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1. Stating the problem

Bridge design often is concerned with bridges of arc ground plan over
point supports. Because of vehicle loads in different positions, the design
involves determination and examination of various influence surfaces, these
can, however, be produced only by some numerical solution of the plate
differential equation. Development of a method likely to simply determine
various influence surfaces and stress diagrams of deck bridges over arched
ground plan by means of a medium capacity computer has been attempted.

Our starting assumptions will be general enough to solve most of the
practical problems, at the same time permit exploitation of computing ad-
vantages arising from the features of this structure type.

Be the tested structure a thin plate of homogeneous, elastic material

"over a ring segment ground plan, supported on both ends and along inter-
mediate radii at equal angular distances by point-like or linear supports
entraining arbitrary displacement constraints, and affected by an arbitrary
system of vertical loads. Along the radii of supports, intermediate cross beams
of identical design and end cross beams of a different design may be applied.
Plate thickness is arbitrarily variable in radial direction, while in annular
direction, it may be identically variable within each span (Fig. 1). A method
and procedure convenient for the computation of stress diagrams, stress and
strain influence surfaces had to be elaborated.

The most convenient method for taking the indicated stipulations of the
problem into account was felt to be the displacement method of large finite
elements, hence the solution will be based on this method.
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Fig. 1
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2. Method of large finite elements

Similarly to the method of finite strips [2, 3], this method is a variety
of the finite elements method, offering considerable computation advantages
for special problems. It is especially useful for solving structural problems
where the usual methods would require rather many unknowns for a given
accuracy, or where deformational and stress discontinuities caused by internal
constrainis and stiffness jumps would inhibit the use of common methods [4].

This method is based on the division of the structure into possibly few,
large elements along lines containing the deformation constraints and stiffness
jumps, and establishing the compatibility equations separately for the structure
as a whole, on the basis of counection conditions of these “finite elements”
and those of the internal strains inside the elements on the basis of edge dis-
placements and loads. This provides partly for the fact that nothing but an
equation system of a reduced number of unknowns has to be solved, containing
the displacements of connected edges, and partly for the possibility that de-
formation constraints of different types can be taken directly into consideration.
In case of elements of the same type and boundary conditions, identity of
“eigenstiffness matrices” of edge displacements for all elements means a great
ease. For elements connected only at two opposite edges, the reduced com-
patibility matrix of the entire structure will be of a hyper-continuant type,
permitting further essential simplifications

Authors of this method, A. Grart and K. J. BATaE combined it to the
method of finite differences and applied to the analysis of straight-edge
plates and dises [4, 5].
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3. Decomposition of the arched deck bridge io finite elements

Let us decompose the entire struciure fo as many n identical plate
elements numbered L, 2, ..., n, as there are spans, to two identical end cross
beams marked 0 and n, and n — 1 intermediate cross beams numbered
1,2,...,n — 1, along the connection lines of cross beams (or in their lack,
assuming cross beams of zerc rigidity). Elements join at intersection lines
marked 0.1, 1.1,1.2, ..., n,n. :

Omitting the fact that plates do not join exactly the strength axis of
cross beams, it can be stated that the displacement functions of cross beams
have to coincide with those of the adjacent edges. Denoting the former by
Ugs Ugs o oo Uy and the latter by Ugys Ugs Ug 95 o« -5 Uy i this order, joint
conditions are:

Wy == Ug 3 Uy = Upq = Ugas oo § Uy == Uy o 1)

Indicating the direct loads on the cross beams by B, 0,.... 1% the
forces acting on plate element edges by I -, [;1, I; 5, . . ., I, , and total loads on

the eross beams by [, [, . . ., [, then these load functions are related as:
ly=B -l i =0—Ly—Ly..oh=1L—1,. (2)

Equation systems (1) and (2) permit to establish the reduced compatibility
equation system of the system of large finite elements, after the stiffness
relationships of the individual elements have been determined.

Determination of approximate “eigenstiffness™ relationships of plate
elements and then of cross beams by means of the method of finite differences
will be presented helow.

s

4. “Higenstiffness’ relationships of the plate element

Eigenstiffness relationships will be determined according to variational
principles as usual in the method of finite elements [1].

Be the total deformation system of the plate elements — intermediating
partitioning, convenient for subsequent steps — denoted by the generalized
vector of left-hand (precedent) edge displacements, of internal displacements
and of right-hand (subsequent) edge displacements, respectively:

{0} = {u, w, u,}.

