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1. Scope 

In a previous paper [1], mechanical analysis of a hinged bridge structure 
has been discussed. Forces developing in hinges of precast main girders have 
been determined by an integral equation system. Functions of the horizontal 
and vertical components of the resulting hinge force have been obtained as a 
series of eigenfunctions of the integral equations. 

In present study the hinge forces between the main girders of askew 
bridge are determined by numerically solving the integral equation system. 
Simpler cases, important for practical reasons, and possible simplifications 
are discussed. 

Stipulations for the tested bridge structures are identical with those 

in [1]. 

1.1 Symbols 

Beside definitions used in the text and III the figures, the following 
symbols occur: 

1* 

E modulus of elasticity 
G modulus of elasticity III shear 
I inertia moment of bending 
le inertia moment of torsion 
It inertia moment of warping rigidity 
L span of the girder 
m number of intermediate hinges 
n number of main girders 
:::; ordinate along the axis of the girder 
er. angle characteristic for the obliquity of the bridge 

8 ma" i 8k' < 8 ma" [Sk see under Eq. (8)] 
maximum error value of the numerical solution. 
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2. Numerical solution of the integral equation 

Several factors might necessitate a numerical solution of the integral 
equation, for instance, if the core function [1] of the integral equation can be 
determined only with difficulties or not at all, because of the form of the 
precast main girder. Provided the hinge connecting the main girders is not 
continuous, the numerical solution yields a more exact result than the assump­
tion of a continuously distributed hinge force. The solution of the integral 
equation obtained in a closed form can neither be used if the transfer of the 
hinge force is bound to conditions. In practice this occurs when the horizontal 
component of the hinge force is taken into account but the hinge can only 
transmit the compressive force between the girders, while in case of a tensile 
force, there is no connection any more. Here the integl'al equation can only be 
soh-ed numerically as discussed below. In other instances a choice can be 
made bet"ween the numerical and the direct solution [1]. 

In [1], the function of the hinge fOl'ce components "was obtained from an 
integral equation system. One integral equation of this system was written in 
the following form: 

L L 
Y (z) = J Ki (z, ~) Pi m d~ - J K j (z, ~) Pi-l (~) d~ + 

o 0 

L (1) 
. \- K/ (z, ~) [hi m h'_l (~)] d~ Yo (z) . 
o 

Instead of the unkno"wn displacement y(z) and force functions p(z), h(z) 
in the above equations, their approximating values are sought at equidistant 
points on the hinge line: 

Llz 
L 

(2) 
In 1 

By means of procedures of numerical integration, terms in Eq. (1) can 
be approximated by the following sum: 

L m+l J Ki(Z,~)pd~)d~""", ~ C"Ki(z,Zk)p(Zk)' (3) 
o K=O 

The values of the coefficients Co, Cl' ... , Cm+ 1 were determined on hand 
of the trapezoid rule, taking into account boundary conditions of the unknown 
functions [2]. Thus: 

and 
L 

Cm =---
m+l 

(4) 
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Substituting into Eq. (1) the ordinates of division points spaced apart 
by Llz on the hinge line and replacing the integral by (3), the integral equation 
can be substituted by a linear equation system. When substituting the ordi­
nates of points on the hinge line, the obliquity of the bridge must also be taken 
int/) consideration. Therefore the ordinate Zk of the hinge line changes by 
d i = O.5b i tg 0::, and depending on the obliquity of the bridge and on the left 
or right side hinge line, Eq. (1) has to be written with girder axis values of: 

Z" = k· Llz : di (k = 1,2, ... , m) . 

Before ,n'iting the equation system let us introduce notations: 

CjPi (Zj) = Ptj 

Cj hi (Zj) = Hij . 

(5) 

(6) 

The expression (6) stands for the hinge force developing as a force concentrated 
at hinge points (Fig. 1) considered also as the resultant of the distributed 
hinge force along interval Llz. 

