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1. Intreduction

The exact analysis of structures resting on subgrade involves great math-
ematical difficulties. In order to reduce these difficulties, various mathematieal
and mechanical models have been suggested for the subgrade that have
been applied for the solution of different problems (e.g. {1, 2, 3]). Among these
models, the pyramid model is little known and not widely used. Although the
idea of this model in the literature goes back to the beginning of this century,
it was only later that I. I. KANDAUROV suggested first the use of the pyramid
model for the investigation of elastically supported structures and presented an
analytical method [4, 5].

Independent of KANDAUROV's work, the same model has been invented
and developed at the Department of Civil Engineering Mechanics, Technical
University, Budapest [6]. Still, at a difference from {4, 5], because this research
has aimed at the numerical analysis of structures resting on a subgrade. Besides,
computers have permitted the investigation of more sophisticated problems
such as elasto-plastic, inhomogeneous subgrade and space structures.

The aim of this paper is to survey the possibilities of the numerical appli-
cation of the pyramid model for the investigation of various structural pro-
blems.

2. Plane problems
2.1. Description of the model

Most subgrade models in the literature and in practice replace the whole
supporting elastic continuum by a single elastic layer. In the WINKLER model
this layer consists of independent elements (springs), while in the models pro-
posed by P. L. PastErnaK, V. Z. Viassov, M. M. Fironengo-BoropicH and
E. C. TinG also the interaction between the elements (springs) is taken into
consideration [7, 8, 9] (Fig. 1).

None of these models is suitable for the calculation of the stresses and
strains of the supporting continuum. These shortcomings cannot be eliminated
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even by replacing the subgrade by several elastic layers (Fig. 2a—b). Let us
suppose now that alternate elastic layers are shifted relative to each other in
such a way that their arrangement and behaviour are similar to those of
a brick wall (Fig. 2¢). Neglecting the interaction between the elements in the
same layer, a new mechanical model can be constructed with a skeleton con-
sisting of horizontal rigid bars supported by vertical elastic springs (Fig. 2d).
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A force acting on this model spreads in a triangular domain similarly
to the force distribution in a pyramid. This is why this model is called a pyra-
mid model. In the “active’ domain ““A’ the force is distributed in the depth
H = nAz along the width L = n/x. In this domain the springs are compressed’
and the rigid bars undertake displacements. In the “passive” domains “B”
the springs are not stressed, but as a consequence of rigid-body motions, the
horizontal boundary line of these parts along the distance L = nJx undertake
vertical displacements. Thus, in this model the interaction between the pres-
sures and displacements of the horizontal boundary line is extended over the
distance L (Fig. 3).
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2.2. Analytical and numerical application of the model

Using the pyramid model the mechanical behaviour of a linear elastic
subgrade can be characterized by the coefficient k of the springs composing
the mechanical model. Supposing that the supporting elastic continuum is in
a state of plane strain. this coefficient is:

,If — E A'\?Ay , (1)
11— Az
while, in the state of linear strain:
I — 11— E dxdy . @)

T—p—22 s

Here E is the Young's modulus and v is the Poisson’s ratio of the subgrade.
Formulae (1) and (2) are valid for plane and space problems, respectively.

Let us assume now that the subgrade is subjected to a single unit lead
Q = 1, and calculate the forces in the springs and the vertical displacements
of the horizontal boundary line. In the “active” domain of the subgrade the
spring forces are easy to calculate since the rigid bars are simply supported
beams. The results up to 9 layers are illustrated in Fig. 3. The sum of these
forces in each layer is identical and the numerators of the fractions expressing
these forces are given by the binomial coefficients of the Pascal triangle.
Kanpavrov found the same results [4] and expressed the spring force P,
belonging the to n-th row and m-th column in the form:

-
Pmn:( J
m

Then, he approximated this formula by the Gaussian function:
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and introduced the variables m == —and n= —. In this way he obtained
a

a function providing continuous distribution for the spring-forces, likely to
serve as basis of a relatively simple analytical investigation of elastically sup-
ported structures.

Comparing the values of the approximate function (3) with the coeffi-
cients of Fig. 3, along the vertical line of the active force the function (3) can
be stated to closely approach the exact coefficients, but at a longer distance
from the force the discrepancy may be great (e.g. about 509 in case of 10
layers at the extreme springs). This latter error little affects, however. the
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results, therefore the analytical method elaborated by Kaxpaurov provides
good approximate results.

