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When dealing with water management, flood control, river trammg 
etc., problems to be solved only by the unsteady flow theory are frequently 
faced. Computation of unsteady flows - despite their theoretical foundations 
being kno'wn for over more than a century - was developed only recently, 
due to the appearance of modern computer methods. 

The present paper deals "\vith the investigation of open-channel, unsteady, 
gradually varying flows (e.g flood waves). As solution the implicit method 
[1, 2, 3] was chosen, providing a rapid computation, easy to follow. In the 
discussion of the method some theoretical hydraulic knowledge is presumed, 
to be found in the literature referred to [1]. Our computations were carried 
out for rivers without tributaries, though theoretically there are no obstacles 
to take tributaries into account [4]. 

1. Fundamental equations 

The unsteady, gradually varying open-channel flows are described by the 
continuity (1) and the dynamic (2) equations: 
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is the co-ordinate of the section (increasing along the flow); 
time; 
discharge; 
wetted cross section area; 
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the inflow, withdrawal, or incidental evaporation per unit 
length (henceforth termed as linear load); 
elevation of the water surface; Z[L] 
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I([VT-l] 

- gravity acceleration; 
- water conveyance from Q K 111 ; 
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Derivation 
found in [1]. 

dispersion coefficient of momentum; 
dispersion coefficient of local acceleration: 
dimensions of length viz. time (e.g. m, cm, inch, sec. etc.). 
and validity conditions of the fundamental equations are 

Eqs (1) and (2) form a partial differential equation system of hyperbolic 
type. A general solution of equations of this type cannot he ohtained at the 
present state of mathematics, ho·wever. they can he approximated with 
numerical methods very well [L 4]. 

2. Solution of the fundamental equations 

Approximation of the general solution of Eqs (1) and (2) is carried out 
hy the implicit method. As first step the partial differential Eqs (1) and (2) 
are transformed into a difference equation. For this purpose the investigated 
river without tributaries is divided into reaches each Llx long and the phenom­
enon is investigated at intervals LIt. Equidistant division is not required 
in either of the directions Llx and LIt. If the lines x = constant, t = constant 
are plotted in the co-ordinate systcm x t, on the so-called ·wave plane 
(Fig. 1) a net is ohtained, in the nodes of which the values of water level and 
discharge can be determined. Thus, the total interpretation range of the 
computation is reduced to a multitude of primary discreet ranges of dimensions 
Llx, LIt. Let us select a mesh situated in an arbitrary place at random (Fig. 2) 
and approximate the partial derivatives of the function f(x, t) interpreted over 
the given mesh by means of the follo, .... ing scheme: 

(3) 

6f ~ ~ (f{+l - f{ + f{~i - f{+1 "j. 
at 2 l LI t LI t , 

(4) 

Constants in Eqs (1) and (2) are approximated by 

(5) 
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i.e. by the average function values in the node (subscripts i and j designating 
the place, and the time, resp.). 

In the computations the instant t = tj is supposed already to be reached 
and now the condition at time t = t j + 1 has to be computed. 

Fig. 1. Division of wave planes into elementary meshes 
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Fig. 2. Elementary mesh at an arbitrary place 

Carrying out suhstitutions (3), (4) and (5) and expressing the values of 
the unknowns leads to the set of linear equations: 

A1Z{+1 

B1Z{+1 

A Qj+1 I A Zj+1 I A Qj+1 - A 
J:12 i T 3 HI T ,1 i+1 - 5 

B Qj+1 I B Zj-'-l I B Qi+1 - B 
2 i T 3 i-i-1 T 4 i-i-I - 5 • (6) 

Writing for all meshes Eqs (6), 2 . n equations are obtained, where the number 
of unknowns is 2 . (n + 1). If in sections x = Xo' and X=Xn ' also called up­
per and lo'wer control sections, respectively; the value of each unknown is 
given, the equations can be solved. 

The "equation constants" Ai' Bi(i = 1, 2, ... , 5) depend on the value 
of the unkllo"..-n because of the approximation according to the coefficients 
of Eq. (5). Therefore the set of equations (6) can only be solved by iteration. 
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3. Initial and boundary conditions 

Above it was supposed that at the instant t = tj already all characteristics 
of the flow were known. Therefore at the beginning of the computation (t = to) 
beside the geometric and hydraulic characteristics the initial water stage and 
discharge distributions along the river should be given. This is the initial condi­
tion. The mathematical form of the initial conditions: 

(7) 

Initial conditions refer physically to the history of the flow: they show 
prism storage of the channel and the prevailing hydraulic conditions thereof. 

It must he noted that if the value of the linear load was not zero, Eqs (7) 
have to be completed by the equation 

The determination of initial conditions is not discussed further, it may be 
found in [1]. 

