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Abstract

This study presents a machine learning (ML) framework to forecast the nonlinear seismic behavior of three-dimensional (3D) RC
moment-resisting frames, utilizing OpenSeesPy for realistic 3D modeling and nonlinear time-history analysis (NLTHA) with 110 far-
field ground motions from the PEER database. A dataset of 29,700 samples was compiled, spanning 4-, 8-, and 12-story buildings with
varied geometries and material properties. Seismic responses, including maximum drift, inter-story drift, and roof drift, were predicted
via algorithms such as Extra Trees Regressor (ETR), Random Forest (RF), Gradient Boosting Regression (GBR), and XGBoost. Feature
importance identified building height, width, Housner Intensity (HI), and Acceleration Spectrum Intensity (ASI) as key inputs. For inter-
story drift, R? scores varied by height: for 4-story, ETR (0.9388), RF (0.9289), GBR (0.9226); for 8-story, RF (0.9833), GBR (0.9787), ETR
(0.9781); for 12-story, GBR (0.9827), ETR (0.9798), RF (0.9622). For maximum drift, XGBoost achieved 0.9684, ETR 0.9678, and RF 0.9612.
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1 Introduction

Earthquake loads are a major concern in civil and struc-
tural engineering, especially in regions prone to seis-
mic activity. Ground motions from earthquakes generate
dynamic forces that can severely damage or even collapse
structures. The devastating effects consisting of loss of
life, economic turmoil, and disruption to communities,
highlight the critical need to accurately assess these forces
and integrate them into structural design. By doing so,
engineers can enhance the resilience and safety of build-
ings and infrastructure, particularly essential facilities
like hospitals, fire stations, and emergency shelters, which
must remain functional during and after seismic events.
Effective earthquake load analysis not only reduces the
risk of structural failure but also supports sustainable
recovery by minimizing repair costs and enabling quicker
rebuilding efforts [1-4].

A key part of earthquake-resistant design is accurately
predicting how reinforced concrete (RC) frame struc-
tures will respond to seismic forces [5]. Modern buildings
often feature complex three-dimensional (3D) RC frames,
which exhibit intricate behaviors during earthquakes due
to the interplay of bending, shear, and torsion, along with

the nonlinear nature of materials [6, 7]. One of the most
important parameters to predict is the maximum inter-
story drift ratio (IDR_max), which measures the relative
displacement between floors. This value correlates closely
with both structural and nonstructural damage, and plays
a central role in performance-based design [8—11].

Traditional seismic design often relies on simplified
methods like the equivalent static force procedure, which
translates dynamic earthquake forces into a set of static
loads based on the building's fundamental period and
mass distribution. While straightforward, this approach
involves many assumptions that can lead to overly con-
servative designs. These compromises may hinder opti-
mization and lead to inefficient use of materials and
resources. Consequently, more precise analysis methods
have emerged, offering better performance at the cost of
higher computational demands [12—15].

Among these, nonlinear time-history analysis (NLTHA)
is considered the gold standard for simulating how structures
behave under real earthquake conditions. Using detailed
finite element models—often fiber-element based—NLTHA
provides highly accurate insights but requires significant
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computing power and long processing times, especially for
tall or complex 3D RC frames. On the other hand, simpli-
fied models like lumped-mass or shear-building representa-
tions offer greater efficiency but at the cost of accuracy. This
trade-off between precision and speed limits their usefulness
for large-scale assessments or iterative design tasks [16—19].

To overcome these challenges, researchers are increas-
ingly turning to machine learning (ML) techniques. These
methods aim to strike a better balance between accuracy and
efficiency. While simplified analytical models reduce com-
putational time, they often fall short in capturing the nonlin-
ear behavior of structures under seismic loads. In contrast,
ML approaches have shown promising results in quickly and
reliably assessing seismic damage in RC structures [20-24].

Several recent studies highlight the growing applica-
tion of ML in this field. Zhang et al. [25] used a dataset
of 9,900 data points generated from NLTHA of 199 RC
frames under 50 different earthquakes to train random for-
est, XGBoost, and active learning models for rapid damage
assessment. Bhatta and Dang [26] evaluated multiple ML
techniques—including K-nearest neighbors, decision trees,
SVMs, and neural networks—using real damage data from
the 2015 Nepal earthquake. Their findings confirmed the
importance of including both structural characteristics and
ground motion parameters for accurate damage prediction.
Similarly, Xu et al. [27] applied deep neural networks to
estimate a damage index, demonstrating how ML can sup-
port broader seismic response assessments [28].

Hwang et al. [21] explored how boosting algorithms
like AdaBoost and XGBoost can predict the seismic
response of ductile RC frames while accounting for uncer-
tainties in material properties—especially those affecting
plastic deformation. Ahmed et al. [29] introduced a novel
stacked LSTM network that used overlapping time his-
tory data to significantly reduce training time and achieve
prediction accuracies of 80-95%, showing strong perfor-
mance across different types of RC structures. Lazaridis
et al. [30] tested ten ML algorithms to forecast damage
in an 8-story RC building, identifying the best-perform-
ing model and damage index for seismic scenarios. Kaveh
and Ilchi Ghazaan [31] focuses on the optimal design of
three-dimensional irregular steel frames under seismic
loads using response spectra, employing four metaheuris-
tic algorithms: Colliding-Bodies Optimization (CBO),
Enhanced Colliding-Bodies Optimization (ECBO),
Vibrating Particles System (VPS), and a hybrid algo-
rithm (MDVC-UVPS) combining VPS, multidesign vari-
able configurations (MDVC), and upper-bound strategy
(UBS). Frame members are selected from standard steel

sections to meet practical design requirements per the
LRFD-AISC code, incorporating stress, maximum lat-
eral displacement, and geometric constraints. The hybrid
MDVC-UVPS algorithm consistently outperformed CBO,
ECBO, and VPS, achieving lighter designs by 4-19%
across three design examples while requiring approxi-
mately 35% less computational time, demonstrating supe-
rior optimality and convergence speed. Finally, Zhang
et al. [32], extended this work to damped structures, using
interpretable ML models like random forest and XGBoost,
as well as deep learning approaches such as convolutional
neural networks and seismic wave transformers (SWT), to
predict maximum inter-story displacement.