At the same time, be the generalized vector of the functions of lefi-hand edge
loads, internal surface loads and right-hand edge loads, making up the loads
on the plate element:

U = (ap. )
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According to the sign convention, positive forces do positive work if the
corresponding (dual) displacements are positive (Fig. 2).

According to the principle of minimum potential energy, the relationship
between force and displacement functions is given by the condition:

- —3—@({6}, (6}) — ({f}, {6}) = minimum ! 3)

First term in this expression, the internal elastic energy of the plate is a
quadratic form of the displacement vector, the second one is the work of
external forces along the deformations, as generalized scalar product of both
vectors, Formally deriving (3) with respect of {5} yields the stiffness relation-
ship:

— U= Q({s}) — {fi= 0. (4)

Q is a real, Hermitic transformation belonging to the quadratic form. Approxi-
mating the total deformation and load function system of infinite degrees of
freedom of the surface element by populations of finite values each, namely by
deformations related to the nodes of a network of finite differences, and a
system of external forces concentrated at these nodes. Now, the condition of
minimum potential energy can be written with real vectors, of course only as
an approximation, rather than with abstract vectors:

I ~ -1—— 0* Q66— 6*f = minimum ! (5)

Q56— £ = 0. o (®)
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Be the assumed differential network a ring-radial one with a mesh of interval
/r radially and of Ag in annular direction. Introducing notations in Fig. 3, be
the value system for inner point and arched boundary point deflections:

w; ; l<i<<m, 1<j<Ek.

Arched boundary point edge rotations:

B i=1 and m, 1 <j<Ek.

Let displacements w; ; and #; ; constitute the vector w of the internal defor-
mations of the plate element:

W = [0, Wy 0y Wags v e Wiay Fpon Brge v v s Fppm 1] -
Be the deflections and rotations at straight edge point:
w;; and z;; respectively, for 1 <<i<{m, j=1 and k.
Radial slopes at the corner points:
U1 Oy V1 and Jpye

Vectors w; and u, of left and right side edge displacements are composed of
elements of the latter three displacement systems:

uf = [ Uy, Uors - Uy Fpgs 2115 Ho1s + o o5 ]

ES

s __To . . .
u, = [‘)llf': Ugps Unges + » + s Dty Hges s =+ 0 ’fmk] .
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Loads at inner points and arched edge points of the plate element are:

Pij for 1<i<{m, 1<j<k and
my; for i=1and m, 1<j<k, respectively,

to be replaced by loads and moments concentrated at nodes of the difference
network in case of distributed load and edge moment. (Direct loads on the
boundary strip dgr/2 wide are considered as loads on the joining cross beams.)
Each vector of internal loads is formed from these loads in the sequence of
elements of the inner deformation vector:

P* = [M19 P1os Pass + o » Prmos Mpmas Mppgs o« Myppq] -

Connection forces acting at the connection line and concentrated at the
nodes are:

q;,; and mg; 1<i<m, j=1 and k;

M3y My Myqy and my,,.,  rTespectively .

Let them constitute the vectors of left and right side edge forces of the plate
element in the sequence of the edge displacements:

(711 Q11: Qo1 - - oo Gnts M M1, Mpogs » v e Tn'(;ml]

F o= (M Que Qo -+ o Qs Mo Moyps Meops + o mgmk] .

Partitioning matrix ¢ with respect to vector compounents o and f J results in
the following hypermatrix equation:

CL w | = i )]
K. w P
L K ¢ Cowm, i i,

Determination of the clements of matrix € is started by approximately
writing the potential energy to be minimized [6].

The elastic deformation work of the tested plate is given by the integral
(written in polar co-ordinates):

_Q{o {o}) = U L

]

~
o
Q
-
[}
—~
Q
=
)] g
=
o
<
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Let the potential derivatives in the integral be approximated by the
difference quotients of elements in the finitized deformation vector & of the
deformation function {d}. On the basis of interpolating polynomials of the
lowest degree, the following expressions are valid:

a2
32w} ‘ .
[ — | —— (= 2w w0y ) for 1<7j<Fk,
op* iy d¢?
1 , . 1
A (—2w; 42w, ;o F 25, Ay for j= or
2 : .
Ag? k
a2
o w .
Ao 2w, 1w
{ — ] A —— (-;uw S Wy ”z—:~1,j) for 1<
ore lij /7
1 _ . 1
A (—2w; 2w,y ; 26, ;+4) for 1= or
-2 4 % T
47 n
ow 1
{ A —— (Wi — Wiy ) forl<<i<<m,
or i 2/f
A2 Uy ; fori=1 or m.

