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Abstract

This study presents a machine learning (ML) framework to forecast the nonlinear seismic behavior of three-dimensional (3D) RC 

moment-resisting frames, utilizing OpenSeesPy for realistic 3D modeling and nonlinear time-history analysis (NLTHA) with 110 far-

field ground motions from the PEER database. A dataset of 29,700 samples was compiled, spanning 4-, 8-, and 12-story buildings with 

varied geometries and material properties. Seismic responses, including maximum drift, inter-story drift, and roof drift, were predicted 

via algorithms such as Extra Trees Regressor (ETR), Random Forest (RF), Gradient Boosting Regression (GBR), and XGBoost. Feature 

importance identified building height, width, Housner Intensity (HI), and Acceleration Spectrum Intensity (ASI) as key inputs. For inter-

story drift, R2 scores varied by height: for 4-story, ETR (0.9388), RF (0.9289), GBR (0.9226); for 8-story, RF (0.9833), GBR (0.9787), ETR 

(0.9781); for 12-story, GBR (0.9827), ETR (0.9798), RF (0.9622). For maximum drift, XGBoost achieved 0.9684, ETR 0.9678, and RF 0.9612.
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1 Introduction
Earthquake loads are a major concern in civil and struc-
tural engineering, especially in regions prone to seis-
mic activity. Ground motions from earthquakes generate 
dynamic forces that can severely damage or even collapse 
structures. The devastating effects consisting of loss of 
life, economic turmoil, and disruption to communities, 
highlight the critical need to accurately assess these forces 
and integrate them into structural design. By doing so, 
engineers can enhance the resilience and safety of build-
ings and infrastructure, particularly essential facilities 
like hospitals, fire stations, and emergency shelters, which 
must remain functional during and after seismic events. 
Effective earthquake load analysis not only reduces the 
risk of structural failure but also supports sustainable 
recovery by minimizing repair costs and enabling quicker 
rebuilding efforts [1–4].

A key part of earthquake-resistant design is accurately 
predicting how reinforced concrete (RC) frame struc-
tures will respond to seismic forces [5]. Modern buildings 
often feature complex three-dimensional (3D) RC frames, 
which exhibit intricate behaviors during earthquakes due 
to the interplay of bending, shear, and torsion, along with 

the nonlinear nature of materials [6, 7]. One of the most 
important parameters to predict is the maximum inter-
story drift ratio (IDR_max), which measures the relative 
displacement between floors. This value correlates closely 
with both structural and nonstructural damage, and plays 
a central role in performance-based design [8–11].

Traditional seismic design often relies on simplified 
methods like the equivalent static force procedure, which 
translates dynamic earthquake forces into a set of static 
loads based on the building's fundamental period and 
mass distribution. While straightforward, this approach 
involves many assumptions that can lead to overly con-
servative designs. These compromises may hinder opti-
mization and lead to inefficient use of materials and 
resources. Consequently, more precise analysis methods 
have emerged, offering better performance at the cost of 
higher computational demands [12–15].

Among these, nonlinear time-history analysis (NLTHA) 
is considered the gold standard for simulating how structures 
behave under real earthquake conditions. Using detailed 
finite element models—often fiber-element based—NLTHA 
provides highly accurate insights but requires significant 
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computing power and long processing times, especially for 
tall or complex 3D RC frames. On the other hand, simpli-
fied models like lumped-mass or shear-building representa-
tions offer greater efficiency but at the cost of accuracy. This 
trade-off between precision and speed limits their usefulness 
for large-scale assessments or iterative design tasks [16–19].

To overcome these challenges, researchers are increas-
ingly turning to machine learning (ML) techniques. These 
methods aim to strike a better balance between accuracy and 
efficiency. While simplified analytical models reduce com-
putational time, they often fall short in capturing the nonlin-
ear behavior of structures under seismic loads. In contrast, 
ML approaches have shown promising results in quickly and 
reliably assessing seismic damage in RC structures [20–24].

Several recent studies highlight the growing applica-
tion of ML in this field. Zhang et  al.  [25] used a dataset 
of 9,900  data points generated from NLTHA of 199 RC 
frames under 50 different earthquakes to train random for-
est, XGBoost, and active learning models for rapid damage 
assessment. Bhatta and Dang [26] evaluated multiple ML 
techniques—including K-nearest neighbors, decision trees, 
SVMs, and neural networks—using real damage data from 
the 2015 Nepal earthquake. Their findings confirmed the 
importance of including both structural characteristics and 
ground motion parameters for accurate damage prediction. 
Similarly, Xu et al.  [27] applied deep neural networks to 
estimate a damage index, demonstrating how ML can sup-
port broader seismic response assessments [28].

Hwang et  al.  [21] explored how boosting algorithms 
like AdaBoost and XGBoost can predict the seismic 
response of ductile RC frames while accounting for uncer-
tainties in material properties—especially those affecting 
plastic deformation. Ahmed et al. [29] introduced a novel 
stacked LSTM network that used overlapping time his-
tory data to significantly reduce training time and achieve 
prediction accuracies of 80–95%, showing strong perfor-
mance across different types of RC structures. Lazaridis 
et  al.  [30] tested ten ML algorithms to forecast damage 
in an 8-story RC building, identifying the best-perform-
ing model and damage index for seismic scenarios. Kaveh 
and Ilchi Ghazaan  [31] focuses on the optimal design of 
three-dimensional irregular steel frames under seismic 
loads using response spectra, employing four metaheuris-
tic algorithms: Colliding-Bodies Optimization (CBO), 
Enhanced Colliding-Bodies Optimization (ECBO), 
Vibrating Particles System (VPS), and a hybrid algo-
rithm (MDVC-UVPS) combining VPS, multidesign vari-
able configurations (MDVC), and upper-bound strategy 
(UBS). Frame members are selected from standard steel 

sections to meet practical design requirements per the 
LRFD-AISC code, incorporating stress, maximum lat-
eral displacement, and geometric constraints. The hybrid 
MDVC-UVPS algorithm consistently outperformed CBO, 
ECBO, and VPS, achieving lighter designs by 4–19% 
across three design examples while requiring approxi-
mately 35% less computational time, demonstrating supe-
rior optimality and convergence speed. Finally, Zhang 
et al. [32], extended this work to damped structures, using 
interpretable ML models like random forest and XGBoost, 
as well as deep learning approaches such as convolutional 
neural networks and seismic wave transformers (SWT), to 
predict maximum inter-story displacement.

