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1. Introduction 

A necessary (but not sufficient) condition of the development of un
restricted yielding of a structure is to have the moment bearing capacity of the 
beam (cross sections) characterized partly by the ultimate moment value, and 
partly by the ability of the beam to support this ultimate moment up to an 
adequate plastic hinge rotation. Also the possibility of a premature plate 
buckling or lateral buckling disturbing the moment bearing capacity of the 
beam unit has to be considered. The plate buckling is affected by the plate 
proportions and the supporting effect of adjacent plate parts. The lateral 
buckling is affected by the slenderness of sections between lateral supports. 

In the following, the problem how the moment-rotation relationship of 
the beam section is affected by plate buckling, hy other words, the determi
nation ofthe yield mechanism curve due to buckling of constituent plates will 
be considered. 

2. Preyious research 

HAAIJER, G. and THuRLnIANN, B. [1] investigated the plate slenderness 
of "webs of heams in hending sufficient to permit adequate deformation capac
ity. Their analyses were based on the discontinuous character of the yielding 
of steel, taking the effect of rel"idual stresses into consideration. HAAIJER and 
THURLDIANN investigated separately the effects of flange and web huckling, 
with regard to the supporting effect of "adjacent" plate parts. Nevertheless, 
the effect of interaction hetween the huckling plate parts upon the entire cross 
section, however intensive it might be, was ignored. Test results support the 
assumption that huckling of plates of I-sections under bending moments do 
not develop independently but are geometrically compatihle (Fig. 1). Therehy 
interdependent buckling of plates constituting the entire cross section is to he 
reckoned with hy determining the moment-rotation relationship of the beam 
cross section. 
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Fig. 1. Flange buckling of specimen 1\[-13 

3. Yield mechanism curves for heams under uniform moment 

The kinematic theorem of plasticity will be applied, giving an upper 
bound. A total yield mechanism will be selected, so as to possibly correspond 
to geometrical conditions and to the assumed yield criterion. 

This method has been applied by CLBIENHAGA, J. J. and JOHl'SOl', R. [2] 
for a special case, i.e. the effect of plate buckling in the steel component of 
composite beams at supports. For the basic assumptions and a simple example 
of the behaviour of a plastic hinge due to bending moment, we refer to [3]. 

For determining the yield mechanism curve due to the buckling of plates 
constituting a beam (flanges and web) - taking test results into considera
tion - the yield mechanism in Fig. 2 ,".ill be selected. 

In the shaded area, plastic deformation develops, while thick lines are 
linear plastic hinges behaving as described in [3]. Moment 1'\;1 produces tensile 
and compressive zones. In the tensile zone, plastic deformation develops in the 
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flange section EF, and in zone AEF of the web plate. In the compressive zone, 
plastic deformation develops in the zone BCD of the web, and plastic hinges 
AB, AC, AD, BD and CD arise. Also, plastic deformations develop in zone 
GHJK of the compression flange, v.ith the development of plastic hinges MK, 
KQ, NH, HP and GK, GH, JK, JH. 
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The yield mechanism in the compressive zone of the web is compatible 
with that in the compression flange if points Band H, as well as C and K coin
cide. Thereby the yield mechanism of the entire section becomes determinate, 
saye the position of point A, assumed at a distance 17 • d. 

Now, strain and potential energies can be written for the yield mechanisms 
of each plate part. (Strain energy of yield mechanisms of plate parts vnll be 
presented in the Appendix.) 

According to the analyses: 

2WAB + 
(1) 

Moment M will be determined by deriving (1): 

NI = dW = dW EF + dWAEF 

de de' de 

+ ') dW BD ...L dWl(] ...L 4 dW -:-lH ...L dWGG ...L dW BC 

- de I de I de I de I de . 
(2) 



220 IvANYI 

dW 
(Also values of the yield mechanisms d(ffor each plate part are shown 

in the Appendix.) 