Despite these advances, important gaps remain. Most
studies focus on two-dimensional (2D) models, which do
not fully capture the complex 3D behavior of RC frames.
Moreover, while ML methods are gaining traction, their
application to 3D RC structures is still limited [33, 34].
There is also a lack of integration between data-driven
ML techniques and physics-based modeling, which could
improve both accuracy and interpretability. Addressing
these gaps is essential to advancing the state-of-the-art in
seismic response prediction for RC structures [33-35].

The aim of this research is to develop an advanced
machine learning framework capable of accurately pre-
dicting the seismic response of 3D RC frames. To achieve
this, we employ innovative techniques in data sampling
and model optimization, including fine-tuning, halving
search strategies, grid search, and k-fold cross-validation.
Our dataset includes 27 unique 3D RC frame configura-
tions—covering 4, 8, and 12-story buildings with different
floor plans and heights—each subjected to 110 earthquake
ground motion records. Unlike prior work focusing on
2D frames, this study prioritizes realistic 3D modeling to
capture more accurate seismic behavior. The trained ML
models are used to estimate key seismic parameters such
as maximum drift, enabling engineers to better under-
stand building performance, assess structural vulnera-
bilities, and make informed design decisions that reduce
damage and improve resilience during earthquakes. Fig. 1
shows the procedure that is used in this investigation.

In this study, the structural modeling process begins
with the use of ETABS software [36], where structures
are analyzed using the equivalent static method to deter-
mine their final dimensions. Subsequently, the models are
imported into OpenSees software [37] for three-dimen-
sional representation. Earthquake records are then applied
to the structures to extract seismic responses, generating
a comprehensive dataset for further analysis.
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Fig. 1 Methodology workflow for NLTHA response prediction

In the next phase, machine learning techniques are
employed to predict seismic responses. Multiple machine
learning algorithms are utilized, and sensitivity analysis is
conducted to identify optimal input parameters. The mod-
els are then trained and tested, with their performance eval-
uated through comparative visualizations of test results.

To assess the algorithms, six error metrics are used for
comparison. A stacking algorithm, which combines mul-
tiple models, is implemented to enhance prediction accu-
racy. Based on the comparison, seismic responses are pre-
dicted by providing the necessary input parameters.
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2 3D Reinforcement concrete frames modeling and
analysis

In this study, we explored three groups of buildings with
distinct floor plans based on 3 x 3,4 x 4, and 5 x 5 grids,
each featuring uniform 6-meter spans in both X'and Y direc-
tions. The buildings also vary in story heights—3 meters,
3.4 meters, or 3.7 meters—to account for different design
scenarios. Fig. 2 illustrates the consistent floor plans for
these groups. The first group consists of 4-story buildings,
the second includes 8-story buildings, and the third com-
prises 12-story buildings, each incorporating the three
floor plan types and story height variations. All buildings
use rigid connections, rigid roofs, and a reinforced con-
crete moment-resisting frame as the primary load-bear-
ing system, with beams, columns, and diaphragms as key
structural components.

Located in California at coordinates 37.88° N, 122.08° W,
the buildings sit on Type D soil as defined by ASCE 7-16
standards [38]. The site is in a high-seismic zone, with accel-
eration parameters SD, = 0.6 g and SDs = 1.25 g. The design

follows ASCE 7-16 [38] and ACI 318-14 [39] guidelines,
using a response modification factor (R) of 8, a deflection
amplification factor (Cd) of 5.5, and an overstrength factor
(Q =3) according to ASCE 7-16 [38], ACI 318-14 [39]. For
interior floors, we applied a dead load of 6 kN/m? and a live
load of 2 kN/m?, while the roof has a reduced dead load of
5 kN/m? and a live load of 1.5 kKN/m?, all compliant with
ACI 318-14 requirements [39]. Fig. 3 provides 3D views
of the 4, 8, and 12-story buildings with 5 x 5, 4 x 4, and
3 x 3 grids, modeled using ETABS 2016 software [36].

At the heart of structural design lies the balance
between demand (the forces a structure must withstand)
and capacity (its ability to resist those forces). Our goal
as engineers is to ensure each element is designed with
sufficient capacity to meet its demand. Initially, we con-
sidered two approaches. The first was to use a single
cross-section for all beams and another for all columns,
which simplifies construction and execution. However,
this can be inefficient, as it does not tailor elements to
their specific demands. The second approach—designing
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Fig. 2 Three groups of regular plans
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Fig. 3 The 3D view of the (a) 12-Story building, (b) 8-Story building, (c) 4-Story building



unique sections for every beam and column—optimizing
material usage but is impractical for complex or high-rise
structures due to construction challenges.

To strike a balance, we adopted a typology-based
approach for beam and column design. Columns were cat-
egorized into three types based on their location: corner,
edge, and interior. Beams were divided into edge and inte-
rior types. This classification remains consistent across
every two floors, ensuring both constructability and
cost-effectiveness.
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As shown in Table 1, the 4-story buildings have
10 unique beam-column types, resulting in 90 types across
the nine configurations (3 floor plans x 3 story heights).
Table 2 shows that 8-story buildings have 20 types, total-
ing 180 across the configurations. For 12-story buildings,
Table 3 indicates 30 types, leading to 270 total types.
Tables 1-3 present only one representative example and
that all nine plan/height combinations were analyzed,
with full reinforcement details generated but omitted
from the paper for saving space.

