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1. Introduction 

Loads, displacements and membrane forces (stress functions) of shallow 
shells are related by the Wlassow-lVIarguerre differential equations: 

where: 

DAAw - ApF =Q 

LlAF + EhApw = 0 
(1) 

Q = Q(x, y), w w(x, y) and F = F(x, y) are load, vertical displacement 

h 
E 
v 

and stress function, respectively, 
shell thickness; 
Young's modulus; 
Poisson' ratio; 

Eh3 

D=---- plate rigidity modulus; 
12(1 - '1'2) 

Z = z(x, y) function of the unloaded shell median surface; 
82 82 

A = - + - Laplace operator; 
8x2 8y2 

82z 82 82z 82 82z 82 

Ap = ---- = 2 ----+ ---- shell operator. 
8x2 8)02 8xEJy EJx8y EJy2 EJx2 

Wlassow equations permit to deduce both deflection and stress function 
to load relationships: 

~AAAw + EhApAp = LlLIQ 1 
- LlLIALlF + LlpApF = - LlpQ 
Eh 

In case of an elliptic paraboloid shell (Fig. 1): 

and 
EJ2z 

--=0, 
8x8y 

* Abridged text of the Candidate's Thesis by the Author. 

(2) 
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Fig. 1 

the shell operator simplifies to: 
r .) 
0-

.d =k-
p 1 8X2 

!J 

!/2j 
/2 
!J 

(3) 

In this case inhomogeneous partial differential equations (2) of order 
eight include only difference operators of even order, permitting them to be 
eJ;..-pediently solved by the tensor product variant of the finite difference method 
based on the known spectral form C = l.JLU of the second-order difference 
operator matrix C [1]. 

Nonlinear equations of shallo'w shells (taking into consideration: 
a) the effect of deflection on the forces and reactions, and 
b) the square terms in the geometric equations) 

include an excess term each compared to the Wlassow equations: 

(4) 

where: 

the Karm{m operator. 
(The two symbols for operator .dk have been introduced for unam

biguously describing the iteration procedures.) 
Numerical analysis of excess terms (2) demonstrated maxima of excess 

terms of both equilibrium and compatibility equations to be in the centre 
and in corner points along the shell ground plan, in conformity 'with available 
observation on shell corner disturbances. In the function of relative rise (rise 
to shell thickness), the compatibility equation and the equilibrium equations 
have extreme values for a flat slab (f = 0), and in the vicinity of unit relative 
rise (f = h), respectively. 
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2. Solution of non-linear equations 

Non-linear equations of the shallow shell (4) are of degree two in the 
derivatives of the deflection and stress function, hence no explicit writing 
of deflection to load or stress function to load relationships is possible. Equa
tions are advisably solved by iteration, "with initial values Wo = 0, Fo = O. 
Iteration formulae are: 

(5) 

Here again, equations of order eight are expedient: 

(6) 

Computation experience showed iteration to rapidly converge for small 
loads, slowing down with increasing loads and changing to divergence after 
a limit value of load. 

Possibilities to accelerate convergence have been examined. Difference 
operator applied for determining excess term values was seen from compu
tations to significantly affect the iteration convergence. Three different differ
ence patterns have been applied for the second derivative, namely those 
involving three, five and nine points (Fig. 2). Numerical outputs showed the 
nine-point pattern to be the most adequate (Fig. 3). Namely it is most likely 
that, while the nine-point pattern tends to the exact result from above [3], 
the three-point operator applied in deflection computations approximates 
from below, causing the two kinds of error to about compensate each other. 

i:J< 
operators ER 

1 DJI 1 ,,3points" -;:z 
0 

1 
1202 ,,5 points" 

yl,X 
f2Q2 10 ,,9 points" 

":-

Fig. 2 
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Fig. 3 

3. Numerical examples and conclusions 

An ALGOL program has been made, applying this computation method, 
permitting great many computations according to both the linear and the 
non-linear theory. 

Surfaces under moment and membrane force of the elliptic paraboloid 
shell of the ground plan shown in Fig. 4 (fx = fy = 0.5 m, h = 0.06 m, v = 0, 
E = 250000 kpjcm2, uniform load p = 0.1 MpJm2) are seen axonometrically 
but heavily distorted in Fig. 5. Figure scales differ as indicated. For a better 
survey, only quarter surfaces have been traced. 

Deflections and stresses of axes of symmetry of two-way symmetric 
shells of different relative rises, 10 by 10 m in ground plan and 10 cm in thick
ness, are seen in Fig. 6. Results according to non-linear and linear theories are 
shown in heavy and thin lines, respectively. Stresses due to membrane forces 
have been plotted in continuous lines, and those due to bending in dashed 
lines. The load is uniform but of different value for each case, about 95% of 
the load causing the shell form to diverge. 

I I I T i --1 
, i i I " i 

f-~~ I ! I I , 

i I I 
! i .L" I I I !---i""""---I- I --I---\--j-+-f-- e-

I .:; I I 

I I I I , i I 
I i I I , I I ! 
I I [ I I ! 

, 
i. i " 

I I I I I I I I i 

~1.~ ________ ~2~D~m~ ________ ~ 

Fig. 4 
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Fig. 5 

Fig. 6 
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Flexural and membrane stresses of the mid-point of a shell 10 by 10 cm 
in ground plan and 10 cm thick are seen in Fig. 7 to lin-Iog scale, linear and 
non-linear theory results being plotted in thin and heavy lines, respectively. 
Bending and membrane stresses aTe to the left and to the right from the ver
tical axis, respectively. The linear case refers to unit load, while in the non
linear case pre-critical load effect has been reduced to unit load. 
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Also Fig. 8 shows mid-point deflections of a shell of the above geometry, 
but to log-log scale;plotted as indicated above, reduced to unit load. Numer
ical examples permitted to conclude for shells of double curvature: 

- In a partial range (f < lmin/S) of the range of validity of shallow 
shell equations (Jlh > 6) membrane stresse::: are prevalent in the :::hell. Hence, 
in this range the shell is advisably analysed as a membrane shell, considering 
bending effects as boundary disturbances. 

