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1. Intreduction

As early as in 1952, Ziecier [8] pointed to the likelihood of wrong results
from examining the stability of the equilibrium of non-conservative mechani-
cal systems on the basis of the static stability eriterion. At the same time,
stability analysis of either conservative or non-conservative systems, based
on the kinetic stability criterion, leads to correct results. Stability analysis
of conservative mechanical systems by either method vields identical results.

Static stability criterion states critical load to be the least one where the
original (trivial) equilibrium is coexistent with other (non-trivial) equilibria.

According to the kinetic stability criterion, critical load is the least one
where motion due to a sufficiently small, arbitrary disturbance is not restricted
to an arbitrary small region about the equilibrium of the balanced system. To
support the above, the so-called Beck stability problem will be quoted ([2],
[1]). Based on ZiecLER’s idea [8], BEck [2] treated the following problem:

Let us consider a slender beam of constant cross section, straight axis, of a
homogeneous, isotropic, elastic material. clamped on one end. Compressive
force P applied at the free bar end is of constant magnitude throughout the
motion, but its direction always follows that of the tangent to the free bar
end, hence it is a so-called ““follower™ force (Fig. 1). Magnitude of the critical
load is sought for, omitting the dead load of the column. Because of the non-
conservativity of the follower load, the static stability criterion yields a wrong
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result Py — oo;inexistence of a non-trivial equilibrium excludes the existence
of a finite critical force.

Beck approximated the bar by a continuous model of linear elastic
material; hence ignored the effect of viscosity. The kinetic stability criterion
has led for the critical load to:

Ejmin

Pogy = 20.05 =

(1)

where EJm;, is the minimum flexural rigidity of the bar, and [ its length.

To the author’s knowledge, there is no similar formula available for the
eritical load of a visco-elastic continuous model. To help this deficiency, he
attempted to approximate the critical load Pgy: by the finite model analysis
of a bar compressed by a follower load, involving the effect of viscosity.

Thus, in the following, the Beck stability problem will be considered in
its finitized form, complemented by the assumption of the Kelvin-Voigt visco-
elastic material model of the bar material, hence by the examination of the
viscosity effect. According to the vibration terminology, the effect of viscosity
will simply be termed damping.

The idea of assuming the problem is due to Boszyay [3].

A simple, finitized variant of the problem for two degrees of freedom has
already been discussed by Z1EGLER [8]. In this case the stability analysis has
heen reduced to the solution of a fourth-degree algebraic equation, hence it
can be treated even by analytic means i.e. by closed formulae.

Now, it will be demonstrated that the approximation by this model of
two degrees of freedom is not close enough. (Notice that there are several
possibilities of finitizing. For instance, OVERRATH [4] solved the Beck problem
according to the SzaB6—ROLLER general theory of bar systems [7]. The bar
was approximated by elastic elements of two degrees of freedom each, and the
effect of viscosity was ignored. This model offered a close approximation

Py = 20.19 —Lmin.

with as few as two elements.)

ZIEGLER also examined the damping effect on his model of two degrees
of freedom. He demonstrated that if the load applied on the elastic system
was a non-conservative one, then the damping proportional to velocity (i.e.
viscosity) might entrain instability; even a very small damping force might
significantly alter the critical load.

The author’s computations on models of several degrees of freedom
supported Ziegler’s statement on the instabilizing effect of damping (viscosity).
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2. Motion equations

Let us consider the introductory Beck stability problem for a rectilinear,
prismatic bar of a homogeneous, isotropic, visco-elastic material.

Deformations due to shear force and normal force are neglected; the
problem is solved according to the second-order theory. Model in Fig. 2 is
the Beck stability problem in its finitized form, besides this model takes also
the viscosity effect, i.e. damping into consideration. The finitized model is

)

c ¢
&

i : i

a chain of n rigid members, each of length / and mass m. Hence, the total bar
length is nl, and the mass nm. Elasticity of the original bar is simulated by
springs in eylinder hinges supplying a return moment proportional to the rela-
tive rotation of the members. Each hinge has a springs constant ¢ = EJpn/l.
EJmin being flexural rigidity of the bar cross section. Hinges also contain
a device — although not indicated — supplying a damping moment propor-
tional to the relative angular velocity of the members; moment damping
coefficient is d for each hinge. Force P applied on the free chain end is of a
constant value throughout the motion, and of the same direction as the last
link, hence it is a so-called follower force.