Eq. (2) can be made dimensionless by introducing the ultimate moment 
of the I-section: 

-with the corresponding elastic rotation 

where 

hence: 

bt3 

[bt(d + t)2] + 3 

1 dW 

NIp de 

(3) 

(4) 

(5) 

(6) 

In the knowledge of geometry data and material characteristics, assuming 
different e and ejey values, the j\lI and jVI/ l~j p values can be determined to 
obtain the yield mechanism curve of the beam. 

anv and ay! will be assumed to he yield points of "web and f1ange, 
respectively, ·with Es as strain-hardening modulus for both. 

These analyses involve several approximations: so the assumed stress
strain relation is valid for a small deformation only. Rotation of the plastic 
hinge has to be limited [2], unless plastic hinges assumed in Fig. 3a are replaced 
by those according to Fig. 3b. It would, however, make the analysis of the 
assumed model much more difficult, while other approximations and test 
results fail to justify this refinement. 

Reduction of the plastic hinge moment due to simultaneous compressive 
force has been omitted, and so has been the secondary effect due to the spatiality 
of the yield mechanism. 

Fig. 3 
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Fig. 4. Specimen lYI-13; d = 200 mm, v = 4 mm, 2b = 120 mm, t = 8 mm, L = 580 mm, 
al'w = 26 MpJmm2

, (260 MPa) al'f = 29 MpJmm2, (290 MPa) Es = 9.2 MpJmm2
, (92 MPa) 

d/v = 50, 2bft = 15 

Fig. 5. Specimen lYI-13. No deformations due to bending~have been:plotted 
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This analysis is not concerned with the minimization of the 1YI -{} rela
tionship with respect to 'I} , nevertheless the specimen to be presented in 
Chapter 4 exhibited - assuming different 'I} values - a minimum of M-{} 
for 'I} = 0.83. The M -{} relationship has been plotted in Fig. 4. 

Validity of the approximations in determining the yield mechanism 
curve, of rather simple treatment, has been confirmed by test results. 

4. Experimental verification 

In 1977, a theoretical and experimental program has been established at 
the Department of Steel Structures, for investigating plastic plate buckling [4]. 

From among results of tests on specimens, those for No. i'li-13 will be 
presented, ",ith dimensionless ivI -{} relationship and test results shown in 
Fig. 4. Buckled web and flange configurations are seen in Fig. 5. 

Test results confirm that the web and flange buckling - for given plate 
proportions - are not independent geometrically. 

Summary 

The yield mechanism curve is a means to analyze the effect of buckling of plates Con
stituting the cross section of beams, permitting to select the proportions of the constituting 
plates to make up a structure with the deformation capacity needed for a favourable plastic 
behaviour. of importance for the plastic design of steel structures. 
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Appendix 

Strain energies of yield mechanisms of plate parts are: 

A.I. Tensile section (Figs AI, A2) 

A.1.1. Plastic zone in the tensile flange: 
Axial flange strains along section EF: 

c = ~ (~ + ~) = ~ B. (AI) 
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Utilizing rigid-strain-hardening material characteristics, the deformation energy becomes: 

B,T;! 

WeF = VeF 1'(UYf + 8 ' Es) de = = 2bt[2(1 
'0 

Differentiating: 

dW
d

::
1 

F = bt[2(1 )d I ] { le, Es} 
(I 1) I t uYf I --2- . 

A.1.2. Plastic zone in the tensile lVeb zone: 
A."cial strains (AI): 
Strain energy: 

0/2 

(A2) 

CA;!) 

WAEF = VAEF f (UYw + e ' Es) de = v(l _1)2 d2 {UYW + e '4 Es} ~ . (A4) 

Differentiating: 

A.2. Compressive web zone 

A,2.1. Plastic zone BeD 

o 

Axial strains in the zone BeD are: 

Strain energy: 

Oryd/2b 

W BCD = vb2 f (uy", + e . Es) de = vb {ay", + 1]d::s } e~d . 
o 

Deriving: 

dW BCD = ~ J..,d { ..L 1]d . e . Es} 
de 2 VV'I aYtr I 2b ' 

(A5) 

(A6) 

(A7) 

(AS) 
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Fig. A3. Section X-X 

A.2.2. Plastic hinge AD 
First, the rotation angle of the hinge due to the assumed yield mechanism has to be 

determined. 
Section X-X in Fig. 1 is seen in Fig. A3 exhibiting rotation f3 of the hinge AD. 

