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For the solution of the research, planning and operation problems of
sprinkler irrigation, at the Institute of Water Management and Hydraulic
Engineering of the Technical University, Budapest, recently a program
package has been developed in ALGOL language. One of the largest programs
of the package was developed in 1970 for determining the optimum route of
the main conduit of irrigation systems by dynamic programming [2, 3]. Under
extreme conditions (for example, too high or too low pumping lift, significant
differences in elevation) the program could not be used for solving the problem.
In this paper an improved algorithm is presented, as basis for a program
eliminating the deficiency mentioned above,.

Stating the problem

Given is the route of the subsoil branching pipes of a sprinkling irrigation
plant (Fig. 1) and the sites where the pumping station might be located. The
optimum route of the main conduit connecting the pump station with the
branches, as well as the optimum lift of the pumping station should be de-
termined.

Branches is the name for conduits containing tapping points — so-called
hydrants. To the tapping points overground, portable irrigation systems are
connected. The branches are, in general, parallel to each other, their spacings
being defined by the type of the irrigation system. Routes of the mains are
subject to less restriction, permitting great many route varieties.

The points where the branching pipes can be connected to the main
conduit (in the following “branching points™) are marked on the branches.

The pipe network can be considered as a directed physical system in the
xy plane and divided into m steps, its condition being characterized by the
motion of point S of the main conduit; and the optimum policy of this point
should be found.
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According to the theory of dynamic programming, the problem may be
defined as follows: from the possible set of policies U a policy U* =hould be
found, likely to shift pomt S of the phase space from the initial state of S, ¢ §
to the final state S, < SJ,, s0 that the optimality criterion F(U) assumes a
minimum value, i.e.,

W = — {W(U); . (1

where the term means the minimum with respect to U.

In this example, the optimality criterion W is the construction cost of the
pipe network, or better, the total of the construction and water delivery costs.
The set of policies U designates the possible routes of the main conduit. The
problem is to determine the vector of the optimum policy:

U* = (UL, Us, ..., Uz,

where U¥, Uf, ..., U}, are the sections of the optimum route of the main
conduit between the branches.

From the range of the initial state S,, under the effect of polmle: U¥, Uz,

.. Uk, the system should get into the range of the final state Sfm The range
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of the initial state S, involves the possible sites of the pumping station, and

that of the final state S

i, comprises the branching points of the farthest

branch.

Such an initial state S§ € S, (i.e., such a siting for the pumping station),
and at every step such U¥, UZ%, ..., U} policies should be found that cause
after m steps the system to get into the range S’ﬁn, and the optimality criterion
W to reach a minimum.

Essentials of the solution methed

The method of dynamic programming is characterized by dividing the
progress of point S from S, to Sfm into successive steps. This means in this
instance that the determination of the optimum route will proceed from one
branch to the other and from one branching point to the other.

In practice, the dynamic programming tends always from the state QJM
toward the initial state S, thus, in this case, from the farthest branching pipe

toward the pumping station.
g

Optimization of the i-th step

The algorithm will be illustrated on the optimization of the i-th step.

The optimization of the i-th step means seeking for the optimum routes
of the main conduit connecting the i-th and (¢ — 1)-st branches. Thus, the
possible outputs S; of the i-th step are the branching points where the main
conduit may be connected to the i-th branching pipe. Provided the (i + 1)-st
step is already optimized with respect to any output of the i-th step, that is,
the optimum policies leading from each branching point of the i-th branch to
the (i -+ 1)-st branch (the U?}

opumahty eriterion Wi, ., ..., (S), the assumed optimization of the i-th

+15,) are known and so is the corresponding

step can be expressed as:

min

U;

rIr/z“zwl. L (Sz—l' 1)} (2)

W:i ti,..m (S )
wherein

Wi m (Si—1: U) = w; (S0 UY) + Wisy, m (Sz‘(Si—D Ui)) .

Definitions are:

7R

Fit1,...m(S;~1) — construction cost of optimum route — policy U¥(S,_,) —
leading from one of the branching points S;_; of the i-th branch to the
m-th branch.
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Wi(S;—1, U;) — construction cost of the main conduit section of policy U,
leading from branching point S;,_; of (i — 1)-st branch to point S; of
the i-th branch.

Wiy, . m(S8(S;=1. U)) — optimum construction cost of the pipe network
with optimum-route main conduit led by policy U; from branching
point S;_; on the (i — 1)-st branch to branching point S; on the i-th
branch and to the m-th branch.

Vs, m(Si—1, U;) — optimum construction cost of a pipe network of
main conduit route led by a possible policy U; from branching point
S;—1 of (i — 1)-st branch (sign - refers to that this is an optimum value
only from a certain point of view; from the possible policies U; the
optimum should be selected).

The algorithm of the dynamic programming is based upon the above
relations. According to the symbolic formulation the algorithm seems to be
simple, however, the practical realization is far from easy.

