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1. Introduction

A necessary (but not sufficient) condition of the development of un-
restricted yielding of a structure is to have the moment bearing capacity of the
beam (cross sections) characterized partly by the ultimate moment value, and
partly by the ability of the beam to support this ultimate moment up to an
adequate plastic hinge rotation. Also the possibility of a premature plate
buckling or lateral buckling disturbing the moment bearing capacity of the
beam unit has to be considered. The plate buckling is affected by the plate
proportions and the supporting effect of adjacent plate parts. The lateral
buckling is affected by the slenderness of sections between lateral supports.

In the following, the problem how the moment-rotation relationship of
the beam section is affected by plate buckling, by other words, the determi-
nation of the yvield mechanism curve due to buckling of constituent plates will
be considered.

2. Previous research

Haarser, G. and TetRLIvMANN, B. [1] investigated the plate slenderness
of webs of beams in bending sufficient to permit adequate deformation capac-
ity. Their analyses were based on the discontinuous character of the yielding
of steel, taking the effect of residual sirvesses into consideration. Ha41JER and
THURLIMANN investigated separately the effects of flange and web buckling,
with regard to the supporting effect of “adjacent™ plate parts. Nevertheless,
the effect of interaction between the buckling plate parts upon the entire cross
section, however intensive it might be, was ignored. Test results support the
assumption that buckling of plates of I-sections under bending moments do
not develop independently but are geometrically compatible (Fig. 1). Thereby
interdependent buckling of plates constituting the entire cross section is to be
reckoned with by determining the moment-rotation relationship of the beam
cross section.
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Fig. 1. Flange buckling of specimen 34-13

3. Yield mechanism curves for beams under uniforin moment

The kinematic theorem of plasticity will be applied, giving an upper
hound. A total vield mechanism will be selected. so as to possibly correspond
to geometrical conditions and to the assumed yield criterion.

This method has been applied by CLiMENHAGA, J. J. and Jornson, R. [2]
for a special case, i.e. the effect of plate buckling in the steel component of
composite beams at supports. For the basic assumptions and a simple example
of the behaviour of a plastic hinge due to bending moment, we refer to [3].

For determining the yield mechanism curve due to the buckling of plates
constituting a beam (flanges and web) — taking test results into considera-
tion — the vield mechanism in Fig. 2 will be selected.

In the shaded area, plastic deformation develops, while thick lines are
linear plastic hinges behaving as described in [3]. Moment M produces tensile
and compressive zones. In the tensile zone, plastic deformation develops in the
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flange section EF, and in zone AEF of the web plate. In the compressive zone,
plastic deformation develops in the zone BCD of the web, and plastic hinges
AB, AC, AD, BD and CD arise. Also, plastic deformations develop in zone
GHJXK of the compression flange, with the development of plastic hinges MK,
KQ, NH, HP and GK, GH, JK, JH.

MY -

[

i
P e o
HE~1 2 nd /
J
L&
7 G
f"‘: i AC' Hi—
T \/)1"1
Fig. 2

The yield mechanism in the compressive zone of the web is compatible
with that in the compression flange if points B and H, as well as C and K coin-
cide. Thereby the yield mechanism of the entire section becomes determinate,
save the position of point A, assumed at a distance 7 - d.

Now, strain and potential energies can be written for the yield mechanisms

of each plate part. (Strain energy of yield mechanisms of plate parts will be
presented in the Appendix.)

According to the analyses:

(M.-do=W=Wgp+ Wagp + Waep -+ Wap + 2Wap -

§
Moment M will be determined by deriving (1):
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(Also values of the yield mechanisms
in the Appendix.)

for each plate part are shown

do

Eq. (2) can be made dimensionless by introducing the ultimate moment
of the I-section:

dz
Mp =2 [bt (d -+ 1) oy + "é"'vayw] (3)
with the corresponding elastic rotation
MpL
By = —F 4
YRy (4)
where
vd3 . be3 -
hence:

In the knowledge of geometry data and material characteristics, assuming
different § and 0/6, values, the M and M/}, values can be determined to
obtain the yield mechanism curve of the beam.

Oy, and oy; will be assumed to be yield points of web and flange,
respectively, with Eg as strain-hardening modulus for hoth.

These analyses involve several approximations: so the assumed stress-
strain relation is valid for a small deformation only. Rotation of the plastic
hinge has to be limited [2], unless plastic hinges assumed in Fig. 3a are replaced
by those according to Fig. 3b. It would, however, make the analysis of the
assumed model much more difficult, while other approximations and test
results fail to justify this refinement.