From Fig. AI: 

From Fig. A3: 

b 
tg!p = 1)d 

AD = (1)d-b) 

- (1)d b) b 
e = AD tgljJ= -d 

1/, 

g = 2e - AD· 0 

cos Cl. = =1 ~8 
2b 

~O)2 
2b 

{ 
1)d} Cl. = arc co" 1 - 2b 0 • 

In need of derivative of Cl. with respect to 0: 

The plastic hinge rotates by an angle f3; according to Fig. A3: 

giving a strain 
f3 

s=Z=Cl.· 

The strain energy being: 
~ 

WAD = VAD J (aj'w + e . Es) ds = ~V2(I)d - b) {a yW + Cl. '
2
E

s} cc. 
o 

Utilizing (All), the derivative with respect to 0: 

dW AD I. {dCl.} -ae-=z.v·(1)d - b) {ayw + Cl.' Es} dO . 

(A9) 

(AIO) 

(All) 

(A12) 

(A13) 

(A14) 

(A1S) 

(A16) 

(All) 

(AI9) 

(A20) 
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Fig. A4. Section Y - Y 

A.2.3. Plastic hinges AB and AC 
Rotation 1X1 of plastic hinge AB can be determined according to Figs A4 and A5. 
According to Fig. A5, for DT = e and DT1 = e1: 

Obviously: 

. h 
SIn IX =

e 

. h 
sInIX1 =

el 

e1 sin IX 
costp = -= -.--

e SIn Cl1 

. sin IX 
SIn Cl1 = cos tp 

. {sin Cl} Cl1 = arc SIn -- . 
COS tp 

to' - sin t.p - V_l- - 1 • 
.. t.p - cos t.p - cos: 'I' ' 
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(A21) 

(A22) 

(A23) 

(A24) 

(A25) 
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Needing derivative of CCl with respect to e: 

dcc l = 1] 

de Yl - sin2 cc l 

1 cos cc 1)d 
'--'--'-. 

cos 1jJ sin cc 2b 
(A26) 

Plastic hinge strain: 

(A27) 

Strain energy being: 

~1/2 

W 
1

"( E) d v2 
• 1jd {a -L CCl • Es} CCl 

V AB = ayw + e' s e = YlV I • 
2 cos 1jJ 4 2 

11 

(A28) 

The derivative with respect to e. utilizing (A26): 

.4.2.4. Plastic hinJ{es BD and CD 
Rotation of plastic hinge BD may be determined from the section Y - Y in Fig. Al. 

normal to the hinge line. 
Rotation o£hinge BD: 

. h 
sm r.: = 1Iz . b (ASl) 

The h value from section X-X (Fig. AS): 

h = e • sin cc 

. (e' sin CC} 
r.: = arc sm I 112 b • 

From Fig. A4, DT2 = e2, and from Fig. A5: 

cos (45 0 
- 1jJ) = ~ 

e2 

considering that 

cos (45 0 
yz 

1jJ) = 2 cos 1jJ(1 + tg1jJ) 

and 

we obtain: 

cos1jJ=~ 
e 

• 11 e • sin cc • cos( 45 0 
- 1jJ) 

sIn cc. = - = -----.-'----'-''-
• e2 el 

~2 (1 + tg1jJ) . sin cc 

(AS2) 

(ASS) 

(AS4) 

(ASS) 

(AS6) 

(AS7) 

(AS8) 
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Xeeding the derivative of sin Cl with respect to 8: 

d(sin Cl) cos Cl 'l]d 
--d-8- = sin Cl 2b 

and the derivative of (JJ with respect to 8, utilizing (A33), (A38) and (A39): 

d(JJ [ __ 1 _____ e_.J.. -==::::::= Y2 (1 .J.. tg 1 )] l'~) c~s Cl 
dJi = VI - sin2 r. JI2 b ' J 2 I ~ P 2b Sill Cl 

Plastic hinge strain: 

Derivative with respect to 8, utilizing (A40): 

dWED = ]12 b 2 { .J.. (JJ • Es} {dcJ;} _ dWCD 
dB 4 v aylV I 2 dB - d8 . 

