
NUMERICAL APPLICATIONS OF THE PYRAMID 
MODEL OF SUBGRADE ANALYSIS 

By 

S. KALISZKy-Gy. GALASKO 

Department of Civil Engineering Mechanics, Technical University, Budapest 

(Received: July 15, 1976) 

I. Introduction 

The exact analysis of structures resting on sub grade involves great math­
ematical difficulties. In order to reduce these difficulties, various mathematical 
and mechanical models have been suggested for the sub grade that have 
been applied for the solution of different problems (e.g. [1,2,3]). Among these 
models, the pyramid model is little known and not widely used. Although the 
idea of this model in the literature goes back to the beginning of this century, 
it was only later that I. I. KANDAUROV suggested first the use of the pyramid 
model for the investigation of elastically supported structures and presented an 
analytical method [4, 5]. 

Independent of KANDAUROV'S work, the same model has been invented 
and developed at the Department of Civil Engineering Mechanics, Technical 
University, Budapest [6]. Still, at a difference from [4,5], because this research 
has aimed at the numerical analysis of structures resting on a subgrade. Besides, 
computers have permitted the investigation of more sophisticated problems 
such as elasto-plastic, inhomogeneous sub grade and space structures. 

The aim of this paper is to survey the possibilities of the numerical appli­
cation of the pyramid model for the investigation of various structural pro­
blems. 

2. Plane problems 

2.1. Description of the model 

Most sub grade models in the literature and in practice replace the whole 
supporting elastic continuum by a single elastic layer. In the WINKLER model 
this layer consists of independent elements (springs), while in the models pro­
posed by P. L. PASTERNAK, V. Z. VLASSOV, M. M. FILONENKO-BoRODICH and 
E. C. TING also the interaction between the elements (springs) is taken into 
consideration [7, 8, 9] (Fig. 1). 

None of these models is suitable for the calculation of the stresses and 
strains of the supporting continuum. These shortcomings cannot be eliminated 
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even by replacing the sub grade by several elastic layers (Fig. 2a-b). Let us 
suppose now that alternate elastic layers are shifted relative to each other in 
such a way that their arrangement and behaviour are similar to those of 
a brick wall (Fig. 2c). Neglecting the interaction between the elements in the 
same layer, a new mechanical model can be constructed with a skeleton con­
sisting of horizontal rigid bars supported by vertical elastic springs (Fig. 2d). 
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A force acting on this model spreads in a triangular domain similarly 
to the force distribution in a pyramid. This is why this model is called a pyra­
mid model. In the "active" domain "A" the force is distributed in the depth 
H = nL1z along the ·width L = nL1x. In this domain the springs are compressed· 
and the rigid bars undertake displacements. In the "passive" domains "B" 
the springs are not stressed, but as a consequence of rigid-body motions, the 
horizontal boundary line of these parts along the distance L = nL1x undertake 
vertical displacements. Thus, in this J;llodel the interaction between the pres­
sures and displacements of the horizontal boundary line is extended over the 
distance L (Fig. 3). 
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2.2. Analytical and numerical application of the model 

Using the pyramid model the mechanical behaviour of a linear elastic 
sub grade can be characterized by the coefficient k of the springs composing 
the mechanical model. Supposing that the supporting elastic continuum is in 
a state of plane strain. this coefficient is: 

k= 
E LlxLly 

1 ))~ Llz 
(1) 

while, in the state of linear strain: 

k = __ 1 __ ,_' _ E _Ll_x_J)_' • 
1 - l' - 2v2 L1z 

(2) 

Here E is the Young's modulus and v is the Poisson's ratio of the subgrade. 
Formulae (1) and (2) are valid for plane and space problems. respectively. 

Let us assume now that the sub grade is subjected to a single unit load 
Q = 1, and calculate the forces in the springs and the vertical displacements 
of the horizontal boundary line. In the "active" domain of the sub grade the 
spring forces are easy to calculate since the rigid bars are simply supported 
beams. The results up to 9 layers are illustrated in Fig. 3. The sum of these 
forces in each layer is identical and the numerators of the fractions expressing 
these forces are given by the binomial coefficients of the Pascal triangle. 
KANDAUROV found the same results [4J and expressed the spring force P mn 

belonging the to n-th row and moth column in the form: 

Pmn = ( n ) (~'Jm 1(~lrl-T'l 
m 2 2.1 

Then, he approximated this formula by the Gaussian function: 

(3) 

and introduced the variables m = ~ and n = z . In this wav he ohtained 
ab' 

a function providing continuous distrihution for the spring-forces, likely to 
serve as basis of a relatively simple analytical investigation of elastically sup­
ported structures. 