These difference quotients will be considered as constant in the region sur-
rounding points i, j of half-strip width each, hence the integration results in
the following two sums for the first two integrands of the expression

2

Ar

k 2 2 2
I,= %‘ F_l_.]" 1 L—J Z‘J 1 [Aw} . [_J w] } F:
=2 4 Ar A L)
< k A2 A
=3 >—(1— u)kK {[ ] {_1_.{‘1 w e

where K, ; is

rounding F;;

the bending stiffness
of point 7, j and

dp ;- 2,

2 - de - r; - 2,
1.3,

1/2 - de [rii—/., Ay
1.

1/4 - dg [i —'—T/.,}/,

Ai](l'

7]
zi,j;ri

N

assumed to be constant also in the sur-

for

for

for

and 1 <

j<k,
and j=1or k,

and 1 <j<C

and j=1 or k.




30 I. HEGEDUS

For the third integrand, the difference quotient will be written for a secondary

network of nodes shifted by half interval each in directions r and ¢ of the
difference system:

3 1
[E{L.“ﬂ] —_ R 1<i<m
or Lr 8¢ llicosjros  A(ri+0.5%) dg
) [wi.j Wiy ey Wy — wi,j-l—l]' 1<j<E.

Assuming constant torsion and plate torsional stiffness within surface
elements confined by primary nodes, integration leads to the sum:

m—1 k& Z JIL n , -
=3 31— uwKigs 1*03[ H A (1 + 0.52,) dg
= r i+0.5,/+0.5

ot

=1 j=1
where

K KA Ky Ky Ky

i+0.5j+0.5 4

In sums I, I, and I,, elements of vectors u;, w and u, are equally contained.

The condition (5) of minimum potential energy can be written by means
of the deduced sums as:

LI, + I, 1w —p*w—1u =min!

To simplify writing, let us renumber elements in § and f in the natural
sequence of listing, denoting them as 0y, ..., d,. ..., dyand fi, .. o fio . . fy
N = (k+ 2) (m + 2) — 4. Minimum condition is met if the partial derivate
of II with respect to any deformation element is just zero.

ll o8I,  8I, 28l £ =0
- an e —Jir

8, 86, 88,  8b,

GH _ afl + 812 + : —.,fv — 0
85, @5, 85, 85 _
ol  8I, | oI,

861\1 éaN B 861\" 85./\]

All equations will be linear difference equations each, the equation
system results in the “eigenstiffness’™ equation system of the plate element:

Q5 =1.
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Element of matrix Q in position g, » will be given by

0. — RIS
oy 86,89,

In conformity with the identity between mixed derivates, (), , equals element

Q.,. in transposed position. Thus, Q is symmetrical, as follows otherwise from

the real, Hermitic nature of transformation Q( ).

Remind that to determine matrix Q it is useless to write total sums I, I,
and I, but only terms containing both variables 6, and , corresponding to the
position of matrix elements @, , to be determined.

In order to determine all elements of one row of @ in a single step, in
fact, operator weights of the difference operator assumed in view of the cor-
responding point environment have to be established. Deduction of difference
operators correspounding to various boundary conditions of arched plates —
such as that of the free edge along the arched edge — has bheen presented by
BERGFELDER in his study on difference equations [6]. His operators — com-
bined with ‘““transient” operators of the radial edge and the corner points — are
suitable for computer writing matrix Q.

Maximum number of non-zero operator weights of the operator under-
stood at point i,j is 13, the farthest elements of non-zero operator weight
occur to the right and to the left, upwards and downwards of point i, j, at
two intervals’ distance. Hence, if the plate element is wider than two intervals
in direction ¢, then difference equations understood at deformations u; do not
contain elements wu, and vice versa. Excluding the practieally irrelevant case
where k < 2 it can be stated that in the partitioned form of Q (7):

L=1L*=0.

Hence, the stiffness matrix is:

w =11 (Ta)
w | e |
u, 1,

Minormatrix A is the matrix of the difference equation system of the plate
element rigidly restrained at both ends. Since, however, restraint causes
kinematic redundancy in the structure, A must be regular and invertible.
Making use of the inverse of A:

w = A" (p— Kju — Kru) ®)
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or, from (7a) and (8):
C—KATK)y — KATK e - KAy

9a,b
(€ — K AK)u, — KA Ko+ K Alp, )

(8) delivers internal point displacementis if edge displacements are known,
while (9a,b) is an integer part of the rednced compatibility matrix.