Despite these advances, important gaps remain. Most 
studies focus on two-dimensional (2D) models, which do 
not fully capture the complex 3D behavior of RC frames. 
Moreover, while ML methods are gaining traction, their 
application to 3D RC structures is still limited  [33,  34]. 
There is also a lack of integration between data-driven 
ML techniques and physics-based modeling, which could 
improve both accuracy and interpretability. Addressing 
these gaps is essential to advancing the state-of-the-art in 
seismic response prediction for RC structures [33–35].

The aim of this research is to develop an advanced 
machine learning framework capable of accurately pre-
dicting the seismic response of 3D RC frames. To achieve 
this, we employ innovative techniques in data sampling 
and model optimization, including fine-tuning, halving 
search strategies, grid search, and k-fold cross-validation. 
Our dataset includes 27 unique 3D RC frame configura-
tions—covering 4, 8, and 12-story buildings with different 
floor plans and heights—each subjected to 110 earthquake 
ground motion records. Unlike prior work focusing on 
2D frames, this study prioritizes realistic 3D modeling to 
capture more accurate seismic behavior. The trained ML 
models are used to estimate key seismic parameters such 
as maximum drift, enabling engineers to better under-
stand building performance, assess structural vulnera-
bilities, and make informed design decisions that reduce 
damage and improve resilience during earthquakes. Fig. 1 
shows the procedure that is used in this investigation.

In this study, the structural modeling process begins 
with the use of ETABS software  [36], where structures 
are analyzed using the equivalent static method to deter-
mine their final dimensions. Subsequently, the models are 
imported into OpenSees software  [37] for three-dimen-
sional representation. Earthquake records are then applied 
to the structures to extract seismic responses, generating 
a comprehensive dataset for further analysis.
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In the next phase, machine learning techniques are 
employed to predict seismic responses. Multiple machine 
learning algorithms are utilized, and sensitivity analysis is 
conducted to identify optimal input parameters. The mod-
els are then trained and tested, with their performance eval-
uated through comparative visualizations of test results.

To assess the algorithms, six error metrics are used for 
comparison. A stacking algorithm, which combines mul-
tiple models, is implemented to enhance prediction accu-
racy. Based on the comparison, seismic responses are pre-
dicted by providing the necessary input parameters.

Fig. 1 Methodology workflow for NLTHA response prediction
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2 3D Reinforcement concrete frames modeling and 
analysis
In this study, we explored three groups of buildings with 
distinct floor plans based on 3 × 3, 4 × 4, and 5 × 5 grids, 
each featuring uniform 6-meter spans in both X and Y direc-
tions. The buildings also vary in story heights—3 meters, 
3.4 meters, or 3.7 meters—to account for different design 
scenarios. Fig. 2 illustrates the consistent floor plans for 
these groups. The first group consists of 4-story buildings, 
the second includes 8-story buildings, and the third com-
prises 12-story buildings, each incorporating the three 
floor plan types and story height variations. All buildings 
use rigid connections, rigid roofs, and a reinforced con-
crete moment-resisting frame as the primary load-bear-
ing system, with beams, columns, and diaphragms as key 
structural components.

Located in California at coordinates 37.88° N, 122.08° W, 
the buildings sit on Type D soil as defined by ASCE 7-16 
standards [38]. The site is in a high-seismic zone, with accel-
eration parameters SD1 = 0.6 g and SDs = 1.25 g. The design 

follows ASCE 7-16  [38] and ACI 318-14  [39] guidelines, 
using a response modification factor (R) of 8, a deflection 
amplification factor (Cd) of 5.5, and an overstrength factor 
(Ω = 3) according to ASCE 7–16 [38], ACI 318-14 [39]. For 
interior floors, we applied a dead load of 6 kN/m2 and a live 
load of 2 kN/m2, while the roof has a reduced dead load of 
5 kN/m2 and a live load of 1.5 kN/m2, all compliant with 
ACI  318-14 requirements  [39]. Fig.  3 provides 3D views 
of the 4, 8, and 12-story buildings with 5 × 5, 4 × 4, and 
3 × 3 grids, modeled using ETABS 2016 software [36].

At the heart of structural design lies the balance 
between demand (the forces a structure must withstand) 
and capacity (its ability to resist those forces). Our goal 
as engineers is to ensure each element is designed with 
sufficient capacity to meet its demand. Initially, we con-
sidered two approaches. The first was to use a single 
cross-section for all beams and another for all columns, 
which simplifies construction and execution. However, 
this can be inefficient, as it does not tailor elements to 
their specific demands. The second approach—designing 

Fig. 2 Three groups of regular plans

(a) (b) (c)

Fig. 3 The 3D view of the (a) 12-Story building, (b) 8-Story building, (c) 4-Story building
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unique sections for every beam and column—optimizing 
material usage but is impractical for complex or high-rise 
structures due to construction challenges.

To strike a balance, we adopted a typology-based 
approach for beam and column design. Columns were cat-
egorized into three types based on their location: corner, 
edge, and interior. Beams were divided into edge and inte-
rior types. This classification remains consistent across 
every two floors, ensuring both constructability and 
cost-effectiveness.

