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Introduction 

Knowledge of the deflections of the vertical helps to solve two great 
problems: partly it yields important data for the precise determination of 
the geoid, partly gives information to geoscientists about the distribution of 
underground, covered masses. In both instances a very dense net of deflections 
of the vertical is necessary. Astrogeodetic determination of deflections of the 
vertical is extremely lengthy and expensive, therefore in practice a sparser 
net of astronomical stations has to be put up with and this astrogeodctic 
net is interpolated by diffcrent methods. 

Interpolation is either based on gravity anomalies' (gravimetric interpola­
tion method) or on the cm'vature deviations of the" gravity levei surface, 
or by other methods. 

In the following, the interpolation deflections of the vertical measured 
by torsion balance curvature data "will be discussed. 

Principle of the interpolation method 

In the following, the fundamental conceptions concerning deflections 
of the vertical and quantities of torsion balance observations are supposed 
as known and - omitting mathematic deductions - only the fundamental 
relationships are "written. 

Our computations are related to a Cartesian co-ordinate system the 
origin of which is an arbitrary point inside the area to be investigated and the 
axes +x and +y point to the north and to the west, respectively, in the 
horizontal plane of the origin. If the investigated area is not too large, of an 
extension of 0.50 by 0.50 at maximum, a uniform co-ordinate system may be 
used for the entire area [1]. 

The computation of deflection of the vertical is performed along the 
adjacent triangles. Let section between points PI and Pz be one side of an 
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arbitrary triangle (Fig. 1), and the two deflection components ~l and Y)l in 
point PI; ~2 and Y)2 in point P 2 their difference being: ,1~21 = ~2 - ;1 

and ,1Y)21 = 1]2 - Y)l' 

Fig. 1 

Now a very simple relationship can be ,v-ritten for relating the change 
of the deflection components between two points and the curvature gradients 
of the torsion balance observations: 

= :~ {[(~ - Ua)l + (Wa 
I:> 

(1) 

where n12 is the distance between points PI and P2, g is the value of the average 
gravity acceleration between these two points, 

are characteristics for the curvature gradients of the level surface determined 
by torsionbalance;Ua and Uxy are the curvature gradients in the normal 
gravity field of the Earth. 

Two further relations can be ,uitten, similarly to (1) if also a third 
point P 3 is given, forming a triangle ,vith the previous points PI and P2• 

Since around- the triangle formed by points P l P 2 P 3 the total deflection 
component difference has to be zero, beside the three relationships type (1), 
two more can be written: 

,1~2l + ,1;32 + ,1;13 = 0 

,11]21 + ,11]32 + ,11]13 = O. (2) 

So in any singular triangle there are six unknowns: ,1;21' ,1;32' ,1;13' 

,1Y)21' ,17)32' ,17)13 for which, according to the above, five independent equations 
can be ,v-ritte~ (three of type (1) and two of type (2) ). 
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Let us now investigate the interpolation net in Fig. 2, consisting of 

n points. 
The n points form a chain of altogether n-2 triangles with 2n-3 sides, 

·with two 'unknown deflection component differences along each, hence for 
the entire net there are 4n-6 unknowns. At the same time for the n-2 
triangles 2n-3 equations type (1) and 2n-4 ones type (2) can be ·written, so 
that for the 4n-6 unknowns there are altogether 4n-7 equations. For an 
unambiguous solution of the problem, a further information, independent 
of the former, is needed. 

Fig. 2 

If the value of the deflection component difference between two extreme 
points is known, then - as this is a further independent information - the 
system of 4n-6 equations can be solved by any of the procedures below: 

(a) The complete coefficient matrix belonging to the 4n-6 unknowns is 
inverted ([1), [2], [3], [4]). 

(b) Only the sub matrix belonging to the wanted 2n-2 unknowns of 
the above coefficient matrix has to be inverted. 

(c) The unknowns are determined step by step [5]. 
In the following, only method (1) will be discussed. 

Practical solution of the interpolation 

According to the fundamental idea of our procedure, the system contain­
ing the 4n- 6 unknowns is parted into two groups by eliminating the redundant 
unknowns. One group contains only the necessary unknowns (e.g. the net in 
Fig. 2 only the component differences pertaining to sides P1P2, P2P3, P3P4 ••• ) 

- while the other group the redundznt unknowns (i.e. the component differ­
ences for the remaining sides P]P3' P2P4' P3P5 • •• in Fig. 2). The system 
containing the second group of unknowns can be ignored further on, and only 
the coefficient matrix of the equation system concerning the necessary un­
knowns has to be inverted. This is, however, only of size (2n-2) by (2n-2) 
essentially smaller than the coefficient matrix (4n-6) by (4n-6) under (a). 