Table 1 Reinforcement details of 4 stories with a plan of 3 x 3 and a story height of 3 m

Reinforcement details of the original RC frames

story Type of the element Location Dimension As (top bars) (mm?) As' (bot. bars) (mm?)
corner 500 x 500 1885 1885
column side 500 x 500 1525 1525
1&2 middle 450 x 450 1205 1205
side 500 x 500 1500 900
beam
middle 450 x 450 1900 900
4 story
corner 450 x 450 1700 1700
column side 450 x 450 1420 1420
3&4 middle 400 x 400 1100 1100
side 400 x 400 1400 800
beam
middle 350 x 350 1250 650
Table 2 Reinforcement details of 8 stories with a plan of 3 x 3 and a story height of 3 m
Reinforcement details of the original RC frames
story Type of the element Location Dimension As (top bars) (mm?) As' (bot. bars) (mm?)
corner 550 x 550 2280 2280
column side 550 x 550 1800 1800
1&2 middle 550 x 550 2650 2650
side 500 x 500 2500 1500
beam
middle 500 x 500 1950 900
corner 550 x 550 1800 1800
column side 550 x 550 1520 1520
3&4 middle 550 x 550 1900 1900
side 450 x 450 2400 1700
beam
middle 450 x 450 1850 800
8 story
corner 500 x 500 1700 1700
column side 500 x 500 1480 1480
5&6 middle 500 x 500 1850 1850
side 400 x 400 2000 1300
beam
middle 400 x 400 1500 700
corner 450 x 450 1200 1200
column side 450 x 450 1100 1100
7&8 middle 450 x 450 1000 1000
side 350 x 350 1900 950
beam
middle 350 x 350 1400 650
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Table 3 Reinforcement details of 12 stories with a plan of 3 x 3 and a story height of 3 m

Reinforcement details of the original RC frames

story Type of the element Location Dimension As (top bars) (mm?) As' (bot. bars) (mm?)
corner 600 x 600 2300 2300
column side 600 x 600 1900 1900
1&2 middle 700 x 700 3600 3600
side 600 x 600 2600 1600
beam
middle 600 x 600 2100 1000
corner 550 x 550 2250 2250
column side 550 x 550 1850 1850
3&4 middle 700 x 700 3400 3400
side 550 x 550 2500 1800
beam
middle 550 x 550 2000 950
corner 500 x 500 2100 2100
column side 500 x 500 1750 1750
5&6 middle 550 x 550 3000 3000
side 500 x 500 2300 1700
beam
. middle 500 x 500 1900 900
story
corner 450 x 450 2000 2000
column side 450 x 450 1650 1650
7&8 middle 450 x 450 2500 2500
side 450 x 450 2100 1500
beam
middle 450 x 450 1800 800
corner 400 x 400 1800 1800
column side 400 x 400 1500 1500
9&10 middle 450 x 450 2000 2000
side 400 x 400 1900 1100
beam
middle 400 x 400 1500 700
corner 450 x 450 1500 1500
column side 450 x 450 1400 1400
11&12 middle 450 x 450 1700 1700
side 400 x 400 1850 950
beam
middle 400 x 400 1400 650

We developed a detailed three-dimensional nonlinear
finite element model using OpenSeesPy [37] to simulate
the seismic behavior of a reinforced concrete (RC) moment-
resisting frame. The prototype structure is a 12-story
building with 6 bays, featuring uniform 6-meter bay spac-
ing and a typical story height of 3.4 meters. The model uses
a two-dimensional framework (ndm = 3) with six degrees
of freedom per node (ndf = 6) to capture both translational
and rotational behavior. RC columns and beams are mod-
eled using force-based dispBeamColumn elements, with
columns divided into 5 segments and beams into 15 seg-
ments to enhance integration accuracy and capture dis-
tributed plasticity. Material nonlinearities are represented

using the Steel02 model for reinforcing steel, which
accounts for isotropic strain hardening and Bauschinger
effects, and the Concrete02 model for both unconfined
and confined concrete. Confined concrete properties are
enhanced with a 1.2 strength amplification factor to reflect
transverse reinforcement effects.

Cross-sectional properties, including geometry and
reinforcement layout, are defined using a fiber section
approach, with data imported from a CSV file for para-
metric flexibility. The model incorporates varied beam
and column section types to account for changes in mem-
ber size and reinforcement along the building height. A
PDelta transformation is applied to all elements to capture



geometric nonlinearity. Rigid beam-column connections
are enforced using a custom crossJoint routine to improve
convergence in joint regions. In-plane floor rigidity is
simulated with rigid diaphragm constraints at each floor
level, and column bases are assumed to be fixed. A con-
crete mass density of 2400 kg/m3 is used to define lumped
masses at nodes for dynamic analysis. The adopted con-
finement model influences lateral strength and ductility
but does not alter the relative drift variations used for ML
training, because all structural configurations follow the
same confinement assumptions.