As shown in Table  1, the 4-story buildings have 
10 unique beam-column types, resulting in 90 types across 
the nine configurations (3 floor plans × 3  story heights). 
Table 2 shows that 8-story buildings have 20 types, total-
ing 180 across the configurations. For 12-story buildings, 
Table  3 indicates 30  types, leading to 270  total types. 
Tables  1–3 present only one representative example and 
that all nine plan/height combinations were analyzed, 
with full reinforcement details generated but omitted 
from the paper for saving space.

Table 1 Reinforcement details of 4 stories with a plan of 3 × 3 and a story height of 3 m

Reinforcement details of the original RC frames

  story Type of the element Location Dimension As (top bars) (mm2) As' (bot. bars) (mm2)

4 story

1&2

column

corner 500 × 500 1885 1885

side 500 × 500 1525 1525

middle 450 × 450 1205 1205

beam
side 500 × 500 1500 900

middle 450 × 450 1900 900

3&4

column

corner 450 × 450 1700 1700

side 450 × 450 1420 1420

middle 400 × 400 1100 1100

beam
side 400 × 400 1400 800

middle 350 × 350 1250 650

Table 2 Reinforcement details of 8 stories with a plan of 3 × 3 and a story height of 3 m

Reinforcement details of the original RC frames

  story Type of the element Location Dimension As (top bars) (mm2) As' (bot. bars) (mm2)

8 story

1&2

column

corner 550 × 550 2280 2280

side 550 × 550 1800 1800

middle 550 × 550 2650 2650

beam
side 500 × 500 2500 1500

middle 500 × 500 1950 900

3&4

column

corner 550 × 550 1800 1800

side 550 × 550 1520 1520

middle 550 × 550 1900 1900

beam
side 450 × 450 2400 1700

middle 450 × 450 1850 800

5&6

column

corner 500 × 500 1700 1700

side 500 × 500 1480 1480

middle 500 × 500 1850 1850

beam
side 400 × 400 2000 1300

middle 400 × 400 1500 700

7&8

column

corner 450 × 450 1200 1200

side 450 × 450 1100 1100

middle 450 × 450 1000 1000

beam
side 350 × 350 1900 950

middle 350 × 350 1400 650
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We developed a detailed three-dimensional nonlinear 
finite element model using OpenSeesPy  [37] to simulate 
the seismic behavior of a reinforced concrete (RC) moment- 
resisting frame. The prototype structure is a  12-story 
building with 6 bays, featuring uniform 6-meter bay spac-
ing and a typical story height of 3.4 meters. The model uses 
a two-dimensional framework (ndm = 3) with six degrees 
of freedom per node (ndf = 6) to capture both translational 
and rotational behavior. RC columns and beams are mod-
eled using force-based dispBeamColumn elements, with 
columns divided into 5 segments and beams into 15 seg-
ments to enhance integration accuracy and capture dis-
tributed plasticity. Material nonlinearities are represented 

using the Steel02 model for reinforcing steel, which 
accounts for isotropic strain hardening and Bauschinger 
effects, and the Concrete02 model for both unconfined 
and confined concrete. Confined concrete properties are 
enhanced with a 1.2 strength amplification factor to reflect 
transverse reinforcement effects.

Cross-sectional properties, including geometry and 
reinforcement layout, are defined using a fiber section 
approach, with data imported from a CSV file for para-
metric flexibility. The model incorporates varied beam 
and column section types to account for changes in mem-
ber size and reinforcement along the building height. A 
PDelta transformation is applied to all elements to capture 

Table 3 Reinforcement details of 12 stories with a plan of 3 × 3 and a story height of 3 m

Reinforcement details of the original RC frames

  story Type of the element Location Dimension As (top bars) (mm2) As' (bot. bars) (mm2)

12story

1&2

column

corner 600 × 600 2300 2300

side 600 × 600 1900 1900

middle 700 × 700 3600 3600

beam
side 600 × 600 2600 1600

middle 600 × 600 2100 1000

3&4

column

corner 550 × 550 2250 2250

side 550 × 550 1850 1850

middle 700 × 700 3400 3400

beam
side 550 × 550 2500 1800

middle 550 × 550 2000 950

5&6

column

corner 500 × 500 2100 2100

side 500 × 500 1750 1750

middle 550 × 550 3000 3000

beam
side 500 × 500 2300 1700

middle 500 × 500 1900 900

7&8

column

corner 450 × 450 2000 2000

side 450 × 450 1650 1650

middle 450 × 450 2500 2500

beam
side 450 × 450 2100 1500

middle 450 × 450 1800 800

9&10

column

corner 400 × 400 1800 1800

side 400 × 400 1500 1500

middle 450 × 450 2000 2000

beam
side 400 × 400 1900 1100

middle 400 × 400 1500 700

11&12

column

corner 450 × 450 1500 1500

side 450 × 450 1400 1400

middle 450 × 450 1700 1700

beam
side 400 × 400 1850 950

middle 400 × 400 1400 650
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geometric nonlinearity. Rigid beam-column connections 
are enforced using a custom crossJoint routine to improve 
convergence in joint regions. In-plane floor rigidity is 
simulated with rigid diaphragm constraints at each floor 
level, and column bases are assumed to be fixed. A con-
crete mass density of 2400 kg/m3 is used to define lumped 
masses at nodes for dynamic analysis. The adopted con-
finement model influences lateral strength and ductility 
but does not alter the relative drift variations used for ML 
training, because all structural configurations follow the 
same confinement assumptions.

2.1 Nonlinear analysis
As discussed in the introduction, structural analysis meth-
ods fall into two broad categories: static and dynamic, each 
further divided into linear and nonlinear approaches. These 
methods, summarized in Table  4, have unique character-
istics suited to different scenarios  [40–42]. For this study, 
we opted for nonlinear time history analysis because of its 
superior accuracy and reliability in capturing complex struc-
tural behavior. We analyzed 110 far-field earthquake records 
sourced from the Pacific Earthquake Engineering Research 
(PEER) database, applying them to our structural models 
to determine the maximum drift. Since our structures are 
three-dimensional, we applied these earthquake records 
simultaneously in both the X and Y directions to reflect real-
world conditions. The selected ground motions and their 
specific characteristics are detailed in Table 5. The selected 
PEER far-field records cover a wide range of intensities, 
including several events with very low peak ground accel-
eration (PGA). All  records were applied at their recorded 
amplitudes without scaling, which preserves the natural 
variability in motion intensity and duration. All  110  far-
field ground motions were applied in their original recorded 

amplitudes without scaling, in order to preserve natural vari-
ability in intensity and frequency content. This variability 
was intentionally retained to enhance the robustness and 
generalizability of the machine learning models.