Let us determine what is the least — critical — force likely to entrain
kinetic instability.

Motion equations of the system will assume a slight in-plane motion and
take the transversal displacement of bar element end points y, =0, y;
i=1, ..., n as co-ordinates (see Fig. 3).

Fig. 3
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Motion energy of the bar chain:
T— My

)

where elements of vector y are velocities y;, i =1, ..., n and

M=—

4
1

1

ol

4
1

| S

(2)

is the so-called mass matrix, always positive definite because the motion
energy is also positive (except for the case at rest y = 0).
Potential energy of return moments supplied by hinge springs and pro-

portional to the relative rotation of bar elements:

1 -
V= _vy*
57 Cy
where elements of vector vy are co-ordinates y;3 2= 1, ..., n and
-6 —4 1 7
—d4 6 —4 1
1 —4 6 —4 1
=2
2
1 —4 6 —4 1
1 —4 5 =2
- 1 =2 |

(3)

the so-called spring matrix, always positive definite since the potential energy

is also positive.

Effect of damping moments supplied by the spring device and propor-
tional to the relative angular velocity of bar elements is expressed by the

dissipation function

1

. §
F=—y*Dy

&
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where the so-called damping matrix

6 —4 1 -
—4 6 —4 1
1 —4 6 —4 1
d . . » . -
D= = ) . . . . (4)
1 —4 6 —4 1
1 —4 5 =2
L 1 —2 14

is positive definite because of the viscous damping force; d is the damping
coefficient for each hinge moment.

Effect of the “follower” force P applied at the free chain end is ex-
pressed by

Q =Ry

where elements of vector ) numbering n are generalized forees and a quadratic
matrix of order n:

2 -1 .
—1 2 —1
rR=L
!
—1 2 -1
i 0 0l

Substituting into the Lagrange motion equation

CNCUINE A
di \ dy dy  dy
we obtain

My + Dy + €y = Ry.
Rearranging:

My 4 Dy + Cy =0 (5)
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where
C=C—-R=
“ 2
6 2PL 4. P 1 ]
[+ C
P e 2P, P
[ [54 C
9
. 1, —44-—11, 6 2P -4+£I—, 1
C [ [
—_ 6
2 O (©)
P 2Pl
1 ~4+—"i 6_ 2 —4+ﬂ 1
c C c
1 _—4+—i 5 2P —2+ﬂ-
[ c [54
L 1 —2 1 _

a quadratic and — Dbecause of the non-conservativity of the follower force —
non-symmetric matrix of order n.

3. Mathemaiical analysis of kinetic stability

Motion equations of the finitized variant of Beck’s stability problem have
been written as matrix equation (5). where M. D and C are matrices detailed
under (2). (4) and (6), respectively.

Let us counsider in general the linear mechanic systems of n degrees of
freedom, where the motion in the vicinity of the equilibrium configuration
— given by a vector y = 0 of n elements — is described by the homogeneous
differential equation system (5), y and y being first and second derivatives,
respectively, of vector y(z) with respect to time.

Equilibrium of the mechanical system of vector y = 0 is kinetically
stable if, provided initial values

y(0) = ¥, ¥(0) = ¥y, (7

have been chosen sufficiently small, solution y(¢) of differential equation
system (5) remains arbitrarily small for any ¢ > 0.

If any initial condition (7) of the differential equations (5) has a bounded
solution y(¢), then (multiplying the initial conditions by a constant) the solu-
tion can be made arbitrarily small.Thus, for a bounded solution y(t) the equi-
librium is kinetically stable.




BECK STABILITY PROBLEM 141

Solution of (5) has to be found in the form:
y = 2 (8)

substituting it into the differential equation leads to the generalized eigen-
value problem

(M2 +-Di+Cz=0. 9)

Trivial solution z = 0 of the homogeneous linear algebraic equation system (9)
corresponds to the equilibrium state y = 0 of the mechanical system — origin
of the term ““trivial equilibrium®’.