2.1 Nonlinear analysis

As discussed in the introduction, structural analysis meth-
ods fall into two broad categories: static and dynamic, each
further divided into linear and nonlinear approaches. These
methods, summarized in Table 4, have unique character-
istics suited to different scenarios [40—42]. For this study,
we opted for nonlinear time history analysis because of its
superior accuracy and reliability in capturing complex struc-
tural behavior. We analyzed 110 far-field earthquake records
sourced from the Pacific Earthquake Engineering Research
(PEER) database, applying them to our structural models
to determine the maximum drift. Since our structures are
three-dimensional, we applied these earthquake records
simultaneously in both the X and Y directions to reflect real-
world conditions. The selected ground motions and their
specific characteristics are detailed in Table 5. The selected
PEER far-field records cover a wide range of intensities,
including several events with very low peak ground accel-
eration (PGA). All records were applied at their recorded
amplitudes without scaling, which preserves the natural
variability in motion intensity and duration. All 110 far-
field ground motions were applied in their original recorded

Table 4 Alternative seismic analysis procedures suggested
in ASCE/SEI 41-17 [40, 42]

Analysis

Category Analysis method Seismic load
procedure
Linear Equivalent static Distributed static
static analysis lateral load
. Response spectrum ~ Response spectrum
Linear p p P P
Linear analysis/ or
dynamic linear dynamic seismic ground
analysis motion record
Nonlinear .
. Pushover analysis Response spectrum
static
Nonlinear
Nonlinear Time history Seismic ground
dynamic analysis motion record
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amplitudes without scaling, in order to preserve natural vari-
ability in intensity and frequency content. This variability
was intentionally retained to enhance the robustness and
generalizability of the machine learning models.

3 Machine learning
Machine learning (ML), a fundamental branch of artifi-
cial intelligence (AI), allows systems to learn from data
and make predictions without explicit programming. ML
techniques are typically classified into three categories:
supervised learning (which uses labeled data for train-
ing), unsupervised learning (which focuses on discovering
patterns in unlabeled data), and reinforcement learning
(which learns through interaction and feedback) [43, 44].
In recent years, machine learning has become increas-
ingly prominent across various fields, such as struc-
tural engineering (Shehzad et al. [43]), materials science
and biomedicine. Each domain utilizes a range of pow-
erful algorithms, each with its own strengths and trade-
offs. These algorithms include Artificial Neural Networks
(ANNs), Random Forest (RF), Extra Trees (ETR), Gradient
Boosting Machine (GBM), Gradient Boosting Regression
(GBR), Histogram-based Gradient Boosting Machine
(HGBM), LightGBM, and XGBoost [45-47]. Modeled after
the human brain, ANNSs consist of layers of interconnected
nodes (or neurons) capable of capturing complex, nonlinear
relationships in data However, they require large datasets
and considerable computational power, and can be prone
to overfitting if not properly regularized ANNs have been
successfully applied in areas such as surface water quality
modeling rainfall forecasting and epilepsy prediction [48—
50]. Gradient Boosting Machine (GBM), GBM builds mod-
els sequentially, where each new tree attempts to correct
the errors of the previous one It is a robust and flexible
method that handles missing data well but can be compu-
tationally intensive to train and tune effectively [46]. RF
constructs a large number of decision trees during train-
ing and averages their outputs for predictions. It's relatively
easy to use, resistant to overfitting, and performs well in
many cases, though it may not match the predictive power
of more advanced methods like GBM or XGBoost. RF has
been used for predicting shear resistance of anchors olive
production and groundwater classification [51-53]. Extra
Trees (ETR), Similar to Random Forest, ETR adds more
randomness during tree construction, which can lead to
faster training and better generalization in some cases [54].
LightGBM, designed for speed and efficiency, LightGBM is
a gradient boosting framework that handles large datasets
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Table 5 Selected natural accelerograms

num Earthquake name Year Magnitude PGA

1 Baja California 1987 5.5 0.58026
2 Baja California 1987 55 0.40463
3 Baja California 1987 5.5 0.67602
4 Bam Iran 2003 6.6 0.16846
5 Bam Iran 2003 6.6 0.10926
6 Bam Iran 2003 6.6 0.08635
7 Caldiran Turkey 1976 7.3 0.05473
8 Caldiran Turkey 1976 7.3 0.06393
9 Caldiran Turkey 1976 7.3 0.09748
10 Chi-Chi Taiwan 1999 7.6 0.13738
11 Chi-Chi Taiwan 1999 7.6 0.09798
12 Chi-Chi Taiwan 1999 7.6 0.11039
13 Denali Alaska 2002 7.9 0.01225
14 Denali Alaska 2002 7.9 0.02295
15 Denali Alaska 2002 7.9 0.00763
16 El Mayor-Cucapah 2010 7.2 0.24849
17 El Mayor-Cucapah 2010 7.2 0.19699
18 El Mayor-Cucapah 2010 7.2 0.27896
19 Gulf of California 2001 6.5 0.06336
20 Gulf of California 2001 6.5 0.03835
21 Gulf of California 2001 6.5 0.00903
22 Imperial Valley-06 1979 6.4 0.03815
23 Imperial Valley-06 1979 6.4 0.11598
24 Imperial Valley-06 1979 6.4 0.12805
25 Imperial Valley-06 1979 6.4 0.11268
26 Imperial Valley-06 1979 6.4 0.20551
27 Imperial Valley-06 1979 6.4 0.16185
28 Imperial Valley-06 1979 6.4 0.04308
29 Imperial Valley-06 1979 6.4 0.05775
30 Imperial Valley-06 1979 6.4 0.02635
31 Imperial Valley-06 1979 6.4 0.1111

32 Imperial Valley-06 1979 6.4 0.20199
33 Imperial Valley-06 1979 6.4 0.08012
34 Kern County 1952 7.5 0.08969
35 Kern County 1952 7.5 0.1321

