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The dynamic analysis of structures involves the analysis of vibrating 
systems with several degrees of freedom. Vibrations underlie damping due to 
the so-called internal friction arising from the non-linear elasticity of the 
material. In certain cases (resonance, free vibration, impulse loads), neglect 
of this damping leads to a basically wrong description of the phenomenon. 
An algorithm for the analysis of structures '\\'-ith components of different 
damping characteristics will be presented, together with practical experience. 

1. Analysis of systems with one degree of freedom 

It can experimentally be demonstrated that in different building materi­
als, the logarithmic decrement characterizing damping may be considered as 
constant in case of dynamic stresses over a very small fraction of ultimate 
yield stress. At the same time it depends also on the stress state (torsion -
bending) or e.g. for r.c. structures, on the crack development. Systems with 
one degree of freedom are accessible to the analysis by the equivalent Kelvin­
Voight model or the SOROKIN complex rigidity [1, 2]. In this latter case, the 
stress-strain relationship may be written in complex form as: 

a* = (u + iv)Es*. 

(* referring to complex quantities). 

In this complex expression, 

u= 
4y 

v=-----'---
4 + y2 

b being the logarithmic decrement. 
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Analysis of a system with one degree of freedom may start from the 
differential equation: 

mx* + (u + iv) kx* = q*(t) . 

From the examination of the homogeneous part, after having solved 
the characteristic equation: 

where 

* B* ip'l I B* -ip*1 
Xl = leT 2 e , 

Po P = -:;r====;;=-

11 
I y2 

I-­
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The differential equation of complex displacements has been deduced 
for damped vibration. General solution of the homogeneous equation meets 
these conditions only if the first term alone, yielding the decreasing displace­
ments, is reckoned with. Finding also the particular solution of the inhomo­
geneous equation yields the general solution of the differential equation [1]: 

. 'I 
x* = c* e1P + J*(t) 

where c* = a 
while 

ib IS the constant determinable from the initial conditions, 

J*(t) = q*(t) e-ip*t dt eip*t f 
2ip*m 

and 

. q*(t) eip*t dt . 
e-ip*t f 

21p*m 

The displacement will be the real part of the complex solution. 

a) In case of free vibration: 

the homogeneous part will have a solution in the form: 

_:Lp, 
Rex*=e 2 (a cospt-bsinpt). 

b) Incase of periodic excitation: 

For the excitation 
n 

q(t) = ~ ps cos (wst - vs), 
s=1 
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reckoning with a complex force 
n 

*(t) - ~ i(w,i-",l q -...:;.. pse , 
5=1 

solution of the inhomogeneous part will be of the form: [1] 

Re J*(t) = 

127 

n p 1 ( = ~ __ s_ cos (J) t - 'V 
...:;.. 2 "2 2 s 
s=1 mp V(l _ (J): _ ~) +y2 

P , 

arctg ;' 2 ). 
l_~_L 

p2 4 

2. Analysis of systems with several degrees of freedom 

Provided the entire structure has one damping characteristic, the 
problem can be solved by the equivalent Kelvin- Voight model, using the 
solution of the real eigenvalue problem of the undamped case [2]. A solution 
is found in [3] for the case of different damping characteristics where the 
differential equation will be written in the form: 

IHi: + (KR + i sgn (J) KJ x = q 

and the solution will be determined by 'writing a double-size complex matrix 
eigenvalue problem. A method 'will be presented below, yielding complex 
displacements similar to those in the former item, hence it requires the solu­
tion of a complex eigenvalue problem of only the original order number. For 
instance, let us consider a system of bars of different materials. In this case 
the differential equation for individual bars can be written in the form: 

M .:* I ( ')K jXj T Uj + Wj j = ~ 

but for the bar system the magnitude U + iv cannot be factored out any 
more. Differential equation of the bar system will be of the form: 

MX* + K*x* = q* 
where 

Solution of the differential equation will be considered for the cases 
outlined in the introduction. 

2.1 Free vibration 

Let us have the differential equation 

)fi* + K*x* = O. 
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Seeking the solution in the form 

as the first step, the complex eigenvalue problem 

has to he solved. 