Equations needed to be written according to the above method are 
outlined in the following: 

9 P(oriodica Polylcchnica Ci...-il2l(l 
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Looking again at Fig. 2, for the first triangle (PIP2Pa)' eliminating the 
values L1~31 and L11731 from Eqs (1) and (2): 

there are two more equations for each other triangle: 

whEre: i = 2,3, Ll, ... , /1-2. 
Ti,j in Eqs (3) to (7) stands for the right-side term of Eq. (1). 

(3) 

(4) 

(6) 

(7) 

These are altogether 2n-3 equations with 2n-2 unkno"wns, to which 
other equation(s) can be "written, if the deflection components .; ;:md 1] in 
the end points of the interpolation 11et are kno"wn. 

As along the interpolation line the separate sums of each of the two 
deflection component diffcrences have to equal the deflection component 
differences at the end points, two further so-called condition eq"nations can 
be written: 

~Il - ~1 
/1-1 

....... L1~"-!..1 . , ~ l,_,l 

i=l 

/1-1 

.:E Lllli +-1, i 
i=l 

(8) 

(9) 

If only one deflection component is known at the end points, hence, 
if only one of the condition equations (8) and (9) can be given then exactly 
as many equations can be \\Titten as many unknowns there are, therefoTe 
the system containing 2n-2 unkno'wns can be solved unamhiguously. 

However, if both condition equations can be \\Titten, there aTe totally 
2n-1 equations, i.e. one more than the numher of unknowns. In this case 
the opeTation is redundant, the most probable yalue of the unknown;; is 
determined by adjustment. 

Adjustment can be carried out in two different ways: either indirectly, 
by the known method (through setting up and solving the normal equations) 
or directly (by the orthonormalization method) [6]. 
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The orthonormalization method was applied in our computations beside 
its other very favourable properties, chiefly because of a high numerical stabil­
ity. 

For the interpolation procedure described, a computer progl'am has 
been developed. The programs were written in the ALGOL 60 language for a 
computer type ODRA-1204. 

The operations of the program can be outlined as follov{s: 
1. Reads the number of net points and also the deflection values of ~ 

and YJ in the initial and end points of the chain. 
2. Reads the serial number, the co-ordinates x and y, as well as the data 

W Ll and WXY for each point of the net. 
3. Using relationships (3) to (9), produces the so-called enlarged coeffi­

cient matrix of the pertaining equation system and the vector of absolute 
terms. 

4. Orthogonalizes the enlarged coefficient matrix according to (6) result­
ing for each net point in the deflection component values ~ and7}, and their 
mean square errors. 

5. Prints the input data and the above determined values. 

Data of the experimental computations 

For practically testing the method, the plane and hilly 1200 km2 territory 
in Fig. 3 sUl'veyed in detail by torsion halance obscrvations was chosen, 
including thl'ec adjacent points (1, 2, 3) of the first order triangulation net 
of Hungary - with an average spacing of 40 km. For these points the values 
of both the relative and the absolute deflection components were available, based 
on astrogravimetric data. In the shown area the deflections of the vertical 
bet"ween the three astrogeodetic points were interpolated based on torsion 
halance observations. For comparing or checking the l'esults, the astrogravi­
metrically determined values for the three points (13, 14, 27) inside the area 
were used. 

It appears from Fig. 3 that the torsion balance observation points were 
not uniformly distributed, observations were more concentrated in areas of 
increased gradients, in "more perturbed" areas. This has an importance in 
the developmcnt of interpolation nets, because the nets on territories of 
increased gradients are advisably established so that the change of the second 
potential del'ivatives of two adjacent points can still be considered as linear. 
(This approximation was utilized to deduce relationship (1) ). 

Our experimental computations were carried out along the three principal 
interpolation lines, mal'ked by a heavy line, the further six smaller concentra­
tion chains in Fig. 3 wr:-re established to calculate geoid undulations. 

9* 
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Summary of the experimental computations 

Results of the described computations are shown in Fig. 4. Arrows 
represent vectors, which may be considered either horizontal force components, 
or direct deflection values {} = V ~2 + nZ• (Former differ from latter only by 
multiplication by vector g). 

In our interpretation also the deflection values may be taken as vectors 
considering the direction from the ellipsoid zenith to'ward the astronomical 
one as positive, and the absolute value of the deflection in the given point 
as the vector length. 

In this way, applying the adequate scale, both the deflection values 
and the horizontal force components can be read off the same figure. 

The deflection values are marked by heavy lines (vectors) in the initial 
and check points, the interpolated values are plotted with thin lines. 

It can be stated that except for point 27 the given deflection values in 
the check points agree with the interpolated values within the graphic accuracy. 

In connection with Fig. 4 it should be noted that in order to establish 
a completer picture of the whole territory, in addition to the main inter­
polation lines, computations have also been made for six smaller chains plotted 
between the check points in Fig. 3, the results of 'which are also shown here. 