3 Machine learning
Machine learning (ML), a fundamental branch of artifi-
cial intelligence (AI), allows systems to learn from data 
and make predictions without explicit programming. ML 
techniques are typically classified into three categories: 
supervised learning (which uses labeled data for train-
ing), unsupervised learning (which focuses on discovering 
patterns in unlabeled data), and reinforcement learning 
(which learns through interaction and feedback) [43, 44]. 

In recent years, machine learning has become increas-
ingly prominent across various fields, such as struc-
tural engineering (Shehzad et  al.  [43]), materials science 
and biomedicine. Each domain utilizes a range of pow-
erful algorithms, each with its own strengths and trade-
offs. These algorithms include Artificial Neural Networks 
(ANNs), Random Forest (RF), Extra Trees (ETR), Gradient 
Boosting Machine (GBM), Gradient Boosting Regression 
(GBR), Histogram-based Gradient Boosting Machine 
(HGBM), LightGBM, and XGBoost [45–47]. Modeled after 
the human brain, ANNs consist of layers of interconnected 
nodes (or neurons) capable of capturing complex, nonlinear 
relationships in data However, they require large datasets 
and considerable computational power, and can be prone 
to overfitting if not properly regularized ANNs have been 
successfully applied in areas such as surface water quality 
modeling rainfall forecasting and epilepsy prediction [48–
50]. Gradient Boosting Machine (GBM), GBM builds mod-
els sequentially, where each new tree attempts to correct 
the errors of the previous one It is a robust and flexible 
method that handles missing data well but can be compu-
tationally intensive to train and tune effectively  [46]. RF 
constructs a large number of decision trees during train-
ing and averages their outputs for predictions. It's relatively 
easy to use, resistant to overfitting, and performs well in 
many cases, though it may not match the predictive power 
of more advanced methods like GBM or XGBoost. RF has 
been used for predicting shear resistance of anchors olive 
production and groundwater classification  [51–53]. Extra 
Trees (ETR), Similar to Random Forest, ETR adds more 
randomness during tree construction, which can lead to 
faster training and better generalization in some cases [54]. 
LightGBM, designed for speed and efficiency, LightGBM is 
a gradient boosting framework that handles large datasets 

Table 4 Alternative seismic analysis procedures suggested  
in ASCE/SEI 41-17 [40, 42]

Category Analysis 
procedure Analysis method Seismic load

Linear

Linear 
static

Equivalent static 
analysis

Distributed static 
lateral load

Linear 
dynamic

Response spectrum 
analysis/

Response spectrum 
or

linear dynamic 
analysis

seismic ground 
motion record

Nonlinear

Nonlinear 
static Pushover analysis Response spectrum

Nonlinear 
dynamic

Time history 
analysis

Seismic ground 
motion record
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Table 5 Selected natural accelerograms

num Earthquake name Year Magnitude PGA

1 Baja California 1987 5.5 0.58026

2 Baja California 1987 5.5 0.40463

3 Baja California 1987 5.5 0.67602

4 Bam Iran 2003 6.6 0.16846

5 Bam Iran 2003 6.6 0.10926

6 Bam Iran 2003 6.6 0.08635

7 Caldiran Turkey 1976 7.3 0.05473

8 Caldiran Turkey 1976 7.3 0.06393

9 Caldiran Turkey 1976 7.3 0.09748

10 Chi-Chi Taiwan 1999 7.6 0.13738

11 Chi-Chi Taiwan 1999 7.6 0.09798

12 Chi-Chi Taiwan 1999 7.6 0.11039

13 Denali Alaska 2002 7.9 0.01225

14 Denali Alaska 2002 7.9 0.02295

15 Denali Alaska 2002 7.9 0.00763

16 El Mayor-Cucapah 2010 7.2 0.24849

17 El Mayor-Cucapah 2010 7.2 0.19699

18 El Mayor-Cucapah 2010 7.2 0.27896

19 Gulf of California 2001 6.5 0.06336

20 Gulf of California 2001 6.5 0.03835

21 Gulf of California 2001 6.5 0.00903

22 Imperial Valley-06 1979 6.4 0.03815

23 Imperial Valley-06 1979 6.4 0.11598

24 Imperial Valley-06 1979 6.4 0.12805

25 Imperial Valley-06 1979 6.4 0.11268

26 Imperial Valley-06 1979 6.4 0.20551

27 Imperial Valley-06 1979 6.4 0.16185

28 Imperial Valley-06 1979 6.4 0.04308

29 Imperial Valley-06 1979 6.4 0.05775

30 Imperial Valley-06 1979 6.4 0.02635

31 Imperial Valley-06 1979 6.4 0.1111

32 Imperial Valley-06 1979 6.4 0.20199

33 Imperial Valley-06 1979 6.4 0.08012

34 Kern County 1952 7.5 0.08969

35 Kern County 1952 7.5 0.1321

36 Kern County 1952 7.5 0.04353

37 Kobe Japan 1995 6.9 0.22063

38 Kobe Japan 1995 6.9 0.23091

39 Kobe Japan 1995 6.9 0.13841

40 Loma Prieta 1989 6.9 0.35853

41 Loma Prieta 1989 6.9 0.3266

42 Loma Prieta 1989 6.9 0.19174

43 Loma Prieta 1989 6.9 0.04887

44 Loma Prieta 1989 6.9 0.0504

45 Loma Prieta 1989 6.9 0.02757
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num Earthquake name Year Magnitude PGA