If eigenvalues and eigenvectors are known: 

Introducing notations 

n 
x* = ~ cj vj ePit

• 
j=l 

real part of the solution can be 'written in the form: 

where D are diagonal matrices: 

Velocities can be written as: 

where 
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Elements of vectors a and b can be determined from the initial conditions by 
solving a linear system of equations. Specifying displacements and velocities 

(Xo, Yo) at a time to: 

where 

Z(to) = l Vr D1(tO} + Vi Dz(to} . -Vi D1(tO} + Vr Dz(to} J 
---------------'--------~------- . 

Vr D3(to} + Vi D4(tO} . -Vi D3(to} + Vr D4(to} 

2.2 Effect of instantaneous impulse 

I,+dl 

Be the i-th mass point acted upon by impulse Si = J P(r}dr where 
It 

L1 -.. O. The impulse causes a velocity increment at point i: 

Characteristics of displacement started at to are at time t1: 

Further movement can be considered as a free vibration with the initial 
condition: 
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and having the constants: 

the continued movement being: 

After the j-th impulse: 

where: 

2.3 Harmonic excitation 

Be the function of excitation 

p(t) = q(t) cos wt 

and the relevant set of differential equations: 

Mi* + K*x* = q* 
where 

* iw/ q = qe . 

In course of solving the complex eigenvalue problem, the eigenvectors 
are normed to give 

and substituted: 
x* = V*z*. 
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Mter having multiplied by matrix V* T: 

Since 

the system of n degrees of freedom is decomposed into n systems of one degree 
of freedom: 

to be solved as: 

In the term Zj' aj and bj are by the moment unknown constants, 

Multiplication by matrix V* yields x* with a real and an imaginary 
part; after proper transformations: 

where 

x ~ [V, D,(t) + V, D,(t) i-V, D,(t) + V, D,(t) [: 1 + 

n 

+ ~ Zj{ Vrj[frj cos (wt - rp) - !ij cos (wt + rp)] -
j=1 

- vij[fij cos (wt - rp) + !rj cos (wt + rp)]). 

Yj rp = arctg ----'--'----:2=- , 
W Yj 
pJ -4 1 

n 

!rj = ~ v~sqs, 
5=1 

Constants a and b in the solution may be obtained from the initial 
conditions. 
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3. Numerical results 

Solution of the complex eigenvalue problem IS numerically the most 
difficult part of this method. In knowledge of complex eigenvectors and eigen­

ye 
Yalues, frequencies, damping characteristics _1 and solutions meeting the 

2 
initial conditions can be determined as seen above. 

A =0.004 m2 

JB = 0.0.05 m4 --c--=--~-+--~-+---::-.-I 
JT = 0.18 m4 

Fig. 1 

Let us consider the grid system in Fig. 1 (where also the bar cross sec­
tion areas, moments of inertia in bending and in torsion, as "..-ell as hundred 
times the y yalues belonging to bending (torsion) for each bar have been 
indicated) . 

Let bar units haye damping characteristics (Yi values) different in bend­
ing and in torsion, ranging from 310 - 2 to 1510 - 2, or have a uniform value 
of 0.1 assigned. In this latter case, solution of the complex eigenvalue problem 
will yield real eigenYectors, and the y'jvalues will be uniformly 0.1. Performing 
the computation by means of the checked algorithm, the case of mixed damp­
ing will feature the following: 

a) The real part of eigenyectors is distorted compared to that of the identical 
damping (or undamped) case. Figs 2 and 3 show real parts of eigenvectors 
for the lowest and highest frequencies for y = 0.1 and for mixed damping 
(underlined values). Distorsion is seen to be higher for higher frequencies 

(1 % and 6%). 

b) The imaginary part of eigenvectors is important at higher frequencies, 
2 % and 24% of the highest absolute valued real terms for the presented 
two modes. 



DIFFEREl'iT D.UIPI?i'G CHARACTERISTICS 133 

c) yj values belonging to particular vibration modes range between the two 
limits (0.03 to 0.015) indicated above, and have values from 0.055 to 0.085. 

The numerical example shows the complex rigidity analysis to be viable 
for structures with components of mixed damping. In case of impulses and 
e;x:cited vibration, results obtained for the Yl values much affecting the ampli­
tudes will correspond to the distribution of damping. 

Fig. 2 

Fig. 3 

Summary 

An algorithm has been developed for structures with components of different damping 
characteristics exposed to free vibration, periodic excitation and impulse loads. Complex 
rigidity analysis using the solution of a complex eigenvalue problem - gave results truly 
expressing the damping characteristics. 
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