Fig. 1 

No,,", the integral equation (1) can be substituted by the following 
linear equation system: 

m m 

y(z,J = .:E Ki (z/{, Zj)Pij - .:E Kj(zk' Zj) P i - 1•j 
j=l n=l 

m 
(7) 

-;-~ Kt (Zk' Zj) [Hi .j Hi-l,j] 
)=1-

Writing the above relationship for values k = 1, 2, ... , m, this equation 
system substitutes integral equation (1). Determination of the coefficients in 
(7) and the equation system expressing the compatibility conditions of the 
bridge structure "ill be discussed in the next item. 
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The exact function value, obtained by solving the integral equation, is 
examined for the approximation error involved in values P(Zi) and h(Zi)' de­
termined from the equation system based on (7). 

The analysis was carried out according to [2]. It results in the error 
value only if Eq. (1) can be written and soh-eel. In this case a limit value can 
be given for the difference of 

(8) 

or for the maximum of differences bctween the results from (1) and (7). 
The upper limit (cmax) for c in (8) can be calculated. Instead of the 

rather long relationship, only its valuation is given here. For a given span L 
and spacing, the error decreases with increasing girder rigidity. It is especially 
sensitive to the torsion rigidity value: if the torsion l'igidity is near the minimum 
value [1] derived of the eigenvalue of the integral equation, the approximation 
error is considerably increasing. The error depends also on the distribution of 

the loads. For given L, cmax decreases quadratic ally with the increase of the 
number of spacings, for identical spacing .dz it increascs nearly quadratically 
with the span. The effect of width b is unimportant, provided the torsion 
rigidity is adequate. The obliquity of the bridge is not too important for the 
error value, provided other data are identical. Examining aetual cases, for .dz 
of about the girder width, the two methods yield values for midspan de­
flections due to unit force differing by less than 2 %. 

3. General formulation of the linear equation system 

Top VIew of the bridge in Fig. 2 indicates points where the unknown 
function values of integral equation (1) are to be determined hy the approxi­
mating term (7). With regard to (6), this problem can he soh-ed both hy applying 
the mathematic method outlined above, and by using a new mathematical 
model: the main girders are conneeted by point-like in-plane hinges at given, 
equal spacings. Testing the structure hy the force method, applying a structure 
deprived of hinges as primary beam, writing the zero relative displacements 
at the hinges, Eqs (7) are obtained. In this formulation the explicit determi­
nation of the Green-functions can be omitted, because the coefficients K(Zi' Zk) 
i.e. horizontal and vertical displacements due to bending and torsion resp., of 
each girder in the marked points of Fig. 2 can be calculated -with well-known 
methods. 

In Fig. 3, one section of two adjacent girders is plotted, marking some 
hinge points. This figure sho-ws that in case of a skew bridge forces Po and Hij 
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belong to different cross-sections of two adjacent girders. Therefore dis­
placements of point (ij) have also to be determined in different cross-sections 

of ordinate z for adjacent girders. 
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To determine the unknown hinge forces, displacements at every point 
have to be calculated from the unit forces acting at any hinge point. A force 
causes displacement only of the girder it acts at, displacements originating 
from one force are summed in one Yector, then these vectors are assembled in 
a coefficient matrix, where in the subscript the serial numbers of the hinge 
line, first of the displacement, and then of the acting force are written (Fig. 2). 
Where the serial number of the girder cannot be established from the two 
subscripts, it is given as superscript. The signs of displacements and forces 
are given in Fig. 1. 

The yertical and horizontal displacements due to unit vertical forces are 
summed up in matrices AU and VU, respectively; the vertical and horizontal 
ones due to horizontal forces in matrices DU and Br!' respectiyely. 

The uji etc. elements of these matrices correspond to the values K(zi' Zj) 

of the core functions of the integral equation system. The sign convention is 
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shown in Fig. 1. These matrices are of In . In size. At a difference from usual 
coefficient matrices, the matrices with different subscripts are not symmetri­
cally established, because, due to the obliquity, interchange of the coefficient 
subscripts does not mean the exchange of cross-sections. If no stipulations are 
made concerning the form of the girders, these four coefficient matrices are in 
general not identical. 

