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1. Introduction 

In examining the plastic load capacity of steel structures, beside strength 
characteristics of members, also the analysis of deformation capacity is of 
importance. The deformation capacity is characterized by the load-displace­
ment relation of the members. The deformation capacity is exhausted if in­
creasing displacements belong to decreasing loads leading to failure of the 
member (Fig. 1). 

Similar to load capacity, also deformation capacity depends on several 
factors such as changes in the geometry of the structure (column buckling, 
lateral buckling) or in the geometry of the cross section (local buckling). In 
what follows, cross sectional changes of compressed members will be considered. 

The member is assumed to be in plastic range and premature buckling 
of the plates constituting its cross section counteract the unrestricted plastic 
deformations. The problem is to determine yield mechanism curves due to 
buckling of constituting plates. 

2. Preliminary research 

Plate buckling is influenced by plate geometry and by the supporting 
action of adjacent plate parts, these being the two basic factors for the problem 
of deformation capacity. Tests by HAAIJER, G. [1] were based on the discon­
tinuous yield properties of steel. The differential equation of the equilibrium 
of orthotropic plates was applied to plates in the plastic range with different 
supports; various coefficients in the equation were determined experimentally. 

LAY, M. G. [2] examined mainly the effect of flange buckling. He estab­
lished a mathematical model for compressed flanges under yield stress sup­
ported by the ,,,-eb by means of fictitious torsional springs. The failure was 
assumed to occur in form of pure torsional buckling of the rectangular flange. 

Both Haaijer, G. and Lay, M. G. assumed the plate buckling problem to 
be solved as bifurcation of equilibrium. BEN KATO [3] tackled the problem 
from a different aspect. 
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Incipient y-ield of real plates with rather low thickness to "width ratios is 
accompanied by fine "crumplings" (wav-iness). No drop in load capacity takes 
place at once but y-ield load is maintained during a certain deformation depend­
ing on the plate geometry and on the steel strength characteristics. 

':nd load - Unloading 

Fig. 1 

n n 
Fig. 2. a) Flange buckling: b) Web buckling 

This behaviour may be attributed to the possibility of arbitrary deforma­
tions in the plate at the yield stress, since the yield plateau exhibits no un­

ambiguous relationship between stress and strain. 
"Crumpling" itself may be considered as a y-ield mechanism where in the 

plastic hinges not constant but increasing "ultimate moments" develop due to 
strain hardening. Load capacity - or rather deformation capacity - gcts 
exhausted where the quoted "ultimate moment" ceases to increase. This 
was assumed by Ben Kato to occur at the ultimate tensile stress rather than 
at the yield stress in the plastic hinges. This approach permits to establish a 
relation between maximum compression and plate geometry. His tests involved 
separate analysis of flanges and web plate of the I-section, assuming separate 
y-ield mechanisms for each constituting plate, omitting the effect of elastic 
deformations as well. For the y-ield mechanism, the strain energy consisting of 
the bending moment and shear force energies at the plastic hinges, and the 
potential energy, product of compressive force by the compression, 'were 
established. 

His relationships permit to put restriction on plate geometry ensuring 
adequate deformation capacity for the member. 

Shapes assumed for the yield mechanism of the flanges and web are seen 
in Figs 2a and b, respectively. 
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Fig. 3 

A major deficiency of Ben Kato's model is the assumption of geometri­
callyindependent buckling configuration in the constituting plates of the 
I-section. 

Even the form of the specimen seen in Fig. 3 demonstrates buckling con­
figuration of the flanges and the web not to be independent geometrically. 



206 I V.4SYI 

3. Basic method and a simple example 

Among the extreme value theorems of plasticity, the kinematic theorem 
[4] giving an upper limit "Will be applied. 

Thus, a yield mechanism will be adopted such as to correspond to the 
geometrical conditions and the assumed yield criterion. In addition to Ben 
Kato, this method has been applied by ALEXANDER, 1. M. [5], PUGESLEY, A. 
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and MACAULAY, }L [6] for examining cylindrical shells, while by CLIMENHAGA, 
J. J. and JOHNSON, P. [7] for the analysis of buckling due to the negative 
moment of the steel beam component of composite beams. 