The numbers of equations and unknows are only equal if the values of 
the two variables are given from one time cycle to another. These are the 
boundary conditions, to be described mathematically as in [1]: 

Z = Z(xo' t) or Q = Q(xo' t) 
(9) 

Z = Z(xn, t) or Q = Q(xn, t). 

(As already pointed out, only one variable value has to be given for each of 
the control sections, and it is optional whether only the stage or only the 
discharge is chosen). 

In case of linear load, 

q = q(Xi' t) i = 1, 2, ... , n (10) 

complete the boundary conditions. 
Physically, the boundary conditions constitute the link between the 

investigated reach and its environment as a function of time. 

4. Process of the computation 

Major steps of the computation of a phenomenon of arbitrary duration 
is shown in a flow chart (Fig. 3). The usual plotting 'v-as abandoned to make 
more obvious the fitting into each other of the iterative solution of the set 
of equations and the time cycle. 
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Fig. 3, Flow chart of the computation 

5. Applications 

From the countless application possibilities of the computation only 
some are stressed here: 

computation of unsteady flow developing because of the operation of 
a hydroelectric power station or a chain of such power stations; 
effect of river training and foreshore clearing upon runoff conditions; 
forecast of flood waves; 
effect of a level breach on the hydraulic conditions of the river; 
computation of flow conditions in consequence of a variable intake by 

irrigation canals. .. etc_ 
As an example we consider now how the filling of the storage space 

of a channel-storage hydroelectric power station occurs. To cut the computa-
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tion work (running time), the phenomenon is investigated in a prismatic rectan­
gular channel of 100 ill width and 100 km length. The bottom slope is 10 cm/km 
and its smoothness factor (the reciprocal of Manning's n) k = 40 (Fig. 4). 
At to= 0 and a water depth of 3 m, 240 m 3/s discharge flows down the river 
channel, hav-ing uniform motion. 
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Fig. 4. Surface profiI:: belonging to different instants of filling. t = 45h 

As for the upper control section, it is supposed that a base flo"w of 240 m 3/s 
arrives during the 'whole period of the proceEs. In the section of the hydro­
electric power station, the effluent discharge is reduced to 180 m 3/s therefore 
discharge of 60 m 3/s is used to fill the storage space. In the storage area "we 'want 
to obtain a headwater depth of 7,00 m and as soon as this is attained, the 
normal backwater operation hegins. In the lower control section therefore 
a compound boundary condition has to he established: 

-- during the filling period Q = const. = 180 m 3ts and 
-- in the backwater operation Za = const. 87.00 m (Fig. 5). 
The computation was carried out w-ith mesh dimensions Llx = 2000 m 

and Lit = 3600 sec. When determining 'water level elevations, an iteration error 
of I mm was permitted. 

Surface profiles belonging to the different instants are plotted in Fig. 4. 
The water reached the elevation of 87.00 m in the 45th hour, then automati­
cally the boundary condition Za = const. became valid. Subsequently, only 
changes in the order of cm occurred, therefore no further surface profiles were 
plotted. 
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In the section of the hydroelectric power station (Fig. 5) the change in 
time of the water elevation and the discharge are shown. It can be well seen 
on the figure that at the beginning of the filling period the rate of water rise 
is 30 cm/h, 'which decreases to 5 cm/h at the end of the filling. After reaching 
the specified hackwater level the discharge soon assumes the original value of 
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Fig. 5, Yariation of water stage and discharge in the lower control section 

240 m 3/s. Had the computations been carried out for a real channel it could 
he stated hased on the ohtained results - 'whether the filling rate is suitable 
with regard to water bed erosion, bank stability, navigation, ete. or it has 
to be changed. Such computations yield important fundamental data for 
design and for estahlishing instructions of operation. 

By means of this procedure, gradually varied, open-channel unsteady 
flo'ws can be computed. A great advantage of the implicit method of differences 
is that for practically all practicahle me sh dimensions it yields a reliably stahle 
and rapid computation. For informative computations with large Llx, LIt and 
the iteration error given, the design situation is to be chosen for which more 
accurate hut also more time-absorbing computations might be carried out. 

The above example (Llx = 2000 m, LIt = I hour, Zerror = I mm, 50 
reaches, 72 hour phenomenon) took 77 minutes on the medium-speed ODRA 
1204 computer. 

Summary 

The paper describes computation of gradually varying unsteady flows. The two partial 
differential equations of the hyperbolic type describing the phenomenon are solved by means 
of the implicit method of differences. The ways of establishing initial and boundary conditions, 
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necessary for the solution, are discussed. A flow chart shows the computation steps. As an 
example of how to use the method, the filling of an in-channel reservoir in function of time is 
shown. 
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