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1. Introductiou 

Application of equations deduced in [1] for the analysis of small dis­
placements of bar structures in the dynamic analysis at slight completions 
will be presented. In the following, only undamped, free vibrations of bar 
structures will be considered. 

2. Concepts, notations 

The bar structure is considered to consist of bars of constant rigidity 
and straight axis. The bar elements join in nodes at positions indicated in a 
co-ordinate system x, y, z valid to the entire bar structure. Besides, to any bar 
element j, k a proper co-ordinate system gj,k, 'i]j,k, Cj,/{ will be assigned (Fig. 1). 

Node displacements will be indicated in a global co-ordinate system, and 
the internal forces in a proper system with six-dimensional vectors Uj and Sj,k' 

In static analyses, for a load vector qj given in the global co-ordinate 
system, in conformity with deductions in [1], equilibrium and kinetic nodal 
equations can be 'written in the form (zeroing the kinetic load): 

(1) 

G and F being matrices including geometric and flexibility characteristics, 
respectively. 

Solution of this matrix equation can be arrived at, if the displacement 
method is used, from the equation 

- G* F-l G u + q = 0 (2) 
expressible also as 

-Kn q=O (3) 

K being the stiffness matrix of the structure. 
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Fig. 1 

3. Estahlishment of the matrix differential equation for the undamped free 
vihrations of the har structure 

For a structure other than at rest, according to the Newtonian la-\\', Eq. 
(3) has to be completed by mass forces 

-Ku q = M: ii, (4) 

M being the mass matrix of the structure. For free vibration q = 0, hence the 
matrix differential equation sought for 'will be of the form: 

M:ii+Ku=O. (5) 

Mass matrix lVI, similarly to the stiffness matrix, will be obtained by producing 
and comhining mass matrices of each bar. Production of mass matrices will he 
examined belo,.,-. 

3.1 kIass matrix for a bar element 

It is known from the litcrature that the motion in the co-ordinate system 
~, 17, ~ of a body with gravity point S due to forces acting at j can be described 
by a mass matrix of the build-up (Fig.2): 

r mj 0 0 0 mjTj; -m/j') 
.., 

0 111j 0 -mjTj'; 0 111jTj!; 

0 0 mj m/p) -mjTj!; 0 

0 -mjTp; m/j') J~ -h'i -Js' 
111jTj; 0 -mjTj!; -J~11 J7) -JTj' 

L -m/j 7) mJTj; 0 -J~, -JT;' J, ....J 

wherc mj is the body mass; J~, J7j' J, and Jg7j, Jg" J7j; being incrtia moments 
for axes and for planes, respectively. 
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Fig. 2 

Reducing, however, the half mass of a bar to the node j at the bar end 
simplifies the matrix significantly in the proper co-ordinate system: 

In, 

1 
m- J ] 4 1) 

L 

where mj = Aj Ij,k/2 while inertia moments can be computed in different 
'ways, depending on the cross-section. Also the mass matrix at the bar end k 
can be written in a similar form. Mass matrices will occur in the equilibrium 
equations, therefore they are required to be transformed to the co-ordinate 
system ;1;, y, z using matrices Tj,k expressing the correlation of the two co­
ordinate systems; such as: 

(6) 

(Since the mass matrix does not occur but in the co-ordinate system ;1;, y, z, in 
the following the co-ordinate system will not be indicated.) With the approxi­
mating assumption that in the equilibrium analysis of individual nodes, 
only masses reduced to the proper node are effective, the mass matrix of the 
entire bar will be of the build-up: 

lMh J 
Jllk . 
II j,k 

(7) 

It should be noticed that closer determinations have been published [2] for 
the bar mass matrix based on energy considerations. 



16 J. GYORGYI 

3.2 Dynamic equation of the structure 

Dynamic equations for the undamped vibration of a har element will be 
arrived at by applying the NewLonian law. 

Equilibrium equations can be 'written in the form, according to [I]: 

(8) 

Bl,li heing the transposed of the so-caned transfer matrix. 
Kinematic equations are identical to those in static analyses. 
In possession of the dynamic equations of bar elements, the entity of 

equations- equilibrium and kinematic equations in separate groups -
makes up the dynamic equation of the entire bar system. 

After reducing by the connecting matrix taking joints bet-ween bar ends 
into consideration, dynamic equations of the bar system are obtained. 

Separating the part corresponding to the houndary conditions, the 
dynamic matrL'" equation of the har system can be written in the form (omit­
ting the kinematic load): 

(9) 

Solving it according to the displacement method, expressing s from the 
kinetic equation, and introducing K = G* F-l G (zeroing q), we ohtain the 
matrix differential equation: 

Mii Ku= O. 

In static analyses it is usual for hinged bar structures to calculate rotations 
of the hinged bar end later, after having determined the displacements required 
for the solution, and the internal forces. Thus, the stiffness matrix -will be 
obtained hy "compiling" stiffness matrices of hars restrained rigidly at one 
end, and hinged at the other. This method is not valid to dynamic analyses, 
namely the effect of masses helonging to the hinged end cannot be omitted in 
calculating the frequencies. 