46 Loma Prieta 1989 6.9 0.22466

47 Loma Prieta 1989 6.9 0.31251

48 Loma Prieta 1989 6.9 0.40607

49 Loma Prieta 1989 6.9 0.46009

50 Loma Prieta 1989 6.9 0.41676

51 Loma Prieta 1989 6.9 0.37164

52 Manjil Iran 1990 7.4 0.51456

53 Manjil Iran 1990 7.4 0.49687

54 Manjil Iran 1990 7.4 0.53804

55 Morgan Hill 1984 6.2 0.40613

56 Morgan Hill 1984 6.2 0.22289

57 Morgan Hill 1984 6.2 0.29226

58 Nenana Mountain Alaska 2002 6.7 0.01103

59 Nenana Mountain Alaska 2002 6.7 0.01087

60 Nenana Mountain Alaska 2002 6.7 0.00631

61 Northridge 1994 6.7 0.56833

62 Northridge 1994 6.7 0.51423

63 Northridge 1994 6.7 0.21734

64 Northridge 1994 6.7 0.07954

65 Northridge 1994 6.7 0.02795

66 Northridge 1994 6.7 0.04902

67 Northridge 1994 6.7 0.12612

68 Northridge 1994 6.7 0.18371

69 Northridge 1994 6.7 0.09735

70 Northridge 1994 6.7 0.0498

71 Northridge 1994 6.7 0.08892

72 Northridge 1994 6.7 0.07326

73 Northridge 1994 6.7 0.00026

74 Northridge 1994 6.7 0.08422

75 Northridge 1994 6.7 0.10588

76 Northridge 1994 6.7 0.000265

77 Northridge 1994 6.7 0.06019

78 Northridge 1994 6.7 0.03361

79 Northridge 1994 6.7 0.11573

80 Northridge 1994 6.7 0.10574

81 Northridge 1994 6.7 0.04088

82 Northridge 1994 6.7 0.10084

83 Northridge 1994 6.7 0.09496

84 Northridge 1994 6.7 0.0705

85 Northridge 1994 6.7 0.04727

86 Northridge 1994 6.7 0.05967

87 Northridge 1994 6.7 0.03427

88 Northridge 1994 6.7 0.02582

89 Northridge 1994 6.7 0.01617

90 Northridge 1994 6.7 0.00813

Table 5 Selected natural accelerograms (continued)
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with lower memory usage. It achieves this through tech-
niques like Gradient-based One-Side Sampling (GOSS) 
and Exclusive Feature Bundling (EFB). LightGBM has 
seen use in predicting phonon cutoff frequencies of mate-
rials and concrete strength assessment [52]. XGBoost, one 
of the most popular ML libraries, XGBoost offers high per-
formance through regularization, parallel processing, and 
built-in handling of missing values. It's widely applied in 
fields ranging from medicine to cybersecurity—used, for 
example, in predicting glioma treatment outcomes malware 
detection and resume-based personality prediction  [53]. 
Histogram-based Gradient Boosting Machine (HGBM), 
HGBM improves training speed and memory efficiency by 
binning continuous features into histograms. This makes 
it well-suited for large-scale data applications [46]. In the 
current analysis, a massive dataset of 29700 samples was 
used. This dataset was divided into 80% for training and 
20% for testing. Hyperparameters for all models were 
tuned using a 5-fold cross-validation scheme applied to the 
training set (80% of the data). For each split, models were 
trained on four folds and validated on the remaining fold, 
and this process was repeated five times to obtain stable 
performance estimates. The final hyperparameters were 
selected based on average CV performance and the models 
were retrained on the full training portion. The remaining 

20% of the data was kept completely unseen and was used 
only for final generalization assessment. By strictly sepa-
rating the testing data from the training phase, the mod-
el's performance could be assessed more accurately and the 
risk of overfitting minimized. Ultimately, the careful selec-
tion and tuning of machine learning algorithms—com-
bined with rigorous validation practices—are essential for 
building reliable, high-performing models. These models 
are increasingly transforming how we approach complex 
challenges across scientific and engineering disciplines.

3.1 Feature importance
When using machine learning to predict how buildings 
respond to earthquakes, we focus on a specific output, such 
as the maximum structural drift. However, the accuracy of 
these predictions heavily depends on the inputs we choose, 
which are often uncertain and can significantly affect the 
results. To build a highly accurate model, we need a method 
to carefully select the most relevant inputs. This is where 
feature importance comes in—it helps us understand how 
much each input influences the model's predictions.

Our model combines a structural framework with non-
linear time-history analysis, so we divided the inputs into 
two categories: structural inputs (related to the build-
ing's design) and seismic inputs (related to earthquake 

num Earthquake name Year Magnitude PGA

91 Northridge 1994 6.7 0.024

92 Northridge 1994 6.7 0.03253

93 Northridge 1994 6.7 0.01543

94 San Fernando 1971 6.6 0.07475

95 San Fernando 1971 6.6 0.11078

96 San Fernando 1971 6.6 0.04543

97 San Fernando 1971 6.6 0.00609

98 San Fernando 1971 6.6 0.00952

99 San Fernando 1971 6.6 0.0059

100 San Fernando 1971 6.6 0.19418

101 San Fernando 1971 6.6 0.38215

102 San Fernando 1971 6.6 0.28217

103 San Fernando 1971 6.6 0.16718

104 San Fernando 1971 6.6 0.19777

105 San Fernando 1971 6.6 0.15587

106 San Fernando 1971 6.6 0.10418

107 San Fernando 1971 6.6 0.13763

108 San Fernando 1971 6.6 0.05452

109 San Fernando 1971 6.6 0.02576

110 San Fernando 1971 6.6 0.04152

Table 5 Selected natural accelerograms (continued)
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characteristics). Initially, we considered 21 inputs but nar-
rowed them down to 10, as shown in Fig.  4. After ana-
lyzing their feature importance, we selected three struc-
tural inputs—number of floors, total Height, and width 
of the structure—and seven seismic inputs: Peak Ground 
Acceleration (PGA), Peak Ground Velocity (PGV), 
Peak Ground Displacement (PGD), Arias Intensity (AI), 

Acceleration Spectrum Intensity (ASI), Housner Intensity 
(HI), and Significant Duration (SD).