In practice there are many problems which can only be treated by numer-
ical methods. Then, instead of function (3), the coefficients of Fig. 3 provide
a simple basis for the determination of the vertical displacements of the bound-
ary line due to a unit force acting on the subgrade. In plane problems the
vertical displacement at { caused by the unit force acting at 1 is given by

vy = z b $9 . 8P, (4)
Here SJQ and Sﬁ-) are spring-forces due to unit forces § = 1 and P = 1 acting
at 1 and i, respectively, and the summation is extended to the common part
of the two active domains helonging to forces () and P (area denoted by C
in Fig. 2¢). The results of these calculations for various numbers of layers are
presented in Table 1. These displacements give directly the influence coeffi-
cients needed in the force method, because, for a given number of layers,
one can construct the flexibility matrix F of the subgrade using data in Table 1.
The inverse of ¥ gives, on the other hand, the stiffness matrix;: K = F~1,

Table 1

Enlarged displacements due to force P= 1 }Mp (kry;)

Number of

layers The place of displacement (i)
R RS 1 5 6 ] 7 s |9
i I
. L |
2 L L
4 4 :
; NN N
16 16 %
;s Mo pow 1
61 61 61 61
5 630 214 68 | 12
256 356 | 256 | 236 | 236
6 2772 1186 | 392 | 93 14 1
1024 | 1024 | 102z | 1024 | 1024 1024 |
- 12012 | 5536 | 2063 |« 592 | 122 | 16 1
1096 1096 | 1096 | %006 = 4096 | 4096
g 51480 | 25147 | 10254 | 3369 852 | 155 | 18 1
16384 | 16384 16384 16384 16384 | 16384 | 16384 | 16384
0 218790 | 112038 49024 | 18004 5228 | 1180 | 192 | 20 1
63536 = 65336 65536 = 65336 65536 | 65536 65536 | 65536 65536
i | | : !
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Table 2
F= r‘§9 j{ j; 0 0 0 0 0]
16 10 16
8 3% 8 1 0 0 0 0
16 16 16 16
1 8 % 8 1 0 0 0
16 16 16 16 16
o 1 s 3 8 1 0 o0
1 i6 16 16 16 16
EoLo o0 18 30 3 10
16 16 16 16 16
o ¢ 0o 1 8 30 & 1
16 16 16 16 16
o o o 0o 1 8 30 8
16 16 16 16
0 0 0 4 0 _{ ji §9
B 16 16 16 |
K={ .57512 —.15964 —.02364 —.00082 —.00062 .00020 —.00003 .00000 |

—.15964  .61943 —.16620  .02387 —.00065 —.00068  .00021 —.00003
02364 —.16620  .62040 —.16624  .02384 —.00064 —.00068  .00020
k —.00082  .02387 —.16624  .62040 —.16624  .02384 —.00065 —.00062
—.00062 —.00065 .02384 —.16624  .62040 —.16624  .02387 —.00082
00020 —.00068 —.00064  .02384 —.16624  .62040 —.16620  .02364
~.00003 .00021 —.00068 —.00065 .02387 —.16620  .61943 —.15964
00600 —.00003 00020 —.00062 —.00082  .02364 —.15964  .57512

(Inverting the matrix F, one has to take into consideration the points lying
outside the structure, see Table 2.) These two matrices can be incorporated
into the flexibility or stiffness matrix of the whole structure and then the
problem can be analyzed by either the force or the displacement method.
According to our experience, to take into consideration the elastic behaviour
of the subgrade in the described method little increases the running time com-
pared with that of the strueture with rigid supports.

Besides of the analysis of structures supported on an elastic subgrade,
the pyramid model is also suitable for the determination of the distribution
of the vertical stresses arising in the elastic continuum. Fig. 3 provides the
spring forces due to unit loads acting on the subgrade from which — knowing
the pressure distribution under the structure — the spring forces, hence the
vertical siresses can be determined at any point. The calculation of the dis-
placements of the continuum is done similarly.