4. Solution of the matrL'{. differential equation 

4.1 The solution function 

The matrix differential equation is of the form 

Mii Ku=O 



with initial conditions 

FREE VIBRATIOSS 

U (to) = Uto 

U (to) = illO • 

17 

From the theory of differential equations it is known that the solution can be 

sought for in the form: 

u = ve/it • (10) 

After substitution: 

o (ll) 

possessing a non-trivial solution for 

.det (.u2 l\<1 - K) = 0 (12) 

,u2 values can he determined as roots of a characteristic polynomial, but the 
solution can also be reduced to a matrix eigenvalue problem. Introducing 

1 

I. 
we ohtain 

-K-1lVI v = ?v (13) 

and substituting 

leads to 
Av = I.V, (H) 

a non-symmetric, real eigenvalue prohlem. It results in n negativc real eigen­
values and n linearly independent solution vectors v. All these help to a solution 
meeting initial conditions (for to = 0) in the form: 

u (15) 

Xr being the r-th natural frequency. ~otice that the case of undamped free 
vibration can he treated as a symmetric eigenvalue prohlem, with details 
published in [3]. 

4 ') Solution of the eigenvalue problem 

In analysing the matrix differential equation, the most important 
problem is to solve the eigenvalue of the non-symmetric matrix. In our com­
putations, the QR transformation, considered in [4] to he the method of the 
hest numeric stability, has been applied. 

2 Per. PoL Civil 13/1-2 



18 J. GYORGYI 

In solving the eigenvalue problem, the matrix has first been brought to 
Hessenberg form by Gaussian elimination and selection of principal elements 
in a finite number of steps, then it has been transformed into a triangular 
matrix by means of similarity transformations using an orthogonal matrix set. 

In the main diagonal of the triangular matrL-x, the eigenvalues follow 
each other in the order of ahsolute values. Transformation to triangular form 
is facilitated by the gradual lessening of quotients of successive eigenvalues of 
vibrational problems, hence the greatest eigenvalue is the first to appear per­
mitting to reduce the matrix order in course of computations, and to introduce 
an efficient method to accelerate the convergence. 

Let us notice here that - as against item 4.1 - JU -1 may be used 
instead of K -1 for throughout multiplication. In this case the eigenvalues 
appear first belo·w, and the convergence is still accelerated. 

In knowledge of the Hessenherg form, the eigenvectors are easy to de­
termine by iteration, using the eigenvalues. Constants of the general solution 
of the matrix differential equation to meet initial conditions are simple to 
determine, while variations vs. time of the displacement function can be 
followed by means of a drawing machine. 

5. Examples 

Example 1 

Let us examine by means of the presented algorithm the plane natural vibrations of a 
beam restrained at both ends. Eigenvalues of this simple problem can be verified by values 
obtained from the continuum model, and various forms of eigenvectors (principal nodes) are 
known. 

A = 7 . 10-3 m~ 

J=9.8·10-5 m 1 

E 2.1' 10' ~lp!m2 

y 7 .85 ~Ip/m3 

The bar has been divided into equal parts numbered from 2 to 8. (Eigenvalue problem of 
max. 21 size, Fig. 3.) 

The highest eigenvaluebelonging to longitudinal vibrations (the lowest natural frequency) 
as a function of the number of divisions is shown in Fig. 4, both for our mass matrix and the 
more exact mass matrix suggested by PRZElIlIENIECKI. 

Also eigenvalues corresponding to flexural vibrations have been computed on the basis 
of the two kinds of mass models, outcomes being rather similar and intercepting the actual 
eigenvalue. 

First three principal modes of the longitudinal vibration, and 6th, 7th and 8th ones 
of the flexural vibration are shown in Fig. 5. (Eigenvector element of the maximum absolute 
value being 1.0.) 

Example 2 

Four frameworks shown in Fig. 6 are of identical size but bars are differently connected. 
Natural frequencies of the structures have been computed by considering each actual bar 
(an eigenvalue problem of mas:. 9 size). The mass matrix of the structure has been determined 
by means of the mass matrix of Przemieniecki. 
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Framework data: 
A= 10 -3 m2 

J = 1.5 .10-2 ill! 

E 2.1 . lOG }Ip f m2 

y = 2 }lp im 3 

T 

1 
I 
I 

E a, b, LO! 

r-
8m A-, 

l 
1 

C, d, 1 
Fig. 6 

The obtained natural frequencies have been tabulated below. Frequencies of less rigid struc­
tures are obviously lower than those of stiff ones. 

Column dl contains eigenvalues computed for a d-type structure completed by nodes 
assumed at mid-bar. 

Frequency 
d dl Ko. 

1 91.2 '1-0.7 25.9 61.8 61.5 

2 160.0 158.6 150.0 139.6 1.1-1-.0 

3 227.5 223.7 218.0 216.5 211.0 

4 297.5 240.0 238.2 297.5 286.0 

5 425.0 371.0 331.0 318.0 292.0 

6 662.0 439.0 386.0 591.0 446.0 

7 752.0 541.0 635.0 496.0 

8 956.0 916.0 751.0 610.0 

9 1070.0 694.0 

Fig. 7 presents modes belon~ing to the first two eigenvalues of the four different structures. 
For the d-type structure, two independent vibration groups are seen to have formed, appearing 
in our computations by the Hessenberg form detached into two separate parts. 
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Summary 

In connection "with the undamped free yibratiol15 of bar structure3, possibility of deri-<.-­
ing a matrix differential equation for yibration motion from the matrix equation of bar struc­
tures ha3 been examincd. Similarly to static analY3cs, dynamic equations of a bar have been 
written first. by means of the stiffness and mass matrices of the bar. then the matrix differential 
equation of the bar structures has been established in conformity with joints and boundary 
conditions. Solution of these bar structure equations has been reduced to the problem of non­
symmetric matrix eigcnyalue problem. applying the QR transformation to compute eigen­
,-alues and eigenvcetors. A program has been dcyeloped in ALGOL- 60 language and run on 
an ODRA-1204 computer. 

Computation obseryations and outcomes have been illu3trated on examples. 
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