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1. Introduection

The finite strip method serves for the analysis of thin-walled, prismatic
folded plates made of a linear elastic, orthotropic material subject to small
displacements. The structure is divided into strips parallel to its generatrices
by means of the so-called nodal lines (Fig. 1). For each strip. shape functions,
producis of two functions with one variable, are assumed, one comprising
unknown generalized displacements of the nodal lines, the other consisting
of interpolation polynomials. Nodal line displacements are determined from
the equilibrium equation system of line forces, to be deduced according to the
principles either of the virtual displacements or of the minimum potential
energy. The shape function should be kinematically admissible. Thus, this
procedure is a generalized displacement method.

In conformity with the shape function, the finite strip method may be
considered as combined from an analytic method and the method of finite
elements. The analytic method is decided by the form of the nodal line displace-
ment function. Two fundamental cases may be distinguished [1], [2]:

a) Orthogonal function series, e.g. Fourier-series;
b) Nou-orthogonal function series.

In the Fourier-series alternative of the finite strip method. orthogonality
of shape functions causes the linear algebraic equation system to decompose
to small equation systems, main advantage of the finite sirip method.

Originally, the method has been developed by applying Fourier-series
satisfying homogeneous boundary conditions for strip ends. In the following,
the possibility of satisfying the most frequent strip-end inhomogeneous bound-
ary conditions is investigated, keeping the Fourier-series shape functions,
hence without renouncing of the main advantage of this method.
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X,Y,Z: global coordinates
x,4,2: local coordinates
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2. Writing boundary conditions by Galerkin’s method
2.1 Boundary conditions of the plane stress problem

Constitutive equation of linear elastic orthotropic materials in plane
stress in concise, and in detailed matrix form is:

c = De
o 1=[Dy Dyp O Ex
oy |=|Dwp Dy 0 &y (1)
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respectively, where

oy and ¢, — normal stresses along x and y, resp.;

Tyy — shear stress component along y acting on a section with normal x;
e, and g, — normal strains along x and y, resp.;

Vsy — shear strain for normals x and y:

D, — well-known coefficients of the generalized Hooke’s law

(=123 k=12 3).

Strain-displacement relationships of the plane stress:

j— . —— . —— I 4
€ == Uy} 8y T=Vy 3 Yy = Uy - Ve 2

Displacements along x,y and s will be denoted by u,v and w, and their
derivatives with respect to x and y will be indicated by subscripts, e.g.:
ou t%u

i = Uy, ———— = U, subseripts x and v of other quantities (e.g. 0, ¢, g) refer to
dx Ox oy ’ :
the direction rather than to the derivative (Fig. 2).
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Fig. 2

Lamé’s equations for orthotropic materials in plane stress:
Dy uy 4+ (Dyo + Dy3) Vyy T D, Uyy + gy = 0}
Dy, vy, + (D15 + Djy) Uyy + Dy vy + gy =0
where ¢, and g, are specific body forces along x and y, resp.

Galerkin’s method is a special case of the method of weighted residuals
where arbitrary increments of approximate solution functions are chosen as
weighting functions [3]. Accordingly, orthogonality conditions of differential
equation system (3) for the approximate solution of u and v can be written
for a rectangular plate of thickness A, with sides 0 < x < a, 0 <y < b,
subject to in-plane forces (see Fig. 2):

b a
hS X {Dyytge + Dypvay + Dyyvyy + Dyguyy + g Sudedy +
60 )

b a
+ hf S{D’.’zv}'y -+ Dmuxy -+ D33uxy -+ Dssvxx"%‘%c} 5vdxdy: 0
00
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where du and dv are arbitrary small inerements of functions v and v, resp.,
called virtual displacement systems in engineering mechanics.

Integrating by parts with respect to x the first two terms in the first
figure brackets., and the second two terms in the second figure brackets of
Eq. (4). and integrating by parts with respect to y the other terms comprising
derivatives of u and v leads — after arrangement — to:

b
+|Bf {Duwe + Dy v) bu + Dyg (uy + v 00} Ay 5 +
0
(5)

a
+ [hj {(D‘Z s T Dgzv-") ov + D33 (uy T vx) 5u} dx]y—b =0
0

where terms in square brackets contain boundary conditions x == const. and
¥y = coust.; since Eq. (5) has to be satisfied for any possible du and v, the
terms containing 6w and Ov must separately vanish at boundaries. First two
terms of (5) containing a double integral are plainly the internal and external
virtual work. Galerkin’s method is known to lead to equilibrium conditions
written as the principle of virtual displacements, and to the boundary condi-
tions to be satisfied in problems of structural mechanies.