Fig.  4 illustrates the feature importance for all algo-
rithms we tested, revealing how each input impacts the 
model's performance. It also shows the relative importance 
of each input for our surrogate model algorithms using two 
types of visualizations: bar charts and SHAP plots. These 

Fig. 4 Feature importance plot of input features used in the surrogate models
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visuals helped us identify which inputs, when adjusted, 
could boost the model's accuracy. By analyzing these charts 
across all algorithms, we reached a clear conclusion: two 
structural inputs (building height) and two seismic inputs 
(Housner Intensity and Acceleration Spectrum Intensity) 
consistently stood out as critical for improving accuracy. 
In contrast, inputs like the number of floors, PGA, PGD, 
and SD had a smaller impact on the model's performance.

3.2 Stacked ML
Research on surrogate models for predicting seismic 
responses has shown that no single machine learning algo-
rithm can reliably predict how structures behave under 
various earthquake conditions. This is understandable—
earthquakes are unpredictable, and structures respond in 
complex ways to seismic forces. Some studies focus on 
developing models based on a single algorithm or improv-
ing existing ones, but these approaches often fall short. 
A promising solution is to combine multiple machine 
learning algorithms into a single framework, or "stacked 
model", to better estimate seismic parameters.

In this study, we set out to build a stacked model 
that integrates several algorithms to predict key seismic 
responses, such as maximum structural drift, maximum 
inter-story drift, and maximum roof drift. Choosing the 
right algorithms to include in this model is tricky. One 
might assume that combining all available algorithms 
would yield the best results, but this approach signifi-
cantly increases runtime, which is a critical concern since 
we need a model that's both accurate and efficient.

To tackle this, we first conducted a sensitivity analysis to 
identify the best combination of algorithms. We started by 
examining the proposed machine learning models, focus-
ing on their hyperparameters Next, we evaluated each algo-
rithm's performance using error metrics outlined in Table 6, 
which helped us gauge their effectiveness. The results for 
these metrics, based on preprocessed datasets, are shown in 
Table 7, highlighting how each algorithm performed. 

But we didn't stop there. To find the optimal algorithm 
combination for our stacked model, we analyzed various 
combinations and their error rates, as presented in Table 8. 
The results were clear: the Random Forest (RF), Gradient 
Boosting Regression (GBR), and Extra Trees Regressor 
(ETR) algorithms consistently showed higher accuracy and 
lower error rates compared to others (Table 7). Furthermore, 
Table 8 revealed that combining these three algorithms in a 
stacked model delivered the highest accuracy. Because sev-
eral ground motions exhibit very low PGA, some analyses 

resulted in near-zero structural responses. Such low-demand 
cases are important to retain because they reflect the natu-
ral variability of seismic records; however, they can cause 
relative error metrics (MARE, MSRE, RMSRE) to appear 
large or unstable when the true response is close to zero. 
Therefore, absolute metrics (MAE, MSE), which remain 
well-behaved for very small responses, were emphasized 
when interpreting model performance.

As a result, we used this trio—RF, GBR, and ETR—in 
our stacked model to predict maximum structural drift, 
maximum inter-story drift, and maximum roof drift. 
For comparison, we also tested these algorithms individ-
ually to calculate the same parameters. This approach 
strikes a balance between accuracy and efficiency, giving 
us a robust tool to predict how structures respond to earth-
quakes. Fig. 5 shows the flowchart of the stacked model.

4 Numerical result
After identifying the most impactful input features, we 
used them as variables for our machine learning (ML) 
algorithms. To train our predictive models, we applied data 
selection techniques like cross-validation to ensure robust 
results. For a fair comparison, all algorithms were run on a 
PC with an Intel Core i3-8100 CPU (3.60 GHz) and 16 GB 
of RAM, using Python. We selected the best-performing 
results from each ML algorithm for our analysis.

Our goal was to predict key seismic responses—max-
imum structural drift, maximum inter-story drift, and 
maximum roof drift—and evaluate the models' perfor-
mance. No minimum-intensity threshold or filtering was 

Table 6 Error indicators
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applied; all 110 ground motions were retained in the data-
set to ensure unbiased representation of low-, moder-
ate-, and high-demand conditions. Fig. 6 shows the Extra 
Trees Regressor (ETR) algorithm's predictions for max-
imum structural drift in 4-, 8-, and 12-story buildings, 
with impressive accuracies of 0.9678, 0.9870, and 0.9524, 
respectively. These results outperformed other algorithms 
in terms of accuracy and error rates.

While ETR excelled in predicting maximum struc-
tural drift, inter-story drift, and roof drift for 4-, 8-, 
and 12-story reinforced concrete buildings, other algo-
rithms like Random Forest (RF), XGBoost, and Gradient 
Boosting Regressor (GBR) occasionally performed better 
for specific cases. Predicting the distribution of floor drift 
proved challenging, as no single algorithm consistently 
delivered accurate results across all floors. To address this, 
we developed a stacked model combining ETR, RF, and 
XGBoost, based on our sensitivity analysis. This stacked 
model selects the best-predicted values for each floor and 
plots them, leveraging parallel processing to minimize 
runtime while maintaining high accuracy.