Comparing the values of the approximate function (3) with the coeffi­
cients of Fig. 3, along the vertical line of the active force the function (3) can 
be stated to closely approach the exact coefficients, but at a longer distance 
from the force the discrepancy may he great (e.g. about 50% in case of 10 
layers at the extreme springs). This latter error little affects, however, the 
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results, therefore the analy-!ical method elaborated by KANDAUROV provides 
good approximate results. 

In practice there are many problems "which can only be treated by numer­
ical methods. Then, instead of function (3), the coefficients of Fig. 3 prov-ide 
a simple basis for the determination of the vertical displacements of the bound­
ary line due to a unit force acting on the sub grade. In plane problems the 
vertical displacement at i caused by the unit force acting at 1 is given by 

1 ...... 59 . 5
J
f. 

k ~ ] .. c 
(4) 

Here 5J and 5~ are spring-forces due to unit forces Q 1 and P = 1 acting 
at 1 and i, respectiYely, and the summation is extended to the common,part 
of the two active domains belonging to force'S Q and P (area denoted by C 
in Fig. 2c). The results of these calculatiom for various numbers of layers are 
presented in Table 1. These displacements gh'e directly the influence coeffi­
cients needed in the force method, hecause, for a given number of layers, 
one can construct the flexibility matrix F of the suhgrade using data in Table 1. 
The inyerse of F gives. on the other hand .. the stiffness matrix: K F-l. 

lS'umber of 
layers 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Table 1 

Enlarged di"placcmeut;:; due to force P = 1 ~!p (kt'td 

-----,----------------------------
The place of displacement (i) 

9 

1 

6 
4 4 

30 8 1 
16 16 16 

i~ .1 10 1 
6-1 

630 244 68 12 1 
256 256 256 256 

1186 392 93 1-1 
1024 1024 1024 1024 

5536 2063 592 122 1 
4096 4096 4096 4096 

51480 25147 10254 3369 852 155 18 1 
1638-1 16384 

'--
16384 16384 : 16384 16384 1638-1 16384 

218790 112028 49024 1800-1 5228 1180 192 20 1 
65536 65536 65536 65536 65536 65536 65536 65536 '65536 
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Table 2 

F=r30 8 1 0 0 0 0 o -. 

1
16 10 16 

8 30 8 1 0 0 0 0 
16 16 16 16 

1 8 30 8 1 0 0 0 
16 16 16 16 16 

0 1 8 30 8 1 0 0 

1 16 16 16 16 16 

k 0 0 1 8 30 8 1 0 
16 16 16 16 

0 0 0 1 8 30 8 1 
16 16 16 16 16 

0 0 0 0 1 8 30 8 
16 16 16 16 

0 0 0 0 0 1 8 30 

L 16 16 16 

K= r .57512 -.15964 .02364 -.00082 -.00062 .00020 -.00003 .00000 
-.15964 .61943 - .16620 .02387 -.00065 .00068 .00021 -.00003 

.02364 .16620 .62040 .16624 .02384 .00064 -.00068 .00020 

k -.00082 .02387 -.16624 .62040 .16624 .02384 -.00065 -.00062 
-.00062 -.00065 .02384 -.16624 .6204,0 -.16624 .02387 -.00082 

.00020 -.00068 -.00064 .02384 - .16624 .62040 -.16620 .02364 

.00003 .00021 -.00068 -.00065 .02387 -.16620 .61943 -.15964 

.00000 -.00003 .00020 -.00062 .00082 .02364 -.15964 .57512 

(Inverting the matrix F, one has to take into consideration the points lying 
outside the structure, see Table 2.) These two matrices can be incorporated 
into the flexibility or stiffness matrix of the whole structure and then the 
problem can be analyzed by either the force or the displacement method. 
According to our experience, to take into consideration the elastic behaviour 
of the subgrade in the described method little increases the running time com­
pared with that of the structure with rigid supports. 

Besides of the analysis of structures supported on an elastic subgrade, 
the pyramid model is also suitable for the determination of the distribution 
of the vertical stresses arising in the elastic continuum. Fig. 3 provides the 
spring forces due to unit loads acting on the subgrade from which - kno'wing 
the pressure distribution under the structure - the spring forces, hence the 
vertical stresses can be determined at any point. The calculation of the dis­
placements of the continuum is done similarly. 