Chapter 3 being concerned with analysis of boundaries where x = const.,
let us write the relevant boundary conditions:

For x=0 or x=a.

b b
hf (Dyyus + Dy,v)oudy =0 e hf oy dudy = 0 (6)
9 6
and
b b
h{ Dyy(u, + v)ovdy =0 ie. k[ 7y évdy = 0. (7)
§ 0

Let us consider how integrals (6) and (7) can be zero for all possible
du and dv, and what is understood by possible virtual displacement systems
ou and ov. Two basic cases may be realized:

a) There is a prescribed displacement at the considered edge: for instance,
v = v(y) for boundary condition (7). Now, 7., == 0 (“reactions”). Integral
(7) can only be zero if at the edge, locus of prescribed displacement, év = 0.
This is obvious for homogeneous boundary condition v = 0. But it is clear
from (7) that v cannot be other than zero for the inhomogeneous boundary
condition v = v: of course, function v(x, y) has to be found in a form such as
to a priori satisfy kinematic condition v = »(y) at edges x = const. This is
why in the displacement method kinematic boundary conditions are termed
essential boundary conditions.
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Examination of (6) shows the form of static boundary condition ¢, = 0
in terms of displacements to be influenced by kinematic boundary condition
v = 9(y). Namely, prescribing edge displacement v involves also its derivative
v, = ¢, along the edge. Then condition ¢, = 0 permits to express the prescribed
u, = &, value:

Dy, -

u‘x(y) = - D, v),(:y') (8)

form of condition o, = 0 simultaneous to prescribed displacements »(y). For
v = 0, (8) simplifies to u, = 0. From (6). displacement funection u(x, y) appears
to satisfy condition (8), namely in case of the static boundary condition for
oy, at the edge u==0 and du=0.

b) There is a prescribed (generalized) force ai the considered edge: e.g. for
(6), 0. = o(y). Then u == 0, and in general, éu == 0. Under homogeneous
condition ¢, = 0, condition (6) is satisfied. Under inhomogeneous condition
o, = G,, term jgx du Oy, virtual work of prescribed edge forces, is to be put
into the principle of virtual displacements and the resulting function u(x, y)
satisfies statie boundary condition without having satisfied it in its original
form, provided it has been assumed in a proper form. This is why in the displace-
ment method, static boundary conditions are called non-essential or natural
boundary conditions.

2.2 Boundary conditions of plates in bending

Constitutive equation of orthotropic plates of thickness h, made of a
linear elastic material, in concise and in detailed matrix form is:

m==Hg:m (=[Hy, H, 0 Ox
my, H,, Hy,, 0 Oy (©)
mxy 0 O H33 Qxy
where
m, and m, — specific bending moments acting on sections with normals x
and y, resp.;
m,, — specific torque;
oy and p, — curvatures along x and y, resp.;
Oxy ~— specific distortion;
B3
H = —D.
12

Strain-displacement relationships of the plate:

0 = — Wy 5 0y = —Wyy 3 Oy = — 20y, (10)
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Differential equation of orthotropie plates:
Hyy weex + 2(Hy, + 2Hy,) Wy + Hopwyyyy—p = 0 (11)
where p = p(x, y) is distributed load in direction .

Writing orthogonality condition according to Galerkin’s method and
rearranging at the same time differential equation (11):
b a

] < s
S S‘ {Hy  Wexsx + Higwyeyy + 2Hg3 w0y + 2H31000y -+ Hypgwey, +
90

+ Hypwyy, — p} owdxdy = 0. (12)

Let us integrate by parts twice with respect to x, the first and second
terms in figure brackets. the third term with respect to x. then to y, the fourth
term with respect to v, then to x, the fifth and the sixth terms twice with
respect to y. Thereafter integrating by parts terms obtained from the third
and the fourth terms and containing simple integral of w,,. multiplying the
equation by —1, then rearranging vields:

oL’ﬁw-

a
S {(H . + Hygwyy) dw,, + (H g1 -+ Hogw, ) 0w, 4+ 4H g0, bw,, }dedy +
0

b a X=a
+f Spéw dxdy + 4D33[10\\5wk=b - (13)
0 v
X
i

b
* { f {( - Hllwxxx - Hl‘zwxyv"_ll‘H%“ w\v) 570 (Hllwn : Hl :zw_vy) &Ux} dy]r o o
0 =

a y=b
-+ [S U= Hyot e — Hy 10— 4 H g 10, ) b1 — (Hr_,r_,-w\,y—tl_Hmzvxx)ézvv}dx} = 0.
0 ’ ’ y=0

Again, terms containing double integrals are internal and external virtual work,
while terms in square brackets are boundary conditions. The first among them
is the virtual work of concentrated forces resulting from the torque acting at
plate corners.