5. “Eigenstiffness” matrix of cross beams

Again, the eigenstiffness matrix of cross beams is written by minimizing
o] ’ tel v pw]
the total potcntial energy:

R R L

- a5 6 __ LN !
— M, Uy M, UV, = mnimuam !

where L is the cross beam length: B its bending stiffness; D the torsional
stiffness, g and m the vertical load and the distributed torque, w and x are
the vertical displaAcement and the angle of rotation; m,,, m,,, and ¥, 7, being
bending moments and radial slopes at the end points, respectively.,

Without describing particulars of finitization steps, the following stiff-
ness relationship can be written as difference equation system of the cross
beam:

Ciu, = 1, (10)

where ;s the stiffness matrix of the cross beam, u; and I; being displacement
and load vectors in the order of edge displacements and edge forces of the
plate element.
For structures without edge beam, the stiffness matrix €; will be zero.
Let us notice here that eigenstiffness mairices { and ; as well as the
reduced eigenstiffness matrix

(11)

composed of coefficients of (%a,b) are singular, phyvsically meaning that
rigid-body-like motions of the elements can be interpreted without loads.
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6. Reduced compatibility equation system

d

There being three different types of finite elements, in establishing the
eigenstiffness relationships, only establishment of the coefficient matrix of
end cross beams

C =1, (i =0 and n) (13a)

of intermediate cross heams

C. uw=1,, (0 <<i<n) (13b)

1

is needed for all plate elements by substituting

W=, uy =y, b=, L=1;.
Writing these equations for every beam and plate element and substituting
them into the set of equations (1, 2), we obtain the reduced compatibility
equation system of the structure.
Introducing simplified notations:

M, — C - C,— K, A1 K>

M = C+C +C — KATK —K, A1 K>
N = KAK;

1, — 19— K Ap,

L =R—-K A7p, — K A7 p,

1,

= 19 - Iir ATt P

the reduced compatibility equation system will be:

- M, -N Trrw 1=k 7
-N*, M. -N. u L
- N’i . P’i i ~~N ) 1:11. li (143)
: _17:54 . BI ) '__‘_\T 1‘1,:,_1 111‘—1
L _N*# M, 4 tu, 5 o1, 4

3 Per. Pol. Civil 18/1-2
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The hypermatrix equation permits to directly take into account the
following loads and displacement constraints of different character:

a) Group of loads p; acting at inner and arched edge points of plate
surfaces can be involved in the hypervector elements I; and 1, in the right-
hand side hypervector of the matrix equation, by means of terms —K;A-1p,
and —K,A-p,.

b) Edge moments acting at nodes of arched elements inside the support
lines can be accounted for in the same manner.

¢) Forces acting along the support lines can be dirvectly reckoned with in
elements of the respective vector If of the load hypervector.

d) Moments concentrated at nodal points of cross beams (or of ihe joint
line) can be considered in the same term,

¢) and so can be bending moments acting at cross beam end points.

Among duals of the enumerated load types, the foilowing displacements
can be directly specified:

¢’) vertical displacement of arbitrary nodes along the supporting line
(or the cross beams),

d’) rotations in direction ¢ of the same nodes, and

e’) cross beam end plate rotations.

Applicability of this method does not suffer from the fact that displace-
ments type a’) and b’) cannot be directly taken into consideration, since in our
case deformation constraints are encountered only along the joint lines of the
elements.

On the other hand, application of the method permits to meet any type
of deformation conditions, without medifying the reduced compatibility
matrix. This would, however, be outside the scope of this paper.

7. Regularizing the reduced compatibility matrix by taking supporis inte
consideration

In writing eigenstiffness correlations and joint conditions, no kind of
external deformation constraints were reckoned with, resulting in the singulaz-
ity of matrices (7,10, 11). Since the reduced compatibility matrix € is still
devoid of support deformation constraints, this one is also singular. For reg-
ularizing, at least as many external displacements constraints as needed for the
structure to be statically determined, and effects of rigid or elastic supports
have to be considered.

