = const. The plate of a thickness h = 0.48 m is made of an isotropic material with 
a Young's modulus of 30 000 ~IPa. and a Poisson's ratio of 1;6. The intermediate support of 
the plate at X = 10 m is displaced vertically by 0.1 m at its end point of coordinate Y = 8 m, 
and by zero at its end Y = 0, linearly varying in between. Diagram my of section X = 5 m, 
and distribution of moments mx along the intermediate support have been plotted in Fig. 5. 
The problem being symmetrical about the straight axis of the support, it was sufficient to 
plot half of the deflection and moment diagrams It: and nix of free edges Y = 0 and Y = 8 m. 
The plate was divided into 16 strips of equal width, and 20 Fourier terms were taken into 
consideration. 
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Fig. 5 

Summary 
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.1391 ~==~::r 1322 
1049 
943 
808 
704 
601 
SOL. 
407 
309 
209 

• 93,ljJ 

~ 
-18,7 
-206 
-305 

. -681 

[cm] 

Q [kNm} 
(YS-S 

Galerhin's method has been applied to write the equilibrium equation of rectangular 
plates with in-plane forces and in bending, and boundary conditions in general form. At the 
same time, the way of ;;atisfying inhomogeneous kinematic and static boundary conditions 
is examined. 

Thereafter the most frequent inhomogeneous boundary conditions of rectangular plate 
strips_ in particular. strip end force;;, strip end couples and prescribed displacements are exa
mined. Displacement functions keep their orthogonality, permitting the Fourier term by 
term ;;olution of equilibriulll equation systems. The presented method permits computer analy
sis of continuom folded plates and box girders exposed to arbitrary loads and support dis
placements. 

_-\t last. a numerical example for prescribed support displacement; of a continuous 
plate is giycn. 
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