2.3. A few special problems 

The main advantage of numerical methods is to permit the analysis of 
complicated problems, which could not be treated by analytical methods. This 
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is the advantage of the application of the pyramid model, too. In the following 
a few examples will be presented. 

a) Let us consider an inhomogeneous subgrade, where the Young's modulus 
E is a function of z and thus, the spring coefficient k is not constant but may 
differ for each layer. This fact has to be taken into consideration in Eq. (4) 
for the vertical displacements of the boundary line due to unit force. There is 
another way, however, to take into account the inhomogeneity of the sub­
grade. Namely, instead of the coefficient k one can consider the thickness of 
the layers .dz as a variable value. This is illustrated in Fig. 4. Notice that this 
latter method does not yield the same result as using variable spring coeffi­
cients; its application is still recommended, since it takes into consideration 
the fact that the active force is distributed over a broad range of rigid subgrade, 
and over a narrow range of softer subgrade. 

b) The pyramid model lends itself for prohlems where the subgrade is 
not infinite, but is bounded by a vertical plane. Then, in the neighbourhood 
of the bounding plane the sub grade model can be constructed in different 
manners, as it is illustrated in Fig. 5. For example, in the case of Fig. 5c, 
which seems to be the most suitable solution, the boundary of the sub grade 
is really a vertical plane, but the width of the elements and consequently the 
spring coefficients have different values along the vertical boundary line and 
therefore the spring forces have to be calculated for cantilever beams. The 
results of this calculation for 9 layers are presented in Figs 6 to 8. Having the 
spring forces, the displacements of the horizontal boundary line can also be 
determined in the way described before. The only difference is that the spring 

coefficient of the elements of width ~.dx is 1 k and therefore the first few 
2 2 

rows of the stiffness matrix are different from that presented before, such as: 

6 layers 

18432 4768 640 32 
4768 8636 3417 1146 276 42 3 
640 3417 8314 3557 1176 279 42 3 ... 

1 32 1146 3557 8316 3558 1176 279 42 ... 

18432.k 
276 1176 3558 8316 3558 1176 279 ... 
42 279 1176 3558 8316 3558 1176 ... 
3 42 279 1176 3558 8316 3558 ... 

c) The pyramid model is easy to apply for the analysis of a bar embedded 
in an elastic continuum (Fig. 9). For the sake of simplicity, let us suppose that 
the bar is perfectly rigid and the continuum can be described by a plane pyra­
mid model. Then, the unknown quantities are the pressures qi on the surface 
of the bar, the rotation rp and horizontal displacement c of the bar, yielding 
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Fig. 7 

Fig. 8 

the following equilibrium equations: 

It 

;Eqi+P=O 
i=l 

11 

Yqia(i -1) - Pb = O. -i=l 



72 KALISZKY -GALASK6 

no-stress region with 
- rigid-body disp/ocements 

~~-.~~~~~~~~ 

Fig. 9 

The horizontal displacements can be expressed in terms of rp and c and, at the 
same time, of surface pressures qj as: 

n 

Vi = C + a(i - I) = .:2hqj 
j=l 

(; -- I ') n) \" -- .,..." .. ", . 

Here fij denotes the elements of the stiffness matrix of the suhgrade bounded 
by two planes discussed in the previous chapter. For example, using 3 layers 
yields the following five equations: 

ql + q2 q3 = P 

aq2 2aq3 = bP 

c + h& h2g2 h3g3 = 0 

C + arp + f21g1 + f22q2 + f23g3 = 0 

c 2arp + hlql + h2q2 + f33q3 = 0 

or, in matrix form: 

Solution of these equations yields the displacement and surface pressures of 
the bar and from the latter the horizontal stresses arising in th e continuum 
can also he calculated. 
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The pyramid model permits to take the flexibility of the embedded bar 
into consideration. The equations are, however, somewhat more complicated 
than those above. 

3. Space problems 

Let us divide an elastic half space by horizontal and vertical planes into 
elements. Shifting the horizontal layers in both directions x and y, as for 
the plane model, results in the three-dimensional version of the pyramid model. 
The skeleton of this model consists of rigid rectangular plates supported at 
their corners by springs (Fig. 10). Because of symmetry, the spring forces are 
equal to a quarter of the force acting at the plate center. 

Suppose now the boundary surface of the sub grade to be loaded by a 
unit force P = 1. Then, using the simple rule mentioned above, the spring 
forces are easy to determine and are given in Fig. 11. These coefficients provide 
the three-dimensional version of the Pascal triangle. 

The next step is to calculate the vertical displacements of the points of 
the houndary surface, using Eq. (4). Now the summation has to he extended 
over the common domains of the pyramids helonging to unit forces P and Q. 
The results are given in Fig. 12. With these coefficients the flexihility matrix 
F and the stiffness matrix K = F-l of the suhgrade are easy to construct and 
then any kind of space structures (plates, shells, grillages etc.) resting on an 
elastic support can he analyzed hy the force or displacement method. 