2.3. A few special problems

The main advantage of numerical methods is to permit the analysis of
complicated problems, which could not be treated by analytical methods. This
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is the advantage of the application of the pyramid model, too. In the following
a few examples will be presented.

a) Let us consider an inhomogeneous subgrade, where the Young’s modulus
E is a function of » and thus, the spring coefficient k is not constant but may
differ for each layer. This fact has to be taken into consideration in Eq. (4)
for the vertical displacements of the boundary line due to unit force. There is
another way, however, to take into account the inhomogeneity of the sub-
grade. Namely, instead of the coefficient k one can consider the thickness of
the layers Az as a variable value. This is illustrated in Fig. 4. Notice that this
latter method does not yield the same result as using variable spring coeffi-
cients; its application is still recommended. sinee it takes into consideration
the fact that the active force is distributed over a broad range of rigid subgrade,
and over a narrow range of softer subgrade.

b) The pyramid model lends itself for problems where the subgrade is
not infinite, but is bounded by e vertical plane. Then, in the neighbourhood
of the bounding plane the subgrade model can be constructed in different
manners, as it is illustrated in Fig. 5. For example, in the case of Fig. 5e,
which seems to be the most suitable solution, the boundary of the subgrade
is really a vertical plane, but the width of the elements and consequently the
spring coefficients have different values along the vertical boundary line and
therefore the spring forces have to be calculated for cantilever beams. The
results of this calculation for 9 layers are presented in Figs 6 to 8. Having the
spring forces, the displacements of the horizontal boundary line can also be
determined in the way described before. The only difference is that the spring

coefficient of the elements of width—]lﬁx is-}-k and therefore the first few

P4 &

rows of the stiffness matrix are different from that presented before, such as:

6 layers
18432 4768 640 32
4768 8636 3417 1146 276 42 3
640 3417 8314 3557 1176 279 42 3...
1 32 1146 3557 8316 3558 1176 279 42. ..
_— 276 1176 3558 8316 3558 1176  279...
18432.% 42 279 1176 3558 8316 3558 1176...
3 42 279 1176 3558 8316  3558...

c) The pyramid model is easy to apply for the analysis of a bar embedded
in an elastic continuum (Fig. 9). For the sake of simplicity, let us suppose that
the bar is perfectly rigid and the continuum can be described by a plane pyra-
mid model. Then, the unknown quantities are the pressures g; on the surface
of the bar, the rotation ¢ and horizontal displacement ¢ of the bar, yielding
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The horizontal displacements can be expressed in terms of ¢ and ¢ and, at the
same time, of surface pressures ¢; as:

n
vy =c+a(i —1)= 3fiq; {i==12,... n)
J=1
Here f; denotes the elements of the stiffness matrix of the subgrade bounded
by two planes discussed in the previous chapter. For example, using 3 layers
vields the following five equations:
G+ g+g=—F
aq, + 2agq, = bP
¢ + fuds + frole + fra9s = 0
+ 0@ + fuds + foolo + fos8s = 0
¢+ 2a9 + fuds + folo + frafs = 0

o lly]=[o)

Solution of these equations yields the displacement and surface pressures of
the bar and from the latter the horizontal stresses arising in the continuum
can also be calculated.

or, in matrix form:
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The pyramid model permits to take the flexibility of the embedded bar
into consideration. The equations are, however, somewhat more complicated
than those above.

3. Space problems

Let us divide an elastic half space by horizontal and vertical planes into
elements. Shifting the horizontal layers in both directions ¥ and y, as for
the plane model, results in the three-dimensional version of the pyramid model.
The skeleton of this model consists of rigid rectangular plates supported at
their corners by springs (Fig. 10). Because of symmetry, the spring forces are
equal to a quarter of the force acting at the plate center.

Suppose now the boundary surface of the subgrade to be loaded by a
unit force P = 1. Then, using the simple rule mentioned above, the spring
forces are easy to determine and are given in Fig. 11. These coefficients provide
the three-dimensional version of the Pascal triangle.

The next step is to calculate the vertical displacements of the points of
the boundary surface, using Eq. (4). Now the summation has to be extended
over the common domains of the pyramids belonging to unit foreces P and {.
The results are given in Fig. 12. With these coefficients the flexibility matrix
F and the stiffness matrix K = F~1 of the subgrade are easy to construct and
then any kind of space structures (plates, shells, grillages etc.) resting on an
elastic support ean be analyzed by the force or displacement method.