.40..3. Compression flange (Fig • .406) 
A.3.1. Plastic zone KGHJ 

Strain: 

Strain energy: 

tjd/2b 0 

1]d 
e = 2b 8. 

W Tr r ( I ~ ) d b d { ,0 . 1]d . Es} 8 KJ = Y K). ay] -: e . l!..s 8- 11] ay!., 4b . 

o 

/1 G N 

b 
__ L 

j 

bi 
i 

,VQ p 
'ljU +U 

G l1ON.H it 
K,Q P j 

J 
Fig. A6 
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(A39) 

(A40) 

(A41) 

(A42) 

(A43) 

(A44) 

(A45) 



228 

Differentiating: 

A.3.2. Plastic hinges NH, NP, QK and Kit[ 

Section U - U in Fig. A6 is seen in Fig. A7 showing plastic hinge rotations: 

!1 ,.9 

d 1£1-(-- -

T{ 2v r-----

Fig. A7. Section M-N 

Needing derivative of Q with respect to B: 

Strain in the plastic hinge: 

a/2 

o 
e="-

2 

N 

WNH = VNH J (ay! -+- e ·Es) de = 2bt2 {ay! + Q:s} ~ . 
o 

Derivative with respect to a, utilizing (A50): 

dWNH = bt2 {ay! + QEs} {dQ} = dWHP = dWQK = dWKM . 
dB 2 dB de dB dB 

A.3.3. Plastic hinges GH, HJ, JK and KG 

Section V-V in Fig. A6 is seen in Fig. AB showing a plastic hinge rotation 21.. 
From geometry causes: 

(A46) 

(A47) 

(A4B) 

(A49) 

(A50) 

(A51) 

(A52) 

(A53) 

hl 
h~=2' (A54) 
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Fig. AB. Section V-V 

Utilizing (A48): 
." Y2 h. y'2. 

SIn!. = --b--- = 2 SIll Q (A55) 

{ y'? } I. = arc sin 2- sin Q • (A56) 

::'ieeding derivative of t. with respect to e. utilizing (A50): 

dl. 1 y'2 {dQ 1 
de = cos }. . 2 . cos Q de f . (A57) 

Plastic hinge strain: 
2}. " 

E: = 2 = / .. (A58) 

Strain energy for the four hinges: 

;. 

WGG = VGG f (aFf + eEs) de = 2 y'2 bt2 {aFf + ). '2 Es} ) •. (A59) 

Derivative with respect to e, utilizing (A57): 

dU/GG = ') j!2 b 2 { • -L}" Es} {dl.} de - t aYf 2 de . 

AA. Plastic hinge BC 

6 

Plastic hinge between the web and the flange - aS511med in the web 
Plastic hinge rotation: ~ 

W = Q - arc sin {e Si~ c;; } • 

Fig. A9 

Needing derivative with respect to e. utilizing (A50): 

dw dQ 
Te=de 

(A60) 

is seeu in Fig. A9 

(A61) 

(A62) 
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Plastic hinge strain: 

Strain energy: 

w/2 

WEe = VEe J (ay! + e: . Es) de: = v~b {ay! + 0) ~ Es} ~ . 
o 

Derivative with respect to 6: 

O)Es} {dm} 
2 d6' 

Associate Prof. Dr. lVIikl6s IV_.(NYI, H-1521, Budapest 

(A63) 

(AM) 

A65) 