Effect of rigid supports is simple to be taken into consideration either
by:

1. Zeroing values of displacements numbered «, 5, ..., / inhibited by
the support, by cancelling the corresponding rows and columns o, 5, .. .. / of
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the compatibility matrix. The resulting non-singular matrix of lower order

D
contains also the supporting conditions;

2. zeroing the corresponding colummns numbered «,f, ..., 4 and sub-
stituting 1 for main diagonal elements C,,. Cﬁﬁ, ... C,; resulting in a non-
singular equation system of the same size as the original one the solution of
which contains the reaction dynams among elements of the deformation
vector; or by

3. applying the method of considering the elastic deformation consiraints,
involving the least of change. Increasing diagonal elements C,, Cﬁﬁ, .
is essentially equivalent to take into consideration elastic deformation con-
straints realized at corresponding displacements u,, Ugs oo us Uy Sinee bedding
stiffness is proportional to the increase of diagonal elements, replacing C,.. Cﬁﬁ,
.o, Gy by sufficiently great fictive diagonal elements results in practically
stiff deformauon cnhsiraints [7].

Methods 1 and 3 are advantageous by maintaining the symmetry of
the reduced compatibility matrix in course of modification.

Computational advantages of this system mostly appear in computing
influence surfaces of stress and sT;rain.

From the principle of commutability it follows that any influence sur-
face is identical to a special deflection diagram belonging to a load of dynam
or kinematic character. Determining influence values of each plate field along
boundaries w; and w, influence ~1uface values of internal points will be, in
conformity with (8):

wi= —ATEKlu — A7 K] u}
or, in case of plate elements subject to the lead producing the deformed surface:
Wl o= W — ATTK[ u] — AT K] ul

" being the influence values on the primary beam plate rigidly fixed along
its joint lines.

Assuming variables of force or displacement character in the reduced
compatibility equation system, the set of equations for determining vectors
u; and u, of the following types of influence surfaces can directly be written:

— reaction force influence surfaces of point supports;

— displacement influence surfaces of joint lines;

— reaction and displacement influence surfaces of clastic displacement
consiraints,.
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With the intermediary of multipliers KA~ and XK,A-* in the load
hypervector, the set of equations of vectors w; and u, helonging to the dis-
placement influence lines of inner points of each plate element can he written.

Since in analysis, nodal displacement differences are involved in express-
ing the first and higher derivatives of the deformation area, the kinematic
strain influence surfaces cannot directly be produced. On the other hand,
approximation by the difference quotients themselves permits to determine
strain influence surfaces at the same accuracy as by the method of {inite
differences, such as:

Expressing the tested stress by partial derivatives of the deformation
function, the derivatives will be approximated by difference quotients under-
stood at the reference point of the influence surface sought for. Thereby the
tested stress has heen approximated as a linear combination of nodal dis-
placements understood at and avound the reference point. Obviously, the
stress influence surface will he a similar linear combination of the influence
surfaces of corresponding nodal displacements. Applying the operator weights
of the difference operator abstracted from the linear combination as loads at
the reference point of the influence surface and at the corresponding environ-
mental nodal points, then, in conformity with the principle of interchangeabil-
ity, this load will result in a deformation diagram identical to the approximate
siress influence surface. Thus, it is useless to determine the superimposed
displacement influence surfaces one by one.

Siunce the difference method fails in demonstrating singularity of stress
at the reference point, in the environment of singularity, caleulated and
exact influence surface values greatly differ. This fact has a rather theoretical
significance, namely in design practice, no loads concentrated to a degree to
require an overdue accuracy of influence values avound the singular point
have to be reckoned with.

Summary

The presented method of analyvsis lends itself to the determination of stresses, especially
of stress influence surfaces of deck bridges over circular are floor plan, by means of a medium-
size computer.

The displacement method of large finite elements has been applied, combining computing
advantages of the methods of finite differences and of finite elements.

Essentially. the method consists in decomposing the tested structure into elements
of a size permitting to determine distribution of internal strains and stresses on the available
computer, taking direet loads and joint conditions into consideration. Thus., stress-strain
relationships of the entire structure will be given by the solution of the reduced compatibility
equation written for the connection of large finite elements, size of this set of equations being
but a fraction of the set of difference equations for the entire structure, raising no computer
problems for most of practical cases.

The method of large finite elements, illustrated here on the example of a special
structure, is equally convenient to the analysis of large or composed surface structures, in
particular, plates and discs of zig-zagged boundary conditions.
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