36 Kern County 1952 7.5 0.04353
37 Kobe Japan 1995 6.9 0.22063
38 Kobe Japan 1995 6.9 0.23091
39 Kobe Japan 1995 6.9 0.13841
40 Loma Prieta 1989 6.9 0.35853
41 Loma Prieta 1989 6.9 0.3266
42 Loma Prieta 1989 6.9 0.19174
43 Loma Prieta 1989 6.9 0.04887
44 Loma Prieta 1989 6.9 0.0504
45 Loma Prieta 1989 6.9 0.02757
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num Earthquake name Year Magnitude PGA
46 Loma Prieta 1989 6.9 0.22466
47 Loma Prieta 1989 6.9 0.31251
48 Loma Prieta 1989 6.9 0.40607
49 Loma Prieta 1989 6.9 0.46009
50 Loma Prieta 1989 6.9 0.41676
51 Loma Prieta 1989 6.9 0.37164
52 Manjil Iran 1990 7.4 0.51456
53 Manjil Iran 1990 7.4 0.49687
54 Manjil Iran 1990 7.4 0.53804
55 Morgan Hill 1984 6.2 0.40613
56 Morgan Hill 1984 6.2 0.22289
57 Morgan Hill 1984 6.2 0.29226
58 Nenana Mountain Alaska 2002 6.7 0.01103
59 Nenana Mountain Alaska 2002 6.7 0.01087
60 Nenana Mountain Alaska 2002 6.7 0.00631
61 Northridge 1994 6.7 0.56833
62 Northridge 1994 6.7 0.51423
63 Northridge 1994 6.7 0.21734
64 Northridge 1994 6.7 0.07954
65 Northridge 1994 6.7 0.02795
66 Northridge 1994 6.7 0.04902
67 Northridge 1994 6.7 0.12612
68 Northridge 1994 6.7 0.18371
69 Northridge 1994 6.7 0.09735
70 Northridge 1994 6.7 0.0498
71 Northridge 1994 6.7 0.08892
72 Northridge 1994 6.7 0.07326
73 Northridge 1994 6.7 0.00026
74 Northridge 1994 6.7 0.08422
75 Northridge 1994 6.7 0.10588
76 Northridge 1994 6.7 0.000265
77 Northridge 1994 6.7 0.06019
78 Northridge 1994 6.7 0.03361
79 Northridge 1994 6.7 0.11573
80 Northridge 1994 6.7 0.10574
81 Northridge 1994 6.7 0.04088
82 Northridge 1994 6.7 0.10084
83 Northridge 1994 6.7 0.09496
84 Northridge 1994 6.7 0.0705
85 Northridge 1994 6.7 0.04727
86 Northridge 1994 6.7 0.05967
87 Northridge 1994 6.7 0.03427
88 Northridge 1994 6.7 0.02582
89 Northridge 1994 6.7 0.01617
90 Northridge 1994 6.7 0.00813
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Table 5 Selected natural accelerograms (continued)

num Earthquake name Year Magnitude PGA

91 Northridge 1994 6.7 0.024

92 Northridge 1994 6.7 0.03253
93 Northridge 1994 6.7 0.01543
94 San Fernando 1971 6.6 0.07475
95 San Fernando 1971 6.6 0.11078
96 San Fernando 1971 6.6 0.04543
97 San Fernando 1971 6.6 0.00609
98 San Fernando 1971 6.6 0.00952
99 San Fernando 1971 6.6 0.0059
100 San Fernando 1971 6.6 0.19418
101 San Fernando 1971 6.6 0.38215
102 San Fernando 1971 6.6 0.28217
103 San Fernando 1971 6.6 0.16718
104 San Fernando 1971 6.6 0.19777
105 San Fernando 1971 6.6 0.15587
106 San Fernando 1971 6.6 0.10418
107 San Fernando 1971 6.6 0.13763
108 San Fernando 1971 6.6 0.05452
109 San Fernando 1971 6.6 0.02576
110 San Fernando 1971 6.6 0.04152

with lower memory usage. It achieves this through tech-
niques like Gradient-based One-Side Sampling (GOSS)
and Exclusive Feature Bundling (EFB). LightGBM has
seen use in predicting phonon cutoff frequencies of mate-
rials and concrete strength assessment [52]. XGBoost, one
of the most popular ML libraries, XGBoost offers high per-
formance through regularization, parallel processing, and
built-in handling of missing values. It's widely applied in
fields ranging from medicine to cybersecurity—used, for
example, in predicting glioma treatment outcomes malware
detection and resume-based personality prediction [53].
Histogram-based Gradient Boosting Machine (HGBM),
HGBM improves training speed and memory efficiency by
binning continuous features into histograms. This makes
it well-suited for large-scale data applications [46]. In the
current analysis, a massive dataset of 29700 samples was
used. This dataset was divided into 80% for training and
20% for testing. Hyperparameters for all models were
tuned using a 5-fold cross-validation scheme applied to the
training set (80% of the data). For each split, models were
trained on four folds and validated on the remaining fold,
and this process was repeated five times to obtain stable
performance estimates. The final hyperparameters were
selected based on average CV performance and the models
were retrained on the full training portion. The remaining

20% of the data was kept completely unseen and was used
only for final generalization assessment. By strictly sepa-
rating the testing data from the training phase, the mod-
el's performance could be assessed more accurately and the
risk of overfitting minimized. Ultimately, the careful selec-
tion and tuning of machine learning algorithms—com-
bined with rigorous validation practices—are essential for
building reliable, high-performing models. These models
are increasingly transforming how we approach complex
challenges across scientific and engineering disciplines.

3.1 Feature importance

When using machine learning to predict how buildings
respond to earthquakes, we focus on a specific output, such
as the maximum structural drift. However, the accuracy of
these predictions heavily depends on the inputs we choose,
which are often uncertain and can significantly affect the
results. To build a highly accurate model, we need a method
to carefully select the most relevant inputs. This is where
feature importance comes in—it helps us understand how
much each input influences the model's predictions.