The method will be illustrated by a simple example (Fig. 4). Let us take 
a bar of an isotropic, incompressible, rigid-plastic material (Fig. 5), subject to 
the Tresca yield condition. Rigid and plastic zones include an angle of 45:] 
with the bar axis. For a small rotation e, in the plastic hinge (yield mechanism) 
deformations of identical magnitude but opposite sign develop in directions 
x and y, while incompressibility requires zero strain in direction Z(e z = 0). 
According to the yield criterion, stresses in direction,? y and z are zero 
(O"v = O"z = 0) while in direction x they equal the yield point (O"x . ±O"y). 

. Centre of rotation c is located as a function of depth h. Writing deforma-
tion energy of the plastic hinge (yield mechanism): 

where 

Wa = V SO", de 
(E) 

2(1 

V = minimum for 'i] = 0.5, hence 

ah2 

V=-. 
2 

(1) 

(2) 
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For a small rotation e, because of the 45° limit, the strain becomes 

The potential energy: 

e 
2 

WIJ = S }vf· de. 
8 

Equating deformational and potential energies: 

J
~ ah2 
M·de = -aye. 

4 
8 

Deriving Eq. (6) with respect to e: 
ah2 

M = --cry. 
4 

In case of a strain-hardening material (Fig. 5): 

Substituting (8) into (4) and (5): 

ah
2 

( M=-2- ay 

The presented method suits also more complicated cases. 

4. Yield mechanism curves 

207 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

The yi.eld mechanism adopted according to experimental data is seen 
in Fig. 6. 

Shaded areas undergo plastic deformation; if their - undeformed -
boundaries include an angle of 45° with the bar axis, then the model according 
to Chapter 3 may be applied, valid also for the heavy lines in the figure, con­
sidered as linear plastic hinges. Yield points of web and flanges cry are assumed 
not to be equal but in any case the strain-hardening modulus is Es' 
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Fig. 6. aYf= yield stress of the flange; ay!\,= yield stress of the web; E = Young's modulus: 
Es = secant strain-hardening modulus 

Plastic strain in the web plate develops in zones BCD and B'C'D', with 
the development of plastic hinges BD, B'D', CD, C'D" BB', CC' and DD'. 

In the web plate (its behaviour is assumed to be symmetric about the 
bar axis), plastic strain develops in the zone KGHJ, ",ith the development of 
plastic hinges MK, KQ, NH, HP and GK, GH, JK, JH. 

Yield mechanism of the web plate is compatible "with those of the flanges 
if points Band C coincide ,dth Hand K, making the yield mechanism of the 
entire section determinate. Now, deformational and potential energies may be 
,v-ritten for the yield mechanism of the plate parts (Appendix). 

As a conclusion: 

J Ndo = Wa = 2WBCD 
o 

(10) 

Value of force .LV is found by differentiating the equation: 

.LV = dWa =2 dWBCD -1-2 dWBB, -1- dWDD, -1-4 dWBD _,' 
do do' do ' do ' do 

+2 dWKJ +2 dWNH -1-2 dWGG +2 dWBc . (11) 
do do I do do 

dW 
Also data of the yield mechanism of plate parts do are seen in the 

Appendix. 
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Fig. 7. Specimen N-7. Web: 200-5 (~= 40) ; Flanges: 120-5 (~= 26.6) ; ay", = 2400kp!cm! 

(240 MPa); ay! = 2400 kp/cm~ (240 MPa); Es = 1250 kp!cm~ (125 MPa) 

Eq. (11) may be made dimensionless by introducing: 

N p = 4b . t . ay! + d . (12) 

Np·L 

E(4bt+ dv) 
(13) 

N 1 dWa --=--.--
Np Np do 

(14) 

Knowing geometrical data and material characteristics, assuming dif­
ferent 0 and o/Oy values, Nand N/Np defining the yield mechanism curves of 
a given bar can be determined as illustrated in Fig. 7. 

Our analyses involved several approximations making the assumed 
stress and strain condition to be only valid for slight displacements although 
some plastic hinges may develop great rotations, which are thus to be limit­
ed [7]. Reduction of the moment in the plastic hinges due to simultaneous 
compressive force has been neglected. 