A non-trivial solution exists if and only if ) is root of the generalized
characteristic equation

|MJ2 - DA+ C|=0 (10)

an algebraic equation at most of 2n order in 2, and exactly of 2n order for

| M| = 0.

Provided all roots A;, j = 1. ..., 2n are real and distinct, general solu-
tion of (5) may be written as linear combination of 2n functions
yt) =z (11)
where z; is the generalized eigenvector belonging to the generalized eigen-
value ;. Constants ¢;, j = 1, ..., 2n in the general solution
2n
5t
y(&) = Scszet (12)
Jj=1

Can be determined from initial conditions (7). In the occurrence of complex
generalized eigenvalues where nevertheless all roots are distinct, they may be
included as conjugated pairs (since matrices M, D, C are real); it may be written
A= o £ iff. Also the corresponding generalized eigenvectors are conjugated
complex pairs of vectors u - iv and, according to (8), the general solution
contains terms of the form:

ze' + Ze" = ¢*[(u + iv) cos Bt — (v TF iu) sin Bt]. (13)
Since real and imaginary parts of complex solutions are each a solution of (5),

complex solution (13) can be replaced in the general solution by two, linear
independent real solutions of the form:

ae*fcos ft  and  be* sin Bt (14)

Kinetic instability arises if there is at least one finite initial condition
leading to unbounded motion according to the general solution (12). This is
only possible if at least one among the 2n linear independent solutions consti-

6
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tuting the general solution is unbounded. According to (8) and (14), if there
exists at least one generalized eigenvalue with a positive real part. then the
equilibrium of the mechanical system is kinetically unstable.

If some of the generalized eigenvalues are equal roots, there are two cases.
Either is '

K(}) = M2 = D) =~ € (15)

a simple A-matrix, i.e. for each root A of multiplicity r,exactly r linear independ-
ent generalized eigenvectors z can be determined, then the general solution
consists exclusively of solutions of the form (8) or (14). Or is K(7) no simple
Z-matrix, then the general solution will be found as linear combination of the
exponential function multiplied by a polynomial with the variable &

pli)e™. (16)

Except for 4 = 0 or « = 0 (i.e. where 7 is a pure imaginary root), func-
. . . . . ¥
tions (16) and (8) have the same asymptotic properties (if e.g. lim ze” = ¢

e oo
then also Lm p()e” = 0).
o
As a conclusion:
1. If all the generalized eigenvalues J; = «; + if; have negative real

i
paris, i.e.:

w; <0, j=1 ....2n.

the equﬂ‘ibrimn of the mechanical system is kinetically stable.
2. If there exists at least one generalized eigenvalue J 2 with the real part:

then the equilibrium of the system is kinetically unstable.

3. If the roots include no generalized eigenvalue with positive real part
but at least cne generalized eigenvalue with zero real part exists, then the
problem of kinetic \’Cc‘bl}ltv has to be decided from further information. Hence,
this 1s the crifical case.

0..-..4

Iz conformity with the above, in crit
stability may be decided by examining matrices E (4;) where 4; are generalized

cases the problem of kinetic

eigenvalues with zero real part. If the c’zegeneracy of any such matrix K(7;)
(i.e. the number of linear independent generalized eigenvectors helonging to
each pure imaginary generalized eigenvalue /) equals the multiplicity of root 7.
the system is kineiically stable; if there ex is a pure imaginary generalized
eigenvalue 7; with a degeneracy of K(J)) less than the multiplicity of root 4,
the system’s equilibrium is kinetically unstable.
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4. Algorithm of the compuiation

Let us assume the availability of a numerical method suiting solution
of generalized eigenvalue problem (9). As seen from the detailed expression (6)
of matrix €, its elements are functions of the value P of follower force P,
hence also generalized eigenvalues are functions of value P. The least value P
(eritical forc cej is sought for, where kinetic instability may oceur.