Our model combines a structural framework with non-
linear time-history analysis, so we divided the inputs into
two categories: structural inputs (related to the build-
ing's design) and seismic inputs (related to earthquake



characteristics). Initially, we considered 21 inputs but nar-
rowed them down to 10, as shown in Fig. 4. After ana-
lyzing their feature importance, we selected three struc-
tural inputs—number of floors, total Height, and width
of the structure—and seven seismic inputs: Peak Ground
Acceleration (PGA), Peak Ground Velocity (PGV),
Peak Ground Displacement (PGD), Arias Intensity (Al),

Feature Importance

307
0.25 1
0.20 1
0.15 1

0.10 A

0.05 A

0.00 -

0.30 1

0.25 A

0.20 1

0.15 A

0.10 A

0.05

0.00 -

= \b@ \4‘\ Y_\@ <(\\"\ \c@\ \"\ \g"’\ 6‘\ Y
¥ NP S N R
N ¥
& €

Feature Importance

4000
3000 A
2000

1000 4

5
& @
>

O N 2 o
c&\" O\ée \&\" \\07
SO

Kaveh et al. | /I /I
Period. Polytech. Civ. Eng.

Acceleration Spectrum Intensity (ASI), Housner Intensity
(HI), and Significant Duration (SD).

Fig. 4 illustrates the feature importance for all algo-
rithms we tested, revealing how each input impacts the
model's performance. It also shows the relative importance
of each input for our surrogate model algorithms using two
types of visualizations: bar charts and SHAP plots. These

Feature Importance

0.35 1

0.30 A

0.25 1

0.20 A

0.15 1

0.10 1

0.05 A

0.00 -

) N O\ o N0
F T o7
NP R

Feature Importance

0.40 1

0.35 A1

0.30 A

0.25 1

0.20 A1

0.15 A

0.10 A

0.05 A

0.00 -

L(m) -

H(m) — ver =

N ®  omee

ASI (g s)
HI (cm)

High
4 > @i e
< —
4 -
PGV(cm/s) .“__

PGA(g) —

-‘
Al(m/s) o
+

Feature value

SD

PGD(cm) -l}

~0002 -0.001  0.000 0001  0.002  0.003
SHAP value (impact on model output)

Low
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visuals helped us identify which inputs, when adjusted,
could boost the model's accuracy. By analyzing these charts
across all algorithms, we reached a clear conclusion: two
structural inputs (building height) and two seismic inputs
(Housner Intensity and Acceleration Spectrum Intensity)
consistently stood out as critical for improving accuracy.
In contrast, inputs like the number of floors, PGA, PGD,
and SD had a smaller impact on the model's performance.

3.2 Stacked ML

Research on surrogate models for predicting seismic
responses has shown that no single machine learning algo-
rithm can reliably predict how structures behave under
various earthquake conditions. This is understandable—
earthquakes are unpredictable, and structures respond in
complex ways to seismic forces. Some studies focus on
developing models based on a single algorithm or improv-
ing existing ones, but these approaches often fall short.
A promising solution is to combine multiple machine
learning algorithms into a single framework, or "stacked
model", to better estimate seismic parameters.

In this study, we set out to build a stacked model
that integrates several algorithms to predict key seismic
responses, such as maximum structural drift, maximum
inter-story drift, and maximum roof drift. Choosing the
right algorithms to include in this model is tricky. One
might assume that combining all available algorithms
would yield the best results, but this approach signifi-
cantly increases runtime, which is a critical concern since
we need a model that's both accurate and efficient.

To tackle this, we first conducted a sensitivity analysis to
identify the best combination of algorithms. We started by
examining the proposed machine learning models, focus-
ing on their hyperparameters Next, we evaluated each algo-
rithm's performance using error metrics outlined in Table 6,
which helped us gauge their effectiveness. The results for
these metrics, based on preprocessed datasets, are shown in
Table 7, highlighting how each algorithm performed.

But we didn't stop there. To find the optimal algorithm
combination for our stacked model, we analyzed various
combinations and their error rates, as presented in Table 8.
The results were clear: the Random Forest (RF), Gradient
Boosting Regression (GBR), and Extra Trees Regressor
(ETR) algorithms consistently showed higher accuracy and
lower error rates compared to others (Table 7). Furthermore,
Table 8 revealed that combining these three algorithms in a
stacked model delivered the highest accuracy. Because sev-
eral ground motions exhibit very low PGA, some analyses

Table 6 Error indicators

n ~\2
Y-7)
R-squared 1-= 5
(v-7)
i=l
1< N2
MSE ;Z(y,v—y,)
i1
MAE > yi_;i
i=1
MARE l N Vi~ Vi
nIoy

MSRE

RMSRE

resulted in near-zero structural responses. Such low-demand
cases are important to retain because they reflect the natu-
ral variability of seismic records; however, they can cause
relative error metrics (MARE, MSRE, RMSRE) to appear
large or unstable when the true response is close to zero.
Therefore, absolute metrics (MAE, MSE), which remain
well-behaved for very small responses, were emphasized
when interpreting model performance.

As a result, we used this trio—RF, GBR, and ETR—in
our stacked model to predict maximum structural drift,
maximum inter-story drift, and maximum roof drift.
For comparison, we also tested these algorithms individ-
ually to calculate the same parameters. This approach
strikes a balance between accuracy and efficiency, giving
us a robust tool to predict how structures respond to earth-
quakes. Fig. 5 shows the flowchart of the stacked model.

4 Numerical result

After identifying the most impactful input features, we
used them as variables for our machine learning (ML)
algorithms. To train our predictive models, we applied data
selection techniques like cross-validation to ensure robust
results. For a fair comparison, all algorithms were run on a
PC with an Intel Core i3-8100 CPU (3.60 GHz) and 16 GB
of RAM, using Python. We selected the best-performing
results from each ML algorithm for our analysis.