The unknown vertical and horizontal forces arising at each hinge point 
on the hinge line of order i are denominated by vectors Pi and Hi' respectively. 
Summing up the vertical and the horizontal displacement at the hinge points 
due to external forces in vectors Ai,o and Bi,o, resp., connecting conditions 
vertically of hinge points on line of order i are formulated in the following 
matrix equation: 

(9) 

And horizontally: 

Vi.i-lPi-l (Vi Vi.!.l)P V P B H .. - . '. . - l, . , 1 . , 1 -- ., 1 . 1 I,l I,l I L.t. l-r 1,(- 1-

(10) 
(Bi . ...L B(-f;l) H· - B .. , 1 H. , 1 = Ri-o: 1 - Ri 0 • 

£,l J l,f t 1,£, 17 !, l, 

According to the above t'wo equations, a matrix equation system for­
mulated for i = 2, ... n - 1 and taking into consideration Po = Ho = P n = 
= Hn = 0 yields the unkno'wn hinge forces. It is useful to write the equation 
system as the following hypermatrix equation, where the individual blocs are 
hyper-continuants of size (n - I) . (n - I) consisting of identically lettered 
matrices as coefficients: 

[!:] = O. (ll) 

This equation system substitutes the initial integral equation system [I]. 
There 2(n - 1) integral equations gave 2(n - 1) unknown functions p(z) and 
h(z). Here the hypermatrix equation (11) contains 2(n - 1) unknown vectors 
and each vector is of size In. In solving the above equation three cases have to 
be considered, according to the design of the hinge: 

a) The hinge can transmit any horizontal force. In this instance, Eqo 
(ll) has to be solved according to the known method. 

b) Effect of the horizontal force is neglected. In this case the equation 
l'educes to the form AP Ao = O. 

c) The hinge can transmit a horizontal force of limited magnitude. Here 
those connecting places have to be found where the given load causcs a dis­
connecting displacement. Equations and nnkno'wns corresponding to these 
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have to be cancelled from Eq. (ll) i.e. eliminating these ro"ws and columns 
of the coefficient matrix, the size of the coefficient matrix and the unknown 
vector H have to be reduced according to the number of disconnections. For 
the new solution all the places have to be re-examined, of course implementing 
the necessary corrections again, and so on. This labour-absorbing work neces­
sitates in general the use of a digital computer where the steps can easily be 
programmed. 

4. Special cases 

Since in practical cases, such bridge structures are always prefabricated, 
main girders are identical, requiring fewer coefficient matrices to be com­
puted. This statement is valid for all four blocs of the hypermatrix coefficient 
of Eq. (ll). In case of identical subscripts, the coefficient matrices of Eqs (9) 
and (10) are symmetrical and there are two types for each bloc: value cal­
culated for the girder on the left or the right side of the tested hinge line. 
Coefficient matrices ·with different non-zero subscripts are asymmetrical but 

related as A i,i-l = AT,i+l' A similar equality exists in the blocs B, V and V. 
Furthermore there exists an equality between the coefficient matrices of blocs 
V and V of identical position. 'Ihertfore only three cotfficient matrices each of 
three blocs have to be determined for any number of main girders. 

Further reductions are possible if cc = 0° viz. for an orthogonal bridge. 
Here the main diagonals of both blocs A and B contain the sum of t·wo identical 
matrices each: A/ i A;~l = 2Ai i, while the two ad]· acent coefficient matrices , , , 
are symmetrical and equal: A I,i-l = A I,I+l etc. The elements in the main 
diagonals of blocs V and V will be zero and the other coefficient matrices 
identical. Thus, to determine blocs A and B it is sufficient to establish two 

symmetrical coefficient matrices each: Ai,1 and Ai,l-l; and Bi and Bi, i-I' 
resp., "while for blocs V and V a single one: Vi, i _ l' In this case these coefficients 
can also be formulated in the simple ·way by means of the Green-functions [3]. 