In axially symmetric problems cuhic elements are advisahly replaced 
hy prismatic elements with hexagonal hasis. Then, the skeleton of this model 
is constructed of hexagonal plates supported on three corners by springs. 
Using this hexagonal model the spring forces in the suhgrade and the vertical 
displacements of the houndary surface due to the unit force can he calculated 
as shown in Figs 13 and 14. 

Fig. 10 
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Fig. 13 

Also prismatic elements with triangular bases can be used. Then the 
spring forces are very close to those in the hexagonal model. In the numerical 
analysis, however, some difficulties arise, therefore we omit the presentation 
of the spring forces and displacement coefficients of this model. 

4. Elastoaplastic suhgrade 

Using the pyramid model it is very simple to take into consideration 
the plastic behaviour of the subgrade. In this case the skeleton of the model is 
unchanged, but the springs have plastic properties. Thus, supposing a strain­
hardening material, the force-displacement diagram of the springs is given 

by Fig. 15. If the sub grade is elastic-perfectly plastic, the ratio {~has to be 

chosen very low. 
Considering the distribution of the spring forces in Fig. 3, it is evident 

that when different forces act on the subgrade, the springs under the highest 
force "\V-ill be the first to y-ield. For the case of monotonic increasing one-para­
meter loading and perfectly plastic sub grade, the flow chart determining the 
order of springs to y-ield is seen in Fig. 16. 

For a spring force at y-ield point Q F' the spring constant changes to 

k ' E' k d h d' 1 r ul b pi el E , d' I = - . an t e ISP acement lorm a ecomes Ui = Ui -. Accor lUg y, 
E E' 
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Fig. 15 
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the corresponding element of the flexibility matrix has to be changed. By this 
manner one can follow step-by-step the increase of the plastic regions of the 
8ubgrade and for a structure of perfectly plastic material the load-bearing 
capacity of the whole system can be determined. 

5. Numerical examples 

a) The first example is a two-storey, symmetrical frame shown in Fig. 17. 
Considering the vertical displacements obtained by different theories, the results 
of the pyramid model are seen to best fit the Ohde solution, considered as the 
most exact theory, while the displacements from the Winkler theory are 
rather deviating. Increasing the number n of layers in the pyramid model still 
improves the accuracy and the use of six layers already yields a satisfactory 
solution. (This is true for any numerical example where the number n of the 
layers is changed and the width of the elements is kept constant.) 

1.4 
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uicmjt 
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The assumed number of the subgrade elements under the structure has 
a significant influence on the distribution of the internal forces of the structure. 
Increasing this number improves the accuracy of the distribution (Fig. 18). 

b) The rigid har emhedded in an elastic continuum has heen investigated 
hy using the finite element method and the pyramid model. The stress distri­
hution ohtained in this manner is shown in Fig. 19. 

c) The general layout of a grillage and the vertical displacements of 
the suhgrade are illustrated in Fig. 20. The results plotted in solid line have 
been obtained on the hasis of the Boussinesq theory [10]. 
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d) The last example is an elastic-perfectly plastic beam resting on an 
elastic-perfectly plastic subgrade. Increasing the external force one can cal­
culate the load parameters where another element of the subgrade becomes 
plastic. The corresponding bending moment distributions are illustrated in 
Fig. 21. The limit load calculated by the generalized Winkler theory [ll] is 
pult = 9.46 Mp, while the result obtained by the pyramid model is: 
pult = 10.38 Mp. 

6. Conclusions 

The examples presented show the wide range of applications of the 
pyramid model. The model is especially suitable for numerical analysis. It pro­
vides more accurate results than the approximate methods used before in the 
practice, and in addition it permits to determine the vertical displacements 
and stresses in any point of the subgrade. Besides, the calculation is much 
simpler than by the exact methods, and the model is suitable for investigating 
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special problems such as elasto-plastic or/and inhomogeneous sub grade, hars 
emhedded in an elastic or plastic continuum, and suhgrades hounded hy hori­
zontal and vertical planes. 

Summary 

The pyramid model of a suhgrade consists of horizontal layers divided into independent 
elements in such a way that their arrangement and behaviour are similar to those of a pyra­
mid. This model is especially suitable for numerical analysis. It provides more accurate re­
sults than the other approximate methods and permits to determine the stresses and strains in 
the subgrade. The calculation is simple and the model is suitable for the analysis of elasto-plas­
tic or/and inhomogeneous subgrades, bars embedded in a continuum and subgrades bounded 
by horizontal and vertical planes. The paper presents the application of the pyramid model 

to the problems above and illustrates the results of calculations on a few examples. 
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