Fig.  7 illustrates the predicted inter-story drift distri-
bution for a 3D reinforced concrete structure using the 
stacked model with the mean method, achieving remark-
able accuracies of 0.9886, 0.9862, for 4-story building, 
respectively. These results demonstrate the model's excel-
lent predictive power, making it a valuable tool for struc-
tural designers. Both methods confirm the stacked model's 

versatility and reliability, with minor differences between 
the mean and median approaches. By predicting inter-
story drift distributions, the model helps designers iden-
tify weak or soft stories, enabling proactive measures to 
prevent failures and streamline retrofitting for both exist-
ing and new buildings, ultimately reducing costs.

Table 7 Results of error indicators for dataset assuming ML models

ML algorithm R-squared MSE MAE MARE MSRE RMSRE

XGBoost 0.96843 7.52E-07 9.6E-05 0.167178 0.05168 0.227331

RF 0.961204 6.51E-07 8E-05 0.084174 0.029669 0.172246

ETR 0.967849 7.36E-08 7E-05 0.066811 0.013161 0.114723

LightGBM 0.911196 9.64E-07 1.25E-04 0.161752 0.149153 0.386204

GBR 0.947542 8.24E07 1.29E04 0.208762 0.112493 0.3354

HGBR 0.854468 9.58E06 1.52E04 0.193854 0.392139 0.62621

Stacked ML 0.99573 5.82E-08 5.4E05 0.060516 0.009022 0.094982

Table 8 Result of ML algorithm combination

Algorithm 
combination Error Algorithm combination Error

RF+ETR 0.9619 RF+ETR+HGBR 0.9625

RF+HGBR 0.9607 RF+ETR+GBR 0.99573

ETR+HGBR 0.9601 ETR+HGBR+GBR 0.9708

ETR+LightGBM 0.96 ETR+HGBR+XGBoost 0.964

GBR+XGBoost 0.9437 GBR+XGBoost+LightGBM 0.9552

HGBR+XGBoost 0.94 ETR+GBR+LightGBM 0.9616

Fig. 5 Flowchart of the stacked model
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(a) (b)

(c)

Fig. 6 Maximum drift prediction of (a) 4 story, (b) 8 story, (c) 12 story

Fig. 7 Predictions of the ID distribution for 4 story using the proposed Stacked ML-based model assuming the (a) mean (b) median methods

(a) (b)
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Table  9 and Table  10 provide error metrics for the 
inter-story drift distribution of a 12-story, 3D reinforced 
concrete building using the median and mean methods, 
respectively. Tables  9 and  10 show that the stacked ML 
model achieves the highest R2 values and lowest error met-
rics, confirming its superior performance. To assess effi-
ciency, we measured the execution times of all models (see 
Tables 9 and 10). The stacked model, while highly accu-
rate, has the longest runtime due to its use of multiple base 
estimators and result aggregation.

For a complete picture, error metrics for the inter-story 
drift distribution of 4- and 8-story buildings using both 
mean and median methods are provided in Tables A1–A4 
in the Appendix. To make the results easier to understand, 
we visualized the performance of various ML methods 
from Tables 9, 10, and A1–A4 in charts. Fig. 8 shows each 
algorithm's performance based on error metrics using the 
mean, with ETR and RF standing out for their high R2 val-
ues. The stacked model, combining multiple algorithms, 
achieves the highest R2 and lowest errors across all met-
rics, while maintaining efficient runtime. Fig.  9, using 
the median method, further confirms the stacked mod-
el's reliability and effectiveness. These visualizations pro-
vide designers with clear, accurate, and practical insights 
for optimizing structural designs. To express the predic-
tive accuracy in engineering terms, the mean absolute 
error for drift predictions corresponds to approximately 
0.006–0.012 drift ratio (≈2–8 mm of lateral displacement 

for typical 8–12  story buildings), representing 10–20% 
relative error for moderate-to-high intensity cases. These 
values are significantly smaller than the drift thresholds 
commonly used in performance-based design (1–3%), 
indicating that the ML models provide accuracy that is 
appropriate for engineering decision-making.

5 Conclusions
This study employs machine learning (ML) to predict the 
seismic responses of 3D reinforced concrete (RC) build-
ings, enabling rapid and accurate guidance for optimal 
structural design. Buildings were modeled using OpenSees 
software [37] and subjected to nonlinear time-history anal-
yses under 110 far-field earthquake records from the PEER 
database, evaluating inter-story drift (ID), maximum drift 
(MD) and roof drift (RD).

Sensitivity analysis reduced 21 initial input parameters 
to 10 key features: seismic inputs (PGA, PGV, PGD, AI, 
ASI, HI, SD) and structural inputs (number of floors, total 
height, width). The most influential factors were building 
height, width, HI, and ASI.

Ten ML algorithms were assessed, with Extra Trees 
Regressor (ETR), Random Forest (RF), Gradient Boosting 
Regression (GBR), and XGBoost showing superior per-
formance for predicting maximum structural drift, inter-
story drift, and roof drift using mean and median meth-
ods. For 4-story structures, R2 values were 0.9388 (ETR), 
0.9289 (RF), and 0.9226 (GBR); for 8-story, 0.9833 (RF), 

Table 9 Result of error of indicator for the ID distribution of 12 story RC frame assuming mean method

ML algorithm R-squared MSE MAE MARE MSRE RMSRE

RF 0.9622 7.05E-10 1.23E-05 0.0362 0.003318 0.057599

XGBoost 0.9447 1.80E-09 1.58E-05 0.0328 0.00283 0.053198

ETR 0.9798 9.33E-10 1.80E-05 0.0318 0.002217 0.047087

GBR 0.9827 8.19E-10 1.65E-05 0.0291 0.00175 0.04183

HGBR 0.9665 1.15E-09 1.53E-05 0.0333 0.002327 0.048237

LightGBM 0.9435 1.62E-10 5.64E-06 0.0475 0.00605 0.077781

Stacked ML 0.9996 9.15E-10 1.76E-05 0.0288 0.001733 0.041633

Table 10 Result of error of indicator for the ID distribution of 12 story RC frame assuming median method