Chapter 4 will concern conditions for edges x = const., such as:

For x = 0 and x =

b
f {—Hywe—(H;, + 4H)w, ) owdy = 0 (14)
0
that is

b
fbxézudy =0
0




FINITE STRIPS 233

and
b
{ (Hywy + Hyow,y) owedy = 0 (15)
0

that is

g m, dw, dy = 0
0

b, being the so-called Kirchhoff’s shear force.

Boundary conditions have two basic cases:

a) There is a prescribed displacement at the considered edge: for instance,
w = w(y) for (14). Now b, == 0, hence 6w cannot be other than zero at the
edge, and function w(x, y) has a priori to satisfy kinematic boundary condition
u

= w(y), an essential boundary condition in the displacement method.

(15) shows the form of static boundary condition m, = 0 expressed in
terms of displacements to be influenced by kinematic condition w = w(y),
it being decisive for the edge curvature, namely w,, = »z?yy(y). Now, condition
m, = 0 permits to determine the counterpart of the curvature normal to
the edge:

H,, -
w>;.~=:(.“7’) = Hl_ w.\’}‘(y) (16)

i1

condition m, = 0 in form simultaneous to the prescribed displacement w(y).
For w = 0, (16) simplifies to 1, = 0. Obviously from (15), displacement fune-
tion w(x, v) has a priori to satisfv condition (16), namely, under static boundary
condition for m,, 1w, = 0 and dw, == 0.

b) There is a prescribed force at the considered edge: in (14) e.g. m, = m.(y).
Now, at the edge w, =t 0 and éw, == 0. Under inhomogeneous condition
m, = m,. term 5771_\, dw, dy as virtual work of prescribed edge forces has to be
put into the principle of virtual displacements, and the resulting wo(x, y)
satisfies static boundary condition m, = m,, a non-essential or natural boundary
condition in the displacement method.

3. Satisfying various boundary conditions of plane stress strips

3.1 Homogeneous boundary conditions

CHEUNG [1] was the first to apply the finite strip method for the analysis
of prismatic folded plates where edges normal to the generatrices are connected
to so-called rigid diaphragms, walls infinitely stiff in their plane, and per-
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fectly flexible normally to it. Corresponding boundary conditions for plane
stress strips are homogeneous (see Fig. 2):

For x =0 or x:a,]
v =0

17)
g, =0 ie u,= OJ

and

CuEune applied displacement function (18) satisfying homogeneous
kinematic and static boundary conditions (17):

Uim
ul 2‘;’ cos k,x 0 L, 0 L, 0 Vim (18)
v sl 0 sink,x |0 L, 0 L,|}u%m
' vjm
or. in concise form:
u = Z G, Ne,
()
where
M — number of Fourier terms used for analysis:
mz
kYTZ
a
L, and L, — linear interpolation polynomials [2]. [4]:
w;, and u;, — m-th cosine Fourier coefficients of displacement functions u of
nodal lines 7 and j, resp.;
Ui and vj, — m-th sine Fourier coefficients of displacement functions v of

nodal lines i and j, resp.

Expanding loads g, and ¢, into cosine and sine Fourier series, respecti-
vely. and substituting both these and displacement function (18) into (5)
for virtual work yields the equilibrium equation system of the plane stress
strip. decomposing into Fourier terms. The m-th equilibrium equation system
is of the form:

K,e, +t,=0 (19)
where
K/ — m-th stiffness matrix of the plane stress strip ;
t, -— m-th load vector of the plane stress strip,

formulae see in [2].
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3.2 Inhomogeneous static boundary conditions

In the analysis of continuous structures [4] it is essential to calculate
the influence of distributed forces (, and Q, on the strip ends (see Fig. 3).
For sufficiently narrow strips, these forces may be of strip-wise constant
intensity. For {, and Q, acting on the edge supported by a rigid diaphragm
described in the previous chapter. boundary conditions become:

For x=0 or x=a
0

: (20)
and 0 0
B i ’ h
Substitution of the virtual work of end forces (6) into the principle of

virtual displacements yields the load vector in the m-th equilibrium equation
system type (19) due to end forces, in the form:

tho = o (00— 0s(—1)") (1)

S e O

Remind that diaphragm supports are unable to reaction along x thus
load projection sum along x has to be zero. If also displacements along x
have to be determined, then the zeroth Fourier term of shape function has
to be taken into consideration, and the relevant equation system type (19)
to be solved. This problem has comprehensively been dealt with in [4].