Our goal was to predict key seismic responses—max-
imum structural drift, maximum inter-story drift, and
maximum roof drift—and evaluate the models' perfor-
mance. No minimum-intensity threshold or filtering was
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Table 7 Results of error indicators for dataset assuming ML models

ML algorithm R-squared MSE MAE MARE MSRE RMSRE

XGBoost 0.96843 7.52E-07 9.6E-05 0.167178 0.05168 0.227331

RF 0.961204 6.51E-07 8E-05 0.084174 0.029669 0.172246

ETR 0.967849 7.36E-08 7E-05 0.066811 0.013161 0.114723

LightGBM 0.911196 9.64E-07 1.25E-04 0.161752 0.149153 0.386204

GBR 0.947542 8.24E07 1.29E04 0.208762 0.112493 0.3354

HGBR 0.854468 9.58E06 1.52E04 0.193854 0.392139 0.62621

Stacked ML 0.99573 5.82E-08 5.4E05 0.060516 0.009022 0.094982
Table 8 Result of ML algorithm combination

é%rg]rl(;iizglon Error Algorithm combination Error

RF+ETR 0.9619 RF+ETR+HGBR 0.9625 Inputs: X_train, y_train, X_test

RF+HGBR 0.9607 RF+ETR+GBR 0.99573 baslf;irg;tsf”?r?'?"m"."GBR"

ETR+HGBR 0.9601 ETR+HGBR+GBR 0.9708 i

ETR+LightGBM 0.96 ETR+HGBR+XGBoost 0.964 [ Initialize: validation_thr=0.01 J

GBR+XGBoost 0.9437 GBR+XGBoost+LightGBM  0.9552 T

HGBR+XGBoost 0.94 ETR+GBR+LightGBM 0.9616

applied; all 110 ground motions were retained in the data-
set to ensure unbiased representation of low-, moder-
ate-, and high-demand conditions. Fig. 6 shows the Extra
Trees Regressor (ETR) algorithm's predictions for max-
imum structural drift in 4-, 8-, and 12-story buildings,
with impressive accuracies of 0.9678, 0.9870, and 0.9524,
respectively. These results outperformed other algorithms
in terms of accuracy and error rates.

While ETR excelled in predicting maximum struc-
tural drift, inter-story drift, and roof drift for 4-, 8-
and 12-story reinforced concrete buildings, other algo-
rithms like Random Forest (RF), XGBoost, and Gradient
Boosting Regressor (GBR) occasionally performed better
for specific cases. Predicting the distribution of floor drift
proved challenging, as no single algorithm consistently
delivered accurate results across all floors. To address this,
we developed a stacked model combining ETR, RF, and
XGBoost, based on our sensitivity analysis. This stacked
model selects the best-predicted values for each floor and
plots them, leveraging parallel processing to minimize
runtime while maintaining high accuracy.

Fig. 7 illustrates the predicted inter-story drift distri-
bution for a 3D reinforced concrete structure using the
stacked model with the mean method, achieving remark-
able accuracies of 0.9886, 0.9862, for 4-story building,
respectively. These results demonstrate the model's excel-
lent predictive power, making it a valuable tool for struc-
tural designers. Both methods confirm the stacked model's

Main Loop
Condition: validation_er-
ror > validation_thr?

[ Step 1: Train Base Models J

!

[ Step 2: Stack Meta Features J
!

[ Step 3: Train Meta Model J
!

error > thr?

No

Increase n_estimators
n_estimators +=50
Go to Step 1

!
[ Final Prediction: final_pred+« predict ’

(meta, stack(predict(base, X_test)))
!

( Return final_pred J

Fig. S Flowchart of the stacked model

versatility and reliability, with minor differences between
the mean and median approaches. By predicting inter-
story drift distributions, the model helps designers iden-
tify weak or soft stories, enabling proactive measures to
prevent failures and streamline retrofitting for both exist-
ing and new buildings, ultimately reducing costs.
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Table 9 and Table 10 provide error metrics for the
inter-story drift distribution of a 12-story, 3D reinforced
concrete building using the median and mean methods,
respectively. Tables 9 and 10 show that the stacked ML
model achieves the highest R? values and lowest error met-
rics, confirming its superior performance. To assess effi-
ciency, we measured the execution times of all models (see
Tables 9 and 10). The stacked model, while highly accu-
rate, has the longest runtime due to its use of multiple base
estimators and result aggregation.

For a complete picture, error metrics for the inter-story
drift distribution of 4- and 8-story buildings using both
mean and median methods are provided in Tables A1-A4
in the Appendix. To make the results easier to understand,
we visualized the performance of various ML methods
from Tables 9, 10, and A1-A4 in charts. Fig. 8 shows each
algorithm's performance based on error metrics using the
mean, with ETR and RF standing out for their high R? val-
ues. The stacked model, combining multiple algorithms,
achieves the highest R? and lowest errors across all met-
rics, while maintaining efficient runtime. Fig. 9, using
the median method, further confirms the stacked mod-
el's reliability and effectiveness. These visualizations pro-
vide designers with clear, accurate, and practical insights
for optimizing structural designs. To express the predic-
tive accuracy in engineering terms, the mean absolute
error for drift predictions corresponds to approximately
0.006—0.012 drift ratio (=2—8 mm of lateral displacement
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for typical 8—12 story buildings), representing 10-20%
relative error for moderate-to-high intensity cases. These
values are significantly smaller than the drift thresholds
commonly used in performance-based design (1-3%),
indicating that the ML models provide accuracy that is
appropriate for engineering decision-making.

5 Conclusions

This study employs machine learning (ML) to predict the
seismic responses of 3D reinforced concrete (RC) build-
ings, enabling rapid and accurate guidance for optimal
structural design. Buildings were modeled using OpenSees
software [37] and subjected to nonlinear time-history anal-
yses under 110 far-field earthquake records from the PEER
database, evaluating inter-story drift (ID), maximum drift
(MD) and roof drift (RD).