According to the above, the critical force can be numerically determined
by means of the following algorithm. Start computation at a small P (e.g.
P = 0) where the system is in a kinetically stable equilibrium. The P value

wi 1 be increased step bv step by equal increments AP until P causes the

kine*it:fc ally unstable. The computation is continued

ka ~— AP, 2. Depending on whether for a
e . ep N
kinetically stable or unstable equilibrium, the

. n N
g 4P , 4P
ervaliP - .PYor ( P — /P, P — .
2 9

Continuin sroughout for the

ot

ving p“f;co& ure t nterval including the

» r«q

eritical Ioa % then after & steps the interval containing the critical load will
; 1

be of ael-gz.’z this interveal length can be arbitrarily
number k of S:»Pb

he LﬁObt of difficulty is due

11764’1 "10‘8.1'\'31118 problem can
ralue preblem of a hypermatrix

of order 2n:

where E is the unit matrix of order n.

From computation aspects, the obvious difficulty of this method consists
in doubling the order of the matrix. Therefore the author has developed a ne
procedure for solving generalized eigenvalue problem (9), consisting e:sen’claﬂy
in reducing the generalized eigenva alue problem to the solution of the special
eigenvalue problem of two matrices, of order n each, via solution of a quadratic
algebraic equation system. This permits to determine the generalized eigen-
values and generalized eigenvectors at a higher accuracy — as exemplified
in {6] — than by reducing the problem to the solution of the special eigen-
value problem of the matrix of order 2n.

This procedure [6] has been applied for the generalized eigenvalue
problem (9) involved in the Beck stability problem.

D-\%
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5. Coneclusions

Let us consider a bar of straight axis, constant square cross section:
made of a homogeneous, isotropic, first linear elastic, then linear visco-elastic
material with the following geometry: bar length L = 1 m, cross section area
F=2cmx2cm = 0.0004 m?, density p = 7850 kp/m? and modulus of elastic-
ity E = 21x10° kp/m?,

Applying result (1) by Beck for the elastic continuous model, the critical
force is seen to be:

Pei = zo.osf:’fjﬂl = 5614 kp, (17)

since

To have an idea of the accuracy of the approximation by a finite model,
computations will first refer to an elastic (undamped) model; namely then the
results for the critical force can be ecompared to Beck’s formulae (17) equally
for an elastic continuous model.

Variation of the critical force P.; determined on the elastic finite model
vs, number of freedoms, as well as the critical force from the continuous model
have been plotted in top of Fig. 4. Critical force obtained from the finite
model appears to approximate asymptotically, from below, the critical force
obtained for the continuous model. It is also obvious that while the critical
force for the case n = 2 is only about 509, of the continuous value, for the
case n = 15 the deviation is reduced to below 79,. With a view on design
safety prescriptions, it is advantageous to have the critical force calculated

. coniinyum
Beif (O] =~ = 7=~~~ i e et S
000 e
’ // ‘undamped (d = 0)
4000 %
3000 - - ——1 RPN S s Py -
// “damped [d—0)
2000 7 :
1000
2 4 & & 0 2 74 16 n
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from a finite model tending to the critical force calculated from the continuous
model from below.

In the case of an undamped, finite model D = @ may be written, causing
generalized eigenvalue problem (9) to become:

(M2 L Cz=0 (18)
i.e., with the notation
P=—

special eigenvalue problem of matrix M~ € of order n, of real (constant)
elements, that is, however, non-symmetric, because of the non-conservativity
of the follower force, and it can be solved by directly applying e.g. the Francis
double-step QR algorithm [5].

Since matrix M~IC is a real one, complex eigenvalues x occur always
in conjugated pairs. In knowledge of eigenvalues of matrix M~1C, the gen-
eralized eigenvalues sought for are delivered by:

b= —

Consequently, if matrix Mi—!C has at least one negative real or complex eigen-
value x,then there exists a generalized eigenvalue 1 that is either positive real
or has a positive real part. Accordingly, — in conformity with item 3 — the
mechanical system is in kinetically unstable equilibrium. The equilibrium of
the system can only be stable if all eigenvalues x of matrix M~1C are non-
negative real numbers; namely then all generalized eigenvalues A are pure
imaginary (taking 2 = 0 as such), at the same time this is the critical case
according to item 3: if M~'C is a matrix of simple structure then the equilib-
rium is kinetically stable, else it is unstable. Let us remark that if all eigen-
values x are different (and so are all 1) then M~1C is a matrix of simple structure.