Reduction of the plastic hinge moment due to simultaneous compressive
force has been omitted, and so has been the secondary effect due to the spatiality
of the yield mechanism.
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Fig. 4. Specimen M-13; d = 200 mm, » = 4 mm, 2b = 120 mm, ¢ =8 mm, L = 580 mm,

Gyw = 26 Mp/mm?, (260 MPa) oy,;= 29 Mp/mm?®, (200 MPa) E;= 9.2 Mp/mm?, (92 MPa)
dfv = 50, 2bjt = 15
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Fig. 5. Specimen M-13. No deformations due to bending,have been'plotted
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This analysis is not concerned with the minimization of the M—6 rela-
tionship with respect to 7, nevertheless the specimen to be presented in
Chapter 4 exhibited — assuming different n values — a minimum of M—§
for 77 = 0.83. The M —0 relationship has been plotted in Fig. 4.

Validity of the approximations in determining the yield mechanism
curve, of rather simple treatment, has been confirmed by test results.

4. Experimental verification

In 1977, a theoretical and experimental program has been established at
the Department of Steel Structures, for investigating plastic plate buckling [4].

From among results of tests on specimens, those for No. M-13 will be
presented, with dimensionless M —6 relationship and test vesults shown in
Fig. 4. Buckled web and flange configurations are seen in Fig. 5.

Test results confirm that the web and flange buckling — for given plate
proportions — are not independent geometrically.

Summary

The yield mechanism curve is a means to analyze the effect of buckling of plates con-
stituting the cross section of beams, permitting to select the proportions of the constituting
plates to make up a structure with the deformation capacity needed for a favourable plastic
behaviour. of importance for the plastic design of steel structures.
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Appendix

Strain energies of vield mechanisms of plate parts are:
A.1 Tensile section (Figs A1, A2)

A.1.1. Plastic zone in the tensile flange:
Axial flange strains along section EF:

16,6y 1
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Utilizing rigid-strain-hardening material characteristics, the deformation energy becomes:

612
- 6-Es) 6
Wer = Ver | (oyy+ e By de = = 2[2(1 — n)d + 1] {ayf+ . S} )
o
Differentiating:
dW 6-E
d:F = bt{2(L — )d - £] {ay,+ 5 S}. (A3)
A.1.2. Plastic zone in the tensile web zone:
Axial strains (Al):
Strain energy:
6/2
Wagr = ¥ Le- By de= ol — 02 oy, + L Esl A4
AEF = Vagr | (Oyw + € - By de = (1 —0)*&* Joyy + —— 5 (A)
; 4 2
Differentiating:
dw o 1 6-E)1 -
SEAEE o1 — i oy, + 25T 5 (43)
A.2. Compressive web zone
A.2.1. Plastic zone BCD
Axial strains in the zone BCD are:
e=10 (46)
Strain energy:
N dhEg) 6nd
WBCD=”52 f((fyw—!—'E'Es)dé‘:Ub {Uyw--:—- nfbs}——g—— (A7)
] 2
Deriving:
dWpgep 1

nd - 8 - Eg
D — 3 vbnd oy + T (A8)
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A.2.2. Plastic hinge AD
First, the rotation angle of the hinge due to the assumed yield mechanism has to be
determined.

Section X—X in Fig. 1 is ceen in Fig. A3 exhibiting rotation 8 of the hinge AD.
From Fig. Al:

b
ey =-73 (A9)
b
yp = arc tg {-777{} (A10)
AD = (5d—b) (A1)
e= AD tgy)z(-?ld;lly2 . (Al2)
nd
From Fig. A3: .
g=2% — AD -6 (A13)
co— & 118 v
co:a—z—"’e—l—ﬁ (Al4)
inac= |1 - (1 20) (A15)
@ = arc cos {l - ng—@} . (Al16)

In need of derivative of « with respect to 4:

do  ad 1

46~ 2 sine (AL7)
The plastic hinge rotates by an angle g; according to Fig. A3:
8 = 2a,
giving a strain
& == g - .
The strain energy being:
T 1, «-E
WAD = VADJ(UYW —‘- & - ES) de == 31}-(77d — b) {Uyw + 3 S} o. (A].g)
0

Utilizing (A17), the derivative with respect to O:

aw. 1, dat
STD —Sotnd — ) dovs + 0 B} {5, (A20)
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Fig. A4. Section Y—Y

Fig. A5. TD = ¢; T,\D = e;; T,D = e,

A.2.3. Plastic hinges AB and AC

Rotation e, of plastic hinge 4B can be determined according to Figs A4 and AS.
According to Fig. A5, for DT = e and DT} = e;:

sin = - (a21)
sin o = ;’L: (A22)
cosy = % = ssii;1 :1 (423)
sin @, = Z:z; (A24)
&; = arc sin {i’:: } . (A25)
Obviously:
tgp — sing _ 1 cosp = 1
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Needing derivative of o; with respect to 6:

doy 13 1  coso 7d (A26)
db Y1 — sin? o, cosy sine 2b --'
Plastic hinge strain:
e = 9‘); . (A27)
Strain energy being:
x4/2
: v - nd o+ Egla
Wag = ’ (oyp+ e E)de = 3 Coslw {UYW + 2 4 }?1 . (A28)
i

The derivative with respect to 8, utilizing (A26):

(A29}

dWAB =i’i7’d {U o CI.IES {dozll 1 — CZWAC
df G A ) do | 4cosy g

i

A.2.4, Plastic hinges BD and CD

Rotation of plastic hinge BD may be determired from the section Y— 7Y in Fig. Al,
normal to the hinge line.