Deviations in the check points are summarized in the follo,ving table: 

check interpolated difference 

mark 

~rt r(' ~" Tt ~II Tt' J 

?~ 
-I ,4.02 +4.05 +5,05 -;-2.99 -1.03 -,1.06 

13 ,5.31 +3.12 ~5.52 3.6-1, :.....0.21 -0.52 

14 -;-5.27 -:-3.30 -:-6.01 -,- 3.49 -0.74 -O.E" 

Mean square error of interpolated deflection components from the devi­
ations: 

fl~ = _0.74" arid II = , 7J 0.67" . 

To check reliability of our computations, a further investigation was 
carried out. Namely hetween the astrogeodetic points marked 3 and 1 two 
interpolation chains werc cstablished as seen in Fig. 3. Chain "A" was plotted 
between the points 3 ->- 5876 -)- 5938 ->- 5935 ~ ... -+ 1 , "B" between 
points 3 -+ 5939 -+ 5938 -+ 5937 -+ ••• ->- 1. Chains 3-1/A and 3-1/B are 
seen in Fig. 3 to have fourteen common points along the corresponding sides. 

Theoretically, identical deflection values should he obtained ,\ith the 
same interpolation method in the corresponding points of the two separate 
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chains. In reality, however, these components differ by a certain value from 
each other. The magnitude of the difference characterizes the reliahility of 
the method. 

The deflection components computed for the two adjacent chains aTe 
shown in Fig. 5. 

The corresponding components agree very well, differences exceed the 
value --0.5" only in four points. 
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At the same time, except for two net points, the results show the confi­
dence of the interpolated deflection component values to be the smallest 
about mid chain. The confidence of these points can be increased by reducing 
the distance between the interpolation end points, as a consequence, in areas 
where a higher density of deflection values obtained by astrogeodetic measure­
ments is available, confidence of the interpolated values is higher. 

Summarizing the above, it can be stated that the mean square error 
of interpolated deflection components changes also within the same interpola­
tion chain from point to point, this fluctuation is, however, slight enough 
and the mean square error remains in general below ±0.7" if the circumstances 
agree with those prevailing in the test area. 

Applications 

As already mentioned, the deflections of the vertical help to solve two 
problems: partly they yield important data for the precise determination of 
the geoid, partly they give information about the distribution of subsurface 
masses. In the following only the geoid computations are discussed. 

One of the common problems of geophysics and theoretical geodesy is 
the precise determination of the geoid, the mathematical form of Earth. Today, 
based on up-to-date measurement results, contour line maps of the main 
forms of the geoid for nearly the whole Earth surface are available - these 
maps, however, do not contain the "fine structure" of the geoid. 

As kno"wn, there exists a definite mathematic relationship between the 
geoid undulations and the deflection values. Between any points Pi and Pi + 1, 

the geoid hcight change is 

Pi.!.. 1 

!1N = J' (; cos ex + 'I) SIll ex) ds 
Pi 

where ex stands for the azimuth of the line oflength s connecting the two points. 
If for any point of the investigated area the initial value of geoid height 

No is known, further if adequately interpolated deflection values are available 
for this particular area, the detailed map of the geoid can be obtained for the 
given area. 

Based on the above, computations were carried out for the experimental 
area shown in Fig. 3, using the deflection components interpolated previously. 

As on this territory no geoid height related to the same reference surface 
as the given deflection components was available, the geoid height No for the 
experimental area in Fig. 3 was chosen arbitrarily to be zero in the astrogeodetic 
point 1, to serve as basis for determining geoid heights of further points. 
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The mentioned geoid map is presented in Fig. 6. The map is in good 
agreement with the distribution of deflection vectors () seen in 
Fig. 4. 

It is characteristic for the accuracy of the computations that going 
along the chains 1 -+ 2, 2 -r 3, 3 --r 1, and returning to point 1, instead of 
the initial value No = 0 cm, No = -7 cm was obtained, i.e. going around 
the chain length of about ll5 km, a misclosure of only 7 cm was obtained. 
This misclosure is characteristic not only of thc accuracy of the geoid height, 
but is at the same time an excellent possibility to check the confidence of the 
interpolated ~ andi7 values. 

Therefore deflection values interpolated from torsion balance observa­
tions can be stated to give very economically highly reliable geoid maps 
which are most suitable to study local details. 

Summary 

The interpolation principle based on gravity gradient values of deflections of the 
vertical is outlined, then a very simple solution procedure is discussed, followed by descrip­
tion of the experimental computations carried out to test the method in praetice. Results of 
the experimental computations show mean square errors below ± 0,7" of the deflection com­
ponents interpolated in this way. Finally, attention is drawn to the fact that with this method, 
applying interpolated deflection values, very detailed and exact geoid maps can be prepared. 
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