- Geometric non-linearity is manifest only for high stresses of the order 
of ultimate concrete stresses. Even for such high stresses, the effect of geo
metric non-linearity has only to be considered for 2 < Jilt < 8. Neglect of 
geometric non-linearity for fllt > 8 is on the side of safety. 

4. Determination of critical load 

In case of small loads, the iteration procedure in the previous item is 
rapidly converging. With increasing loads convergence slows down to change 
to divergence at a given limiting value. 

The critical load causing divergence ,vilI be determined by a geometrical 
method based on energy considerations. Changing the one-parameter load in 
small increments, deflection field lVi, U'i+1 '" will be determined for successive 
loads CXiq, CXi-i-lq '" 2. In kno'wledge of deflection field and load, work done by 
the load in each load step can be determined (Fig. 9): 

JL i+1 = Li+1 - Li = ~ J (CXi+1 + cx;) q(Wi+1 - lVJdF. (7) 

F 

Shell equilibrium is considered as stable when the sign of load parameter 
change is the same as that of the load potential energy change, that is: 

(8) 

stable branch 

v 

Fig. 9 
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Shell equilibrium is unstable when the sign of load parameter change 
differs from that of the load potential energy change: 

(9) 

(with other words, deflection increase is concomitant to the decrease of equi
librium load parameter). 

With notations in Fig. 9, the critical load (extreme value of the load-load 
potential energy function) will be at: 

(10) 

5. Total stiffness matrix of shallow shells 

The outlined computation method holds only up to the critical load. 
Further analyses require the knowledge of the so-called total stiffness matrix 
of the shell. 

Shell operator 

and Karman operator 

-2 
oxoy oxoy 

being of perfectly identical structure, non-linear differential equations of 
shalIovv' shells (4) can be written as: 

DL1Jw - L(z +, w, F) = Q 1 
_1_ LlL1F L (z...L ~ W. w) = 0 . (11) 
lSh l I 2 ' 

When applymg the difference method, the differential operators have been 
approximated by matrix difference operators. Let us denote 
matrix A the matrix difference operator corresponding to biharmonic ope

rator; 
matrix B the matrix difference operator corresponding to shell operator; 
matrix C the matrix difference operator corresponding to the Karman ope

rator C = C(w). 
At a difference from matrices A and B, matrix C depends on w, hence 

continuously varies during the loading-deformation process. With the intro
duced notations, the non-linear shallow shell equations can be concisely writ-
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ten as: 

(11) 

Expressing stress function from the second row and suhstituting it in the first 

row: 

(12) 

where the term in square hrackets is the total stiffness matrix of shallow 
sheiIs. Expanded and arranged: 

K = ~ + ~hB:4.-~ + Eh(CA-IB 

~ p ~-----------=----=-----=------

(13) 

y 

where: 
ex: plate effect, 
f3 shallow shell effect, 
y effect of geometric non-linearity. 
Term y varies throughout the loading-deformation process, C depend

ing on w. 

6. Post-critical analysis 

Introducing notations 

x = KA + EhBA-IB (14) 

Y = Eh(CA-IB (15) 

Eq. (13) simplifies to: 

(X + Y)w = Q. 

In the case of "direct iteration" (conditioned hy the fulfilment of non-singu
larity of matrix X from strength reasons) two suhsequent steps of itera
tion are: 

Wi+l = X-Iq - X-IYiwi 

Wi = X-Iq - X-IYi-IWi_1 • 

(16) 
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From their difference: 

(17) 

Provided iteration started from the stable range of the load-displacement 
relationship, in case of sufficiently small steps 

Y( "'''' Yi - 1 and I1 Yi 1I > 11 Yi-111 

may be assumed, permitting (17) to be re-'written as; 

(18) 

and iteration convergence has the condition i I X-IY i 11 < 1, stricter than 
the real condition of conyergence because of (18). In post-critical range this 
condition is not met, requiring a different method, that of step-by-step 'loading, 
to be applied. Indicating below the load step by a superscript, a load step 
involyes the following yariations: 

wCi+1) = wCi) + bw 

Q(i+l) = Q(i) + bQ 

F(i+l) = FCi) + bF 

CCi+1) = CUl bC 

(19) 

b being the symhol of increment). Equilihrium equation for t'wo suhsequent 
oad steps: 

(X + yCil bQ 

deduced from each other: 

Xbw + yUlbw bYu/il + bYbw = bQ. (20) 

Considering the product of increments to be small of second order, and ar
ranging: 

(21) 

a term lending itself to follow the overall load-deformation process. Stability 
or instability of the concerned range is seen from the sign of the energy incre
ment variation: 

bE = bw . bQ > 0 stable range, 
bE = bw . bQ = 0 critical load, 
bE = bw . bQ < 0 unstable range. 

Computer development of the procedure presented in this item is being 
performed. 
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Summary 

The tensor product variant of the method of finite differences has been developed into 
an iterative wav of solution of the non-linear shallow shell equations. The critical load param
eter is determined by a geometric-energetical procedure. Application fiel'ds both of shallow 
shell and membrane shell equations are concluded on from numerical examples. Discussion 
of the deduced total stiffness matrix of the shallow shell is followed by some considerations 
on its post-critical behaviour. 
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