Sensitivity analysis reduced 21 initial input parameters
to 10 key features: seismic inputs (PGA, PGV, PGD, Al,
ASI, HI, SD) and structural inputs (number of floors, total
height, width). The most influential factors were building
height, width, HI, and ASI.

Ten ML algorithms were assessed, with Extra Trees
Regressor (ETR), Random Forest (RF), Gradient Boosting
Regression (GBR), and XGBoost showing superior per-
formance for predicting maximum structural drift, inter-
story drift, and roof drift using mean and median meth-
ods. For 4-story structures, R? values were 0.9388 (ETR),
0.9289 (RF), and 0.9226 (GBR); for 8-story, 0.9833 (RF),

Table 9 Result of error of indicator for the ID distribution of 12 story RC frame assuming mean method

ML algorithm R-squared MSE MAE MARE MSRE RMSRE
RF 0.9622 7.05E-10 1.23E-05 0.0362 0.003318 0.057599
XGBoost 0.9447 1.80E-09 1.58E-05 0.0328 0.00283 0.053198
ETR 0.9798 9.33E-10 1.80E-05 0.0318 0.002217 0.047087
GBR 0.9827 8.19E-10 1.65E-05 0.0291 0.00175 0.04183

HGBR 0.9665 1.15E-09 1.53E-05 0.0333 0.002327 0.048237
LightGBM 0.9435 1.62E-10 5.64E-06 0.0475 0.00605 0.077781
Stacked ML 0.9996 9.15E-10 1.76E-05 0.0288 0.001733 0.041633

Table 10 Result of error of indicator for the ID distribution of 12 story RC frame assuming median method

ML algorithm R-squared MSE MAE MARE MSRE RMSRE
RF 0.9534 4.78E-10 8.95E-06 0.0393 0.004358 0.066015
XGBoost 0.9305 1.30E-09 1.31E-05 0.0347 0.003337 0.057765
ETR 0.9764 9.93E-10 1.77E-05 0.033 0.002386 0.048845
GBR 0.983 7.17E-10 1.51E-05 0.00281 0.001612 0.040151
HGBR 0.9529 8.79E-10 1.39E-05 0.0407 0.003989 0.063156
LightGBM 0.9374 6.42E-10 1.06E-05 0.0465 0.005775 0.07599

Stacked ML 0.9995 1.03E-09 1.81E-05 0.031 0.002026 0.045006
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0.9787 (GBR), and 0.9781 (ETR); for 12-story, 0.9827
(GBR), 0.9798 (ETR), and 0.9622 (RF). ETR excelled for
4-story buildings, RF for 8-story, and GBR for 12-story.
Across all structures for maximum drift, R?> values were
0.9684 (XGBoost), 0.9678 (ETR), and 0.9612 (RF).

To improve accuracy, generalizability, and efficiency,
a stacked ensemble model combining ETR, RF, and
XGBoost was developed, incorporating parallel process-
ing. It achieved R? of 0.9957 for maximum drift predic-
tion, 0.9886—0.9996 for inter-story drift across structures,
exceeding 0.99 for 12-story buildings and 0.95 for 4- and

References

[1]  Todorov, B., Muntasir Billah, A. H. M. "Post-earthquake seis-
mic capacity estimation of reinforced concrete bridge piers using
Machine learning techniques", Structures, 41, pp. 1190-1206,
2022.
https://doi.org/10.1016/j.istruc.2022.05.067

[2] Ramesh, V., Anbarasan, M. 1., Muthuramu, B. "Advanced strate-
gies in earthquake-resistant structural engineering: seismic design,
materials, and innovations", Asian Journal of Civil Engineering,
26(4), pp. 1413-1428, 2025.
https://doi.org/10.1007/s42107-025-01298-8

[3] Yén, B, Dedeoglu, 1. O., Yetkin, M., Erkek, H., Calayir, Y.
"Evaluation of the seismic response of reinforced concrete
buildings in the light of lessons learned from the February 6,
2023, Kahramanmaras, Tirkiye earthquake sequences", Natural
Hazards, 121(1), pp. 873-909, 2025.
https://doi.org/10.1007/s11069-024-06859-9

[4] Onat, O., Tanyildizi, H. "Machine learning-based estimation of
the out-of-plane displacement of brick infill exposed to earthquake
shaking", Engineering Applications of Artificial Intelligence, 136,
109007, 2024.
https://doi.org/10.1016/j.engappai.2024.109007

[5] Afzal, M., Liu, Y., Cheng, J. C. P., Gan, V. J. L. "Reinforced con-
crete structural design optimization: A critical review", Journal of
Clean Production, 260, 120623, 2020.
https://doi.org/10.1016/j.jclepro.2020.120623

[6] Latif, I, Surana, M., Banerjee, A. "Effects of material prop-
erties uncertainty on seismic fragility of reinforced-concrete
frames using machine learning approach", Journal of Building
Engineering, 86, 108871, 2024.
https://doi.org/10.1016/j.jobe.2024.108871

[7] Liu, R., Yang, Y. "Experimental study on seismic performance of
seismic-damaged RC frame retrofitted by prestressed steel strips",
Bulletin of Earthquake Engineering, 18(14), pp. 6475—-6486, 2020.
https://doi.org/10.1007/s10518-020-00931-y

[8] Cheng, Q., Li, A., Ren, H., Chea, C. P., Liao, W., Xie, L. "Rapid
seismic-damage assessment method for buildings on a regional
scale based on spectrum-compatible data augmentation and deep
learning", Soil Dynamics and Earthquake Engineering, 178,
108504, 2024.
https://doi.org/10.1016/j.s0ildyn.2024.108504

Kaveh et al. | /I 7
Period. Polytech. Civ. Eng.

8-story, with >99.9% accuracy for inter-story drift distri-
bution in 3D RC structures.

This approach facilitates performance-based seismic
design