Also the secondary effect from the spatial condition of the yield mecha­
nism has been neglected. 

Validity of approximations applied in the determination of the yield 
mechanism curve, rather simple to manage, has been confirmed by test results. 

5. Experimental checking 

In 1977, in the Laboratory of the Department of Steel Structures a 
theoretieal and experimental project has been launched to examine plastic 
plate buckling [8]. 
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F.ig. 8. Deflections of the web and of one flange of specimen N-7 

Fig. 9. Flange deflections of specimen N-7 

Among results with the specimens, those for No. N-7 ,,,-ill be presented. 
The dimensionless curve N - 0 is seen in Fig. 7, together with the yield 

mechanism curve. 
The buckled forms of wcb and flange are seen in Figs 8 and 9. 
Test results confirm theoretical assumptions. For given plate proportions, 

web and flange buckling figures are not geometrically independent. 
The assumed flange buckling wave length in Fig. 6 was 120 mm, against 

the experimental 128 mm. 

Summary 

By means of yield mechanism curves the effect of plastic buckling of plates in com­
pressed members can be analysed. Yield mechanism curves permit to choose cross section to 
possess the adequate deformation capacity needed for a favourable structural behavionr, of 
great importance in the plastic design of steel structures. 
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Appendix 

Strain energies of yield mechanisms of plate parts are: 
A.l Weh plate (Figs A. 1 and A. 2) 
A.1.1 Plastic zones BCD and B'C'D' 

BCD and B'C'D' are strains in direction of the compressive force: 

(A.l) 

Utilizing characteristics of the rigid-strain-hardening material, the strain energy 
becomes: ~ 

a/2b 

WBeD = VBeD S (OylV + G • Es) de: = 
o 

b" { (0), 1 ( 0 ')2 E } b { rOEs} b = v - OylV 2b '"2 2b s = v OylV '4b "2' 

Differentiating: 

A.1.2 Plastic hinges BB' and CC' 

(A.2) 

(A.3) 

First, the hinge rotation angle due to the assumed yield mechanism has to be determined. 
Section X-X indicated in Fig. A.l is seen in Fig. A.3 showing hinges CC' and BB' to 

rotate by IX: 

g = 2b b (A.4) 

g b 
(A.5) cos IX = 2b = 1 2b 

sin IX = VI (1 ~r 2b 
(A.6) 

IX = arc cos (1 :b) . (A.7) 

* In Hungarian. 
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To obtain the derivatives of IX with respect to b: 

dlX 
----;]X = 2b . sin IX • 

For a small rotation 1'. the axial strain was as demonstrated in Chapter 3: 

The strain energy: 

~12 

T/ r ( -L E) d _ 1 .2d { I IXEs } ~ W BB' = r BB' • ay", I e s e - 2" v ay", I -4,- 2' 
o 

The derivative with respect to b utilizing (A.S): 

dW BB' _! 2d { -L IXEs} {dOC} _ dWcc' do - 4, v ay", I 2 do - do • 

(A.S) 

(A.9) 

(A.IO) 

(A. 11) 
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A.1.3 Plastic hinge DD' 

The plastic hinge rotates by {3, according to Fig. A3: {3 = 20:: 
the strain being: 

and the strain energy: 

s=£=o:: 
2 

WDD, = V DD' J (aY\tI + s· Es)ds = ~ v2(d - 2b) {aY\tI + 0::'
2
Es} 0::. 

o 

Its derivative with respect to 0, utilizing (A8): 

A.1.4 Plastic hinges BD: CD and B'D'; C'D' 
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(A.12) 

(A.13) 

(A. 14) 

Sections Y-Y and Z-Z in Fig. Al are seen in Fig. A4 where the plastic hinge ro­
tates by: 

Due to geometry: % = 0(2 

. h sin 0:: 
Slll% =--=--

l'2b V2 
since h = b· sin 0( tfrom section X-X): 

. {Sin O::} 
% = arCSln Y2 

. I sin 0:: } rp = 2 arc Slll I ~ . 
12 

In need of the derivative of sin Cf. with respect to 0: 

d(sin Cf.) cos 0:: 1 
--d-b- = sin 0:: . Tb 

and the derivative of (j) with respect to b: 

d(j) 1 1 d(sin 0::) 
do = V2 . cos %. do 

Plastic hinge strain: 