Rotation of hinge BD:

D=+ o, (A30)
sin 1/5]1. . (A31)

The h value from section X—X (Fig. A3):

h=¢ sina (A32)
. {e-sin oz}
# = are §in {——r———1» . A33
V2 (439)
From Fig. A4, DT, = e,, and from Fig. A5:
o €1
cos (45° — p) = P (A34)
considering that B
cos (45° — p) = —]{)—2 cos p(1 4 tgp) (A35)
and
cos p = -eei (A36)
we obtain:
sin oy = :L _ e-sina- ceoS(45 — 1) — @(1 -+ tgy) - sin & (A37)
2 1 -

oy == are sin (—2@ (14 tgy) sin oz) . : (A38)
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Needing the derivative of sin & with respect to 8:

disine)  cosa 5d

df sinee 2b (A39)
and the derivative of @ with respect to §, utilizing (A33), (A38) and (A39):
o 1 ¢ 1 E (1 tg ) (id_) cos « (A40)
d6 ~ VT —sin®x V2b V1 —sin®e, 2 e 2h ) sina A
Plastic hinge strain:
e = % (A41)
22 B
7 = ) ' 1 }/2‘ o A @ - ES C-D ¢
Wep=1 BD | {oyw -+ eE) de = ——bu? {Uyw -3 (442)
0
Derivative with respect to 8, utilizing (A40):
dWgp V2, , , D E5) [dD) _ dWcp A43
S = o + S5 G = S (443)
A.3. Compression flange (Fig. A6)
A.3.1. Plastic zone KGHJ
Strain:
d
e (Adg)
Strain energy:
7dj2b 6 p J-E
Z 7 LT ) ‘gt L AAx
Wgy=Vg; J‘(ny L e Eg)de-bind {ny -+ T} 6. (A45)
0
/kl' G IAV,
L
K L
I
bj
1
\\\,/Q J P
o fu
G
I NH it
KQ P i
J
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Differentiating:

dWi) | 6ndE,

A.3.2. Plastic hinges NH, NP, QK and KM

Section U—U in Fig. A6 is seen in Fig. A7 showing plastic hinge rotations:

Mg N
I
AE G 5 i
o & A S
ng@ ! R b rzdz &

©
¥
=t
5]
<3
=]
J—
o
=
&
|
~~
2
D>
S’
o
|

b
Needing derivative of ¢ with respect to 6:
byd—nd - 91
d 1 1 ety
d6 " cosg 2

b
Vb cd » B—(5d - 9)3%

Strain in the plastic hinge:

-2
£=32
of2
) . eEs| o
W= Vi ny+s-Es)d6=2bt-{ayf+ 43}5'
0

Derivative with respect to o, utilizing (A50):

dp db dh a9

A.3.3. Plastic hinges GH, HJ, JK and KG

dWNH =bt2 {ny _:_ ggi} {Z_g} — dWHP= dWQK — dWKM.

(A46)

(A47)

(A48)

(449)

(A50)

(A51)

(A52)

(A53)

Section V—V in Fig. A6 is seen in Fig. A8 showing a plastic hinge rotation 24.

From geometry causes:
h

Y
he=3.

(A54)
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Utilizing (A48):

2 ) .
sin /2 = V2hy _r sin ¢ (A53)
b 2
[z -
2 = arc sin 5-sinof. (A56)

Needing derivative of 2 with respect to #, utilizing (A50):

1 ¥z do) A5T
Pt e lm (A57)
Plastic hinge strain:
54
£ = (A58)
Strain energy for the four hinges:
P
( .
W’GG = V‘GG J-(ny - €ES) de = 2 V‘?: bt? !lo'yf - -;—'TE%] A. (Asg)
Derivative with respect to 4, utilizing (A57):
dWGG .9 /- 2{ . ;‘. . ES] [d; . J
2260 — 3 Vabedoyy + 25 “@}_ (A60)

A.4. Plastic hinge BC
Plastic hinge between the web and the flange — assumed in the web — isseenic Fig. A9
Plastic hinge rotation:

@ = p — are sin {e SHZ“} (A61)
,.\ ,
\ {
\ b
\ f2
\ .
| <
—
I k\‘ -/,/' v
Fig. A9
Needing derivative with respect to 6. utilizing (A50):
o _do 1 o cosa nd
o~ df Vl (e sina)? b sina 2b° (A62)
- (= )
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Plastic hinge strain:

£ = —Z’— . (A63)
Strain energy:
o2
Wae = Vac J'(ayf_; ¢ E) de = v {ayf L2 AES} =y (A64)
0
Derivative with respect to 8:
dggszc _ v;b {ny+ w_;’E_s} {%‘}‘ A65)
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