ML algorithm R-squared MSE MAE MARE MSRE RMSRE

RF 0.9534 4.78E-10 8.95E-06 0.0393 0.004358 0.066015

XGBoost 0.9305 1.30E-09 1.31E-05 0.0347 0.003337 0.057765

ETR 0.9764 9.93E-10 1.77E-05 0.033 0.002386 0.048845

GBR 0.983 7.17E-10 1.51E-05 0.00281 0.001612 0.040151

HGBR 0.9529 8.79E-10 1.39E-05 0.0407 0.003989 0.063156

LightGBM 0.9374 6.42E-10 1.06E-05 0.0465 0.005775 0.07599

Stacked ML 0.9995 1.03E-09 1.81E-05 0.031 0.002026 0.045006
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Fig. 9 Prediction results using ML methods on a 12-story building using (a) R-squared, (b) MAE, (c) MSE, (d) MARE, (e) MSRE, and (f) RMSRE 
error measures with the median method

(a) (c)(b)

(d) (e) (f)

Fig. 8 Prediction results using ML methods on a 12-story building using (a) R-squared, (b) MAE, (c) MSE, (d) MARE, (e) MSRE, and (f) RMSRE 
error measures with the mean method

(a) (b) (c)

(d) (e) (f)
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0.9787 (GBR), and 0.9781 (ETR); for 12-story, 0.9827 
(GBR), 0.9798 (ETR), and 0.9622 (RF). ETR excelled for 
4-story buildings, RF for 8-story, and GBR for 12-story. 
Across all structures for maximum drift, R2 values were 
0.9684 (XGBoost), 0.9678 (ETR), and 0.9612 (RF).

To improve accuracy, generalizability, and efficiency, 
a stacked ensemble model combining ETR, RF, and 
XGBoost was developed, incorporating parallel process-
ing. It achieved R2 of 0.9957 for maximum drift predic-
tion, 0.9886–0.9996 for inter-story drift across structures, 
exceeding 0.99 for 12-story buildings and 0.95 for 4- and 

8-story, with >99.9% accuracy for inter-story drift distri-
bution in 3D RC structures.

This approach facilitates performance-based seismic 
design by enabling designers to optimize resilience, iden-
tify vulnerabilities (e.g., soft stories), and develop efficient 
structures. Although some records produced very low 
drift responses, the use of absolute error metrics ensured 
stable evaluation, and additional checks confirmed that 
model performance and ranking were not affected by the 
presence of low-intensity cases.
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Appendix
Results of error for the considered frames are provided in 
Tables A1–A4.

Table A1 Result of error indicator for the ID distribution of 4 story RC frame assuming mean method

ML algorithm R-squared MSE MAE MARE MSRE RMSRE

RF 0.9289 3.93E-08 4.96E-05 0.0733 0.019259 0.138776

XGBoost 0.8711 1.94E-09 2.62E-05 0.3204 0.136383 0.3693

ETR 0.9388 1.44E-10 4.61E-06 0.0429 0.004654 0.068219

GBR 0.9226 1.55E-09 1.18E-05 0.0498 0.00873 0.093436

HGBR 0.9149 1.53E-10 5.23E-06 0.0484 0.005877 0.076664

LightGBM 0.9189 1.30E-09 1.28E-05 0.0599 0.010546 0.102695

Stacked ML 0.9886 1.24E-08 4.69E-06 0.03985022 0.00428232 0.06543943
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Table A3 Result of error indicator for the ID distribution of 8 story RC frame assuming mean method

ML algorithm R-squared MSE MAE MARE MSRE RMSRE

RF 0.9781 6.91E-08 8.05E-05 0.1247 0.964757 0.98222

XGBoost 0.9656 7.67E-08 1.32E-04 0.4964 0.446023 0.667849

ETR 0.9833 1.86E-08 4.89E-05 0.0512 0.010188 0.100934

GBR 0.9787 3.56E-08 8.97E-05 0.3722 0.012101 0.110005

HGBR 0.9082 5.09E-09 2.52E-05 0.1076 0.025987 0.161206

LightGBM 0.9145 7.40E-09 3.82E-05 0.1038 0.030515 0.174685

Stacked ML 0.9994 1.86E-08 4.89E-05 0.0512 0.010188 0.100934

Table A4 Result of error indicator for the ID distribution of 8 story RC frame assuming median method

ML algorithm R-squared MSE MAE MARE MSRE RMSRE

RF 0.9775 3.57E-09 1.86E-05 0.0615 0.012053 0.109786

XGBoost 0.9652 1.02E-08 6.38E-05 0.2821 0.112163 0.334908

ETR 0.9827 6.30E-09 1.74E-05 0.0496 0.00758 0.087062

GBR 0.9799 2.27E-09 2.58E-05 0.0779 0.013295 0.115305

HGBR 0.9025 5.35E-09 3.38E-05 0.1291 0.042073 0.205118

LightGBM 0.9137 9.95E-09 4.62E-05 0.1246 0.039459 0.198643

Stacked ML 0.9992 6.30E-09 1.74E-05 0.0496 0.00758 0.087062

Table A2 Result of error indicator for the ID distribution of 4 story RC frame assuming median method

ML algorithm R-squared MSE MAE MARE MSRE RMSRE

RF 0.9273 2.04E-10 5.26E-06 0.0452 0.006131 0.078302

XGBoost 0.8926 1.84E-09 3.07E-05 0.2333 0.077612 0.278588

ETR 0.9375 1.36E-09 1.15E-05 0.0498 0.008627 0.092883

GBR 0.9268 1.52E-10 4.74E-06 0.0424 0.004514 0.067184

HGBR 0.9018 4.88E-08 7.59E-05 0.1704 0.064793 0.254545

LightGBM 0.9174 3.86E-08 6.46E-05 0.1594 0.054907 0.234323

Stacked ML 0.9862 2.57E-08 1.2E-05 0.04890834 0.00903359 0.09504522
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