The strain energy: 
<1'>/2 

[ 
I Y2 bv

2 
{ I (j) Es} (j) 

W BD = V BD. (ayw .. sEs) ds = --2- ay", .. -4- 2' 
o 

The derivative with respect to 0, utilizing (A.18) and (A.19): 

dWBD = Y2 b 2 { I IPEs} {dIP} = dWeD = dWB,D' 
dd 4 v ayw" 2 do do dd 

5 

(A.15) 

(A.16) 

(A.17) 

(A.18) 

(A.19) 

(A.20) 

(A.21) 

(A.22) 
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A.2 Flange plate (Fig. AS) 

A.2.1 Plastic zone KGHJ: 

The strain: 

The strain energy: 

0/2b 

WXJ = VXJ J (ay! + cEs)dc= 2b2t {ay! (;b) + ~ (;b rEs} = 
o 

{ 
0 . E } 

= bt ay! -l- 2b s O. 

Differentiating: 

A.2.2 Plastic hinges NH, HP, QK and KM 

(A.24) 

(A.25) 

Section U - U in Fig. AS is seen in Fig. A6 where plastic hinges NH, HP, QK and KlII 
rotate by: 

11 bO _ 0: 
. hI -

SIllQ=Z;= b 

jVbO - 0
2

) 

Q = arc sin b 4 

The derivative of Q ,y;th respect to c. 
b 

o 
2 

V 
o· bo - ; 

Strain in the plastic hinge: 

Strain energy: 
e/ 2 

WNH = VNH J(ay! + eEs) de = 2bt2 {ay!+ Q:s} ~. 
o 

The derivative with respect to 0 utilizing (A.29): 

dWNH =b 2 { ..L QEs}{~}=jWHP = dWQX = dWXM 
do t ay! I 2 do do do do' 

(A.26) 

(A.27) 

(A.28) 

(A.29) 

(A.30) 

(A.31) 

(A.32) 
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A.2.3 Plastic hinges GH, HJ, JK and KG 

Section V-V in Fig. AS is seen in Fig. A7, with the plastic hinge rotating by: 

2/.. 
Due to geometry: 

h-~ z - 2 

.• ]12 ho ]12. 
Sill I. = -b-- = 2 Sill q 

i--·--~t2~-
~~ Q J P 

ut'---____ -'i u 

G 
________ ~/~~~~H~,.,~y--~;r-· __ _ 

i<,Q~P 
J 

Fig. A5 

b 

Fig. A6. Section 2v[-!v 

Fig. A7. Section V- V 

" . {]12. } }. = arc Sill T Sill Q • 

The derivative of J. with respect to Q, utilizing (A.29): 

Plastic hinge strain: 

dJ. 1 
d"8= cos 

. ]12 . cos 0 {dQ 
} • 

2 - do 

2). • 
e=T=}.· 

Strain energy for the four hinges: 

i. 

f ,In 0 { J.Es } , Woo = Voo (ay! + e . Es)de = 2 y 2 bt- ay! + -2- 1' •• 

o 

5* 
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(A.33) 

(A.34) 

(A.3S) 

(A.36) 

(A.37) 

(A.3S) 
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Derivative with respect to 0, utilizing (A.36): 

(A.39) 

A.3 Plastic binges BC and B'C' 

Plastic binge developing between the web and the flange - or assumed in the web 
plate - is seen in Fig. AB. 
Plastic binge rotation: 

W = Q arc sin {b . ~in oc } 

Fig. AB. Section W - W 

W = Q-OC. 

Derivative with respect to 0: 

Plastic hinge strain: 

Strain energy: 

W 
e = 2 . 

w/2 

WBC = VBC f (ayW + eEs) de = v~b {a yW + w:s} . ~ 
o 

dWBC = v
2
b { ...L WEs} {dW} = do 2 ayw I 2 do 

Associate Prof. Dr. Mik16s IV_'\'NYI, H-1521 Budapest 

(AAO) 

(AAl) 

(AA2) 

(AA3) 

(A.44) 

(AA5) 