The optimum route of the main conduit is sought for in case of a given
lift, i.e., often of several given lifts, or also the optimum pumping lift is wanted.
Thus, the range of initial state S, represents the possible pumping-station
sites and the given lifts. In selecting from among the initial states the service
costs of water lifting, the construction costs of the pumping station and of the
chanuel leading to this latter should be taken into account.

The optimization proceeds from one branch to the other; it is not known
in advance how paris of the pipe network share the permissible head loss.
Therefore, the optimality criterion W means the optimum cost of construction
for all of the possible pressure levels: the polygon of the construction cost
minima, rather than separate data.

The polygons of the minimum costs of construction may intersect, thus,
the different routes of the main conduits might be associated with different
pressure levels.

In realizing the dynamic programming, the fact that optimum policies
U¥ are also functions of the pressure level H, should be remembered, and se
is the optimality criterion:

Wictm(Si H)) ~ Uty (S HY)

This can be taken into account by considering the policies U, for the
different pressure levels,

The optimum route of the main conduit is determined by pointing out
the branching points where it can be connected to the branching pipes. Theo-
retically, also a “continuous” dynamic programming could be realized by
reducing the point intervals to zero, the investigations indicated, however, to
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be useless to densify the points beyond a limit. The construction cost does not
decrease to a degree to justify the computer time excess upon increasing the
number of the branching points.

Major paris of the algorithm

The routes examined as those possible for the main conduit are evaluated
by the construction cests, involving LaBYE’'s discontinuous method.

Computing the polygon of minimum building cost of @ pipe section

In applying the discontinuous method, one proceeds from section to
section and the minimum construction cost polvgon should be produced for
each section giving the optimum cost of consiruction for any given head loss
corresponding to the pipe sizes possible in view of the velocity range.

Given is a 1 m long pipe section with a discharge ¢ and the series of
commercial pipe sizes (dmax > ... d; > d;...> dpiy) likely of discharge g,
because of too low or too high velocities, pipe sizes over or under the dp;, to
dmax range cannot be applied.

Let us introduce the symbols:

& — head loss along a pipe of unit length, diameter d;and dischargeq’,
b, — construction cost of conduit of unit length and diameter d;
B,= 1+ b, — construction cost of conduit of length I and diameter d;;

h;=1- ¢ — head loss in a pipe of length I, diameter d; and discharge gq.
Compute the conjugate values h, and B, for the given pipe sizes and plot
the pairs of obtained values in a system of co-ordinates. Connecting these
points by straight lines yields the polygon of straight lines in Fig. 2, i.e. polygon
of the minimum cost of construction of the conduit section.

If the permissible head loss in the conduit equals any of the h; values,
then the whole conduit length I has to be built of corresponding pipe sizes,
and the assigned B; value will be the construction cost.

If, however, the given head loss is an intermediate value, then the
conduit will be composed of different pipe sizes, and if the problem is to be
solved at the minimum cost of comstruction, then, in general, pipe sizes be-
longing to head losses intercepting the permissible values are needed.

Connecting in series the minimum cost polygons

From the minimum construction cost polvgon of the pipe sections
polyg pip

forming the pipe nmetwork, the minimum construction cost polygon of the

pipe network can be produced.
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Fig. 2

For example, the minimum cost polygon of the conduit 4 — C shown
in Fig. 3 may be produced by connecting the straight sections of the polygons
of sections 4 — B and B — C in series starting at the point of co-ordinates
hyg + h,q, By, -+ B, in the order of succession of their angles of inclination
as seen in the figure. This polvgon arrives at the point of co-ordinates iy -~ hyy,
By; 4+ B,y this being the other extreme position (maximum head loss, minimum
construction cost).

Following the process of the solution of the probhlem, it can be under-
stood that within each section of the final minimum cost polygon a single
pipe section may change in size.

When the conduit consists of an arbitrary number of, rather than two,
sections, and on each section any, rather than three pipe sizes are allowed,
then the progress of solution of the problem is the same as shown above. The
straight sections of the minimum construction cost polygons of each section
should be connected in series, starting at the point corresponding to the
highest or lowest head loss and to the pertaining construction cost, in the
sequence of the absolute value of their slopes. It follows that the resulting
minimum construction cost polygon for the whole conduit will consist of
straight sections.

The numerical solution of the algorithm of connecting into series may

readily be followed in the ALGOL procedure in Fig. 4.
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procedure sorf(nl, kI, kl, betl, nk, kk, hk, betk, atm, nlk, klk, hlk, belk, at):

value ul, nk:

integer nl, nk, nlk;

real ki, kk. klk:

array hl, betl, hk, betk, hlk, belk:
integer array atm, at;

beg}‘n o
tnteger I, 1. Jji
g . 11, 1]3
nn: == (;
i = jj:

Kk — K - LL
betl [al - 1] = betk [nk -+ 1]: = 10000000;

bellk [1]: =0
for nn: = nn — 1 while ii It nl + 1 and jj It nk + 1 do
begin

“at [on]: = atm [ij]:
hlk [nn]: = hi {ii] <+ hk [jj ]
if betl [ii + 1] It betk 33 + 11
then
begin
i =ii + 1;
belk [nn -+ 1]: == betl [ii]
end
else
begin
=i+ 1
belk [on -+ 1}: = betk [jj]
end;
nlk: = nn
end
end;
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The formal parameters of the procedure are as follows:

nl and nk — number of corners of minimum construction cost polygons to be
connected in series;

kl and kk — minimum construection cost co-ordinates of polvgons to be con-
nected in series;

hi and hk — pressure level co-ordinate of polygons to be connected in series;

betl and betk — absolute values of slopes of sides of polygons to be connected
in series;

nik, Elk, hlk, bell — data of the resulting minimum construction cost polygon
in the former sequence.

Summing up the minimum consiruciion cost polygons

Determine the minimum cost polygons of the two branching conduits
shown in Fig. 5.

First of all, the minimum construction cost polygons of each of the pipe
sections should be determined by proceeding as described above. Subsequently
the minimum cost polygon of the two conduits is obtained by summing as
shown in the figure, the construetion cost values for the same pressure levels
of the cost polygons of the two sections,

The resulting polygon also consists of straight lines and its break points
coincide with those of the component curves.

The algorithm of the numerical solution of the summing is represented
by the ALGOL procedure in Fig. 6.

The formal parameters of the procedure are as follows:

ni and nj — number of corners of minimum cost polygons to be summed;

ki and kj — minimum construction cost co-ordinates of pelygons to be summed;
hi and hj — pressure level co-ordinates of polygons to be summed;

beti and betj — absolute value of slopes of pelygon sides to be summed;

nij, kij, hij, bij — outputs from minimum cost polygons in the former sequence.

Program flow chart for solving the problem
g 8

The presented algorithm steps lend themselves to produce the minimum
construction cost polygon of either a part or the whole of the network. This
permits to compare the possible main conduit routes.

The program flow chart is shown in Fig. 7.

The minimum construction cost polygon of the branches above and below
the i-th branching point mayv be constructed by connecting in series the
minimum construction cost polvgen or the branch seections. One must be
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procedure suma (ni, ki, hi, beti
value ni, nj:

integer ni, nj, nij;

real ki, kj, kij:

array hi, beti, hj, betj, hij, bij;

begin
integer ii, ji, nn;
real vv:
kij: = Ll -+ L]
i = jj:
nn: = U
for nn: = nn + 1 while ii It ni+ 1 and jj It nj -+ 1 do
begin

le [nn}: = Dbeti [ii] -+ betj [jj]:

vv: = hi [ii] — hj [J]]
lf vv gt 0.001

then
begin
hij {nn] = hi [ii]s
i == i1 f 1:
go to agi
end
else
if vw It —0.001
then
begin
hij [nn]: = hJ il
jir=1ii + :
go to agl
end;
hij [nn] = hx {ii]:
o= i

K —JJ -~ 1
agi: nij: = nn
end

end;

, nk, kj, hj. betj, nij, kij, hij, bij):
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aware that the pipe strengths and the intermediate elevations define pressure
levels hmay and hmin, respectively, setting out the validity range of the com-
puted minimum construction cost polygons (Fig. 8).
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Confrontation of the routes of the main conduits

The minimum construction cost polygons of the routes of the main con-
duit leading from the i-th branching point in Fig. 9 to the j-th and (j + 1)-st
branching points, as well as of the corresponding parts of the pipe network
may intersect. In this case it depends on the development of optimality criteria
for different pressure levels W(U, ;) and W(U; ;.).i.e., those of the minimum
construction cost polygons whether UF;.; or U¥; will be the optimum policy.

Examining the route of the main conduit from point i to all branching
points of the subsequent branch, the corresponding polygons of minimum con-
struction cost may intersect at several points, thus, the optimum route may
often change, depending on the pressure level. Therefore, also the optimum

routes belonging to the co-ordinates of the minimum construction cost polygon
should be stored in the computer.

Determination of the optimum pumping lift of the pumping station
Fig. 10 represents the principle of determining the optimum pumping
lift (pressure level).

The optimum lift having been established, the program determines the

optimum route by proceeding from one branch to the other (away from the
pumping station).

4 Per. Pol. Civil 18/1 -2
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Summary

The branches of the irrigation pipe networks are, in general, parallel, their spacing
ranges being rather closely defined by the type of irrigation equipment, therefore only a few,
varieties of routes are realizable.

On the contrary. the route of the main conduit feeding the branches is less resiricted,
several tracings are possible.

A dynamic programming algorithm is presented for the determination of the optimum
route of the main conduit, of the site and optimum lift of the pumping station, as well as of
the optimum pipe sizes. The algorithm takes into account that also the optimum route depends
on the lift of the pumping station.

Programs to determine the optimum route of the main eonduit have been written in
ALGOL language for the Soviet computer RASDAN —3 and the Polish computerODRA —1204.
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