The calculation is much simplified by neglecting the horizontal forces at 
the hinges. This neglect causes no important deviation in girder stresses as the 
horizontal component of the hinge force is by many orders smaller than the 
vertical one. This ratio is easily established by the iterative solution of Eq. (ll). 
Choosing HI = 0, then in the first step PI -A -lAo• Upon substituting the 
value HI = _B-1 (Bo + VPI ) is obtained. Because of forces HI in the second 
step vector PI has to be increased by vector LlPI = -A -IV HI' Continuing 
the relaxation, HI must be corrected by vector Ll HI = - B -1 V 11 PI etc. 
Numerical analysis of the above steps with data of constructed bridge 
structures [1] has shown that element sizes in HI are only 0.01 to 0.03 times 
those in PI and vector Ll PI can be neglected against vector PI. Therefore the 
assumption H = 0 is permitted for the practical requirements of accuracy. 
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5. Numerical example 

With the above procedure, the transversal distribution diagram of a bridge consisting 
of n = 8 identical box-section main girders 1,00 m wide for the parapet main girder and the 
main girder near the midline was determined. 

Starting data: 
G = OAI6 . E 
I = 0.0200-1. m l 0.0344 m l It = 0.000341 m'; 

The computation was carried out for 0'. 0°, i.e. an orthogonal bridge. and for one 
with 0'. 30°. 

Hinge points were assumed at the eighth-points of the span (111 = 7). 

a) 

c) 

Fig. -1 

The sketch of the bridge cross-section. the transversal di"tribution diagram of the 
parapet main girder and the int~rmediate main girder are plotted in Fig. 4·. Comput'iItion assum­
ing a continuous hinge line was also carried out with the integral eqnation system [1]: the 
obtained result closely agreed with the indicated results. the max. deyiation being less than 2°;,. 

Keglect of the horizontal hinge forces has no practical effect on the result. This neglect 
halved, however, the number of the unknowns in the equation system and the coefficient 
matrix could be established with only two formulae which could be written in a closed form. 

6. Generalization of the procedure 

The presented calculation procedure concerned bridge structures with 
hinged main girders. A case was discussed where the approximate mlmerical 
solution of the integral equation system applied for the problem in [1] had to 
be found. Now the possibilities to use the above procedure for other problems 
and its apparent advantages will be pointed out. 

Several factors may impose an approximate solution, but the linear 
equation system substituting, and derived from, the integral equation system 
can be used also independently, replacing the model in [1] by a different one. 
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This method can be used not only to solve the given problem but also for 
other strength, stability and vibration problems using the integral equation 
systems [1]. The numerical method is advantageous not only in determining 
the unknown functions of the integral equations, but also in formulating the 
Green functions. Function values at each point can be calculated at a sufficient 
accuracy using the known methods of statics if their writing in a closed form 
is impossihle or difficult. 

An advantage of the presE'nted method applied in other problems is to 
formulate the maximum deviation between the function obtained from the 
integral equation and the approximate value from the substituting linear 
equation system. This error formula gives the error limit of the approximate 
solution satisfying the connecting conditions replacing continuous hinges. The 
accuracv of this ('nor limit is not influenced hv the fact that the Green function . . 
of the problem is only given "with values calculated at random points. 

This approximate method can he used not only to determine unknown 
hinge forces hut also for stahility and vibration analyses. To determine the 
eigeuvalues and cigenfunctions of the integral equations, the approximate 
method can be used. In this wav the maximum deviation of the obtained 
result from the eigenvalue or the eigenfunction of the integral equation can be 
well estimated. In some instances even the actual formulation of the integral 
equations can he omitted. 

Summary 

Determination of hinge forces of skew bridge structures with hinged mam girders is 
described in cases where - instead of the function of these hinge forces its approximate 
values at giyen point;; are determined. 

The hypermatrix equation yielding the approximate solution of the integral equation 
system has been determined. Determination method of this equation system "was treated 
independently of the formulation of the integral equation system, and simple practical cases 
have been considered. The limit of error for results obtained by the approximate linear equa­
tion system was examined. 

Finally, the above method has been generalized and a numerical example presented. 
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