>-.A
:nl a ‘
C:" |
=
Qc% @ 0 o =_8
[0) = .
x,U
SBo, h Qo
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3.3 Inhomogeneous kinematic boundary conditions

For the edge supported by a rigid diaphragm under 3.1, displacements
along v may be prescribed [5]. Now, boundary conditions become:

For x=0 or x = a,
v=124(y) or v=71,y);- (22)
and [
o, =0

This latter can be written for edges x = (0 or x = a according to (8) as:

Dua 5, ). (23)

Dlﬂ —_
qu(j’) =——" UO)’(y) or uL(y) = —
11 i1
Support displacement functions vy(y) and v,(y) are given as seem in
Fig. 3b, in terms of discrete values at the nodal lines. assuming the displace-
ment to linearly vary between nodal lines:

_ Vg~ Up;
s () — s s e J or .
1,0(3,) = ] 1 Vo; T“z%j = vy ey

Ua(y) = Lyvg + szaj = Vg Y

permitting conditions (23) to be written as:

D1, vy, — vy Dy, v,i— vy
u, =——32 9 0y = 12 7g ol (24)

D, b D, b
In the case of displacements prescribed according to comments on boundary
conditions (6) and (7) under 2.1, the shape function has to satisfy both con-
ditions (22) and (24). Hence to function (18) will be added a function u'?
so as their sum satisfies (22), and a function u® so as their sum satisfies con-
ditions (22) and (24). u'? is advisably linear function of x, and u® is inde-
pendent of y:

a® = N {eo + —3 (e.—ey) (25}

where

e,=[0 1T e=700

Vo Vg
0 0
UOJ Uaj—
Eax— Eox | a
——— e Ee S — 36 . &
11(2)‘—" % i 0x 8 ( 0x + ax) . (26)

0
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The total shape function is sum of three functions:
Wz, y) = ue ¥) + u(x, ) + u(a). (27)

Applying this function u™ for writing virtual work principle (5), to
the load vector of the m-th equation system type (19) a term due to support
displacements is superposed:

. -
D.. Di,
t;m:—%{ao_\,-——(—l)m et . Dy |. (28)
D, D..
L Dll - —

This load vector can be demonstrated to be zero in case of rigid-body
displacements and puie shear sirains of the strip.

4. Satisfying different boundary conditions of plate sirips in bending

4,1 Homogeneous boundary conditions

The diaphragm support under 3.1 corresponds to simply supported

edges of plates under homogeneous boundary conditions (see Fig. 2):
For =0, or x=a,
w =0 I (29)

m, =0 ie. w, =10

and

CreuNG applied shape function (30) satisfying these conditions:

Wim
w=[LyL,L;Ls] 3 im sin k,x (30)
(m) jm

or, in concise form:

w = c¢* 3 wysink,x
(m)

where
L,. L, L;, Ly — cubic Hermitian interpolation polynomials (see Fig. 2);
W;,, and w;,, — m-th sine Fourier coefficient of displacement function w

of i-th and j-th nodal lines, resp.;
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Oim and 0, — m-th sine Fourier coefficients of rotation function of nodal
lines i and j, resp., parallel to plane yz.

Expanding also load p into a sine Fourier series and substituting both
it and displacement function (30) into (13) for virtual work yields the m-th
equilibrium equation system of the plate strip in bhending:

Kn Wi t, =0 (31)
where
K7 — m-th stiffness mairix of the plate strip in bending;
t;, — m-th load vector of the strip,

formulae see in [2].