In axially symmetric problems cubic elements are advisably replaced
by prismatic elements with hexagonal basis. Then, the skeleton of this model
is constructed of hexagonal plates supported on three corners by springs.
Using this hexagonal model the spring forces in the subgrade and the vertical
displacements of the boundary surface due to the unit force can be caleculated
as shown in Figs 13 and 14.
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Fig. 13

Also prismatic elements with triangular bases can be used. Then the
spring forces are very close to those in the hexagonal model. In the numerical
analysis, however, some difficulties arise, therefore we omit the presentation
of the spring forces and displacement coefficients of this model.

4. Elasto-plastic subgrade

Using the pyramid model it is very simple to take into consideration
the plastic behaviour of the subgrade. In this case the skeleton of the model is
unchanged, but the springs have plastic properties. Thus, supposing a strain-
hardening material, the force-displacement diagram of the springs is given

by Fig. 15. If the subgrade is elastic-perfectly plastic, the ratio EZE- has to be

chosen very low.

Considering the distribution of the spring forces in Fig. 3, it is evident
that when different forces act on the subgrade, the springs under the highest
force will be the first to yield. For the case of monotonicincreasing one-para-
meter loading and perfectly plastic subgrade, the flow chart determining the
order of springs to yield is seen in Fig. 16.

For a spring force at yield point Q. the spring constant changes to

)

k':E

k and the displacement formula becomes u{ﬂ =u? -E—— Accordingly,

; £
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the corresponding element of the flexibility matrix has to be changed. By this
manner one can follow step-by-step the increase of the plastic regions of the
subgrade and for a structure of perfectly plastic material the load-bearing
capacity of the whole system can be determined.

5. Numerical examples

a) The first example is a two-storey, symmetrical frame shown in Fig. 17.
Considering the vertical displacements obtained by different theories, the results
of the pyramid model are seen to best fit the Ohde solution, considered as the
most exact theory, while the displacements from the Winkler theory are
rather deviating. Increasing the number n of layers in the pyramid model siill
improves the accuracy and the use of six layers already yields a satisfactory
solution. (This is true for any numerical example where the number n of the
layers is changed and the width of the elements is kept constant.)

24 Mp 26EMp Z68Mp 124 Mp
724 Mp 248 Mp 248Mp N
%
124Mp 268Mp 248 Mp 1204
. 3Wm 342 L 342 N
i i i
14
15 P lmode/
16 ’fJ
16t
174 R iyl g
ufem] ~ -

Fig. 17

The assumed number of the subgrade elements under the structure has
a significant influence on the distribution of the internal forces of the structure.
Increasing this number improves the accuraey of the distribution (Fig. 18).

b) The rigid bar embedded in an elastic continuum has been investigated
by using the finite element method and the pyramid model. The stress distri-
bution obtained in this manner is shown in Fig. 19.

¢) The general layout of a grillage and the vertical displacements of
the subgrade are illustrated in Fig. 20. The results plotted in solid line have
been obtained on the basis of the Boussinesq theory [10].
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d) The last example is an elastic-perfectly plastic beam resting on an
elastic-perfectly plastic subgrade. Increasing the external force one can cal-
culate the load parameters where another element of the subgrade becomes
plastic. The corresponding bending moment distributions are illustrated in
Fig. 21. The limit load calculated by the generalized Winkler theory [11] is
Pt =946 Mp, while the result obtained by the pyramid model is:
P — 10.38 Mp.

6. Conclusions

The examples presented show the wide range of applications of the
pyramid model. The model is especially suitable for numerical analysis. It pro-
vides more accurate results than the approximate methods used before in the
practice, and in addition it permits to determine the vertical displacements
and stresses in any point of the subgrade. Besides, the calculation is much
simpler than by the exact methods, and the model is suitable for investigating
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special problems such as elasto-plastic or/and inhomogeneous subgrade, bars
embedded in an elastic or plastic continuum, and subgrades bounded by hori-
zontal and vertical planes.

Summary

The pyramid model of a subgrade consists of horizontal layers divided into independent
elements in such a way that their arrangement and behaviour are similar to those of a pyra-
mid. This model is especially suitable for numerical analysis. It provides more accurate re-
sults than the other approximate methods and permits to determine the stresses and strains in
the subgrade. The calculation is simple and the model is suitable for the analysis of elasto-plas-
tic or/and inhomogeneous subgrades, bars embedded in a continuum and subgrades bounded

by horizontal and vertical planes. The paper presents the application of the pyramid model
to the problems above and illustrates the results of calculations on a few examples.
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