Variation of generalized eigenvalues A performing the transition from
kinetically stable to unstable equilibrium versus follower force P (for n =3
and n = 9 degrees of freedom) has been plotted in Fig. 6 separately for real
part R,(4) and imaginary part J, (). The different pure imaginary generalized
eigenvalues are seen to converge with the increase of force P (stable range)
to become pure imaginary twice generalized eigenvalues (critical case). Since
for an infinitesimal increase of force P, generalized eigenvalues become a
conjugated complex pair with a non-zero real part (unstable range), the crit-
ical case is the critical force, no further analysis to determine the structure of
matrix M~1C is needed.

Computations made on undamped and damped finite models differ by
requiring the solution of problem (9) rather than (18). The difference between
both eigenvalue problems is not of numerical importance alone. No ring-off
motion is possible in the undamped case; stability refers to the oscillating
motion.
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Variation of critical force Py vs. damping coefficient d has been plotted
in Fig. 5 for various degrees n of freedom, exhibiting the inequality expressing
the instabilizing effect of small viscous damping:

lim Pcrit(d) < Pcrit(o)
d—0
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supporting for a system of more than n = 2 degrees of freedom Ziegler’s
statement on the instabilizing effect of the damping force deduced from the
analysis of a system of two degrees of freedom. P,;(0) values are accompanied
by the corresponding n values in Fig. 5.

The possibility appears from Fig. 5 that, if n — oo then P (d) — const.
for all positive d values. Is it so then in spite of the instabilizing effect of vis-
cosity, for models of high degrees of freedom, critical force Py is likely to
little depend on the damping coefficient d > 0, a question worth of further
consideration.

The instabilizing effect of an even slight viscous damping d appears
from Fig. 4, indicating — for the sake of comparison — the critical force vs.
the degrees of freedom, and this separately for the elastic (undamped, d = 0)
case, and for a slight damping coefficient d — 0.

Fig. 4 demonstrated critical force values — computed from a finite
model taking the damping effect into consideration — to tend asymptotically,
from below, to a limiting value with increasing degrees of freedom, assumed
to equal the critical force that would result from the analysis of a visco-elastie
continuous model.

In reality there is no elastic bar, a slight viscosity is alwavs present.
Therefore this critical Ioad — extrapolated from damped model analyses —
vields a closer, safer approximation of the exact value than formula (1) by

Beck.
Sunmnary

A f{initized variant of the Beck stability problem hkas been discussed, completed with
the assumption of the Kelvin—Voigt visco-elastic material model for the bar material, hence
involving the effect of viscous damping.

References

1. Barta, J.: Das Beck’sche Stabilitdtsproblem und verwandte Probleme, Acta Technica
Acad. Sci., XXXT/1—2, Budapest, 1960, 241—259.

. Beck, M.: Die Knicklast des einseitig eingespannten tangential gedriickten Stabes, Zeit-
schrift fiir angewandte Mathematik und Physik, Vol. IIL., 1952, 225—228,

3. BoszNaY, A.: Private communication.

4. OverraTH, J.: Grosse Stabverformungen und kinetische Stabilitit nach der Elementme-
thode von Szabd. Dr.-Ing.- Dissertation, Fakultit fiir Bauwesen der Technischen Uni-
versitiit Carolo-Wilhelmina zu Braunschweig, 1975.

. PARLETT, B N.: The LU and QR Algorithms in Mathematical Methods for Digital Computers.
Vol (Ed by Ralston. A.— Wilf, H. S.), John Wiley, New York 1967.

6. PorPrER, Gx FerExczI, M.: Numerical Method for Solvmir Eigenvalue!l Problems of Linear
Vibration Systems of Finite Degrees of Freedom. Acta Technica Acad. Sci. (In press).

. SzaB6, J.,~ROLLER, B.: Theory and Analysis of Bar Systems* Miiszaki Kényvkiadé, Buda-
pest 1971,

8. ZiecrLER, H.: Die Stabilitdtskriterien der Elastomechanik. Ing. Arch. XX. Band, 1952,

wl

-~

Dr. Gyorgy Popper, Research worker, H-1502 Budapest

* In Hungarian