4.2 Inhomogeneous staiic boundary conditions

Analysis of continuous structures [4] has to reckon with strip-end
distributed couple systems R, and R, (Fig. 4). For sufficiently narrow strips,
R, and R, may be uniformly distributed. Simply supported edge with R,
and R, involves the boundary conditions:

For x =20 or x=a, l

(32)

and
m, = R, or m, == RGJ

Substituting virtual work (15) of these couple systems into the principle
of virtual displacements yields the load vector in (31) due to strip end couples:

b
tmep = {Ry — (—1)" R} Y edy. (33)

0

-
w
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4.3 Inhomogeneous kinematic boundary conditions

For simply supported edges, displacements normal to the middle surface
may be preseribed [5]. Now, boundary conditions become:

For x=0 or x = a, l
(34)

w = 1wy(y) or w = wy(y) ;.
and
m, = 0
This latter can be written for edges x = 0 and x = a. resp., according

to (16) as:

Hl — by fod
—é—i- Wy (y) OF o = — Hl“ Way{¥)- (35%

Worx

Support displacement functions w, and w, are given in terms of discrete
values at nodal lines (wy;. wy;, 1wy, ,;) and of derivatives with respect to
¥ (Boss Ooj» Oa» 0j) @s seen in Fig. 4. For sufficiently narrow strips, edge curva-
tures may be assumed to be strip-wise constant:

— G — By — Oy — By
wo,\ry — ﬂ___b___o_- : 1{)a'\_w s ._a]___g_.__—a-— .
Accordingly. conditions (35) become:
Ogy == —— Wgxy = it GOj O
H,, b
36
Hl2 60}' - Gai ( )
Ogx = — Wayx = ————
H,, b

For displacements prescribed in conformity with comments on boundary
conditions (14) and (15) under 2.2, the shape function has to satisfy both
conditions (34) and (36). Hence to function w in (30) is added a fumction
w'? so as to have their sum satisfy (34), and a function 2® to have their sum
satisfy both (34) and (36). w® is advisably linear function of x and w® inde-
pendent of y:

= x . . -
w® = e* lw, -+ ~ (wo —wo)l =¢* Swsink, = (37)
(m)
where
w, = [ wy; w, = [ 104
001’ 6c:u‘
w, Wy
8, bq;
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w® being column vector composed of sine Fourier coefficients of functions
in figure brackets.

b — -

s

Ope — Ops Opx Opx . Ogo

w® Dax 2ox b3y Eox 4o a |Zox o Haxt o (38)
6a 2

Thus, the total shape function will be sum of three functions:
w(x, y) = w(x, y) + wP(x, y) + 0@(x). (39)

Writing the principle of virtual work (13) in terms of this function
w?) vields for the load vector in Eqs (31) due to the prescribed displacement:

'E;’mv = {“ifflz k?n ‘ Cd-g—i‘ d)’ __ ng ‘ dZe d?¢ dy} Vig) N

Jody? dy*  dy*
9 | 2 . i R
5 5 (+0)
‘ . [ ~ " de
- {—Hn L ‘ cdy + fINJ dy} Oem
) T
6 o
where o, is the m-th sine Fourier coefficient of function w'®,

This load vector can be shown to be zero for rigid body displacements
and pure distortion of the plate strip.

3. Numerieal resulis

The presented methods permit efficient computer treatment of contin-
uous folded plates and box girders exposed to arbitrary loads and support
displacements. Numerical examples for loads are found in [4]. The Author
did not find any published numerical problem for stresses in continuous
structures due to support displacements, therefore here a problem will be pre-
sented, the results of which can partly be checked by manual approximate
analysis.

Two-span continuous plate in Fig. 5 has free edges Y = const., and simply supported
edges X = const. The plate of a thickness & = 0.48 m is made of an isotropic material with
a Young’s modulus of 30 000 MPa. and a Poisson’s ratio of 1/6. The intermediate support of
the plate at X = 10 m is displaced vertically by 0.1 m at its end point of coordinate ¥ = 8 m,
and by zero at its end Y = 0, linearly varying in between. Diagram my of section X = 5 m,
and distribution of moments my along the intermediate support have been plotted in Fig. 5.
The problem being symmetrical about the straight axis of the support. it was sufficient to
plot half of the deflection and moment diagrams w and my of free edges Y= 0 and ¥ = 8 m.
The plate was divided into 16 strips of equal width, and 20 Fourier terms were taken into
consideration.
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Summary

Galerkin’s method has been applied to write the equilibrium equation of rectangular
plates with in-plane forces and in bending, and boundary conditions in general form. At the
same time, the way of satisfying inhomogeneous kinematic and static boundary conditions
is examined.

Thereafter the most frequent inhomogeneous houndary conditions of rectangular plate
strips, in particular, strip end forces, strip end couples and preseribed displacements are exa-
mined. Displacement functions keep their orthogonality, permitting the Fourier term by
term solution of equilibrinm equation systems. The presented method permits computer analy-
sis of continuous folded plates and box girders exposed to arbitrary loads and support dis-
placements.

At last. a numerical example for preseribed support displacements of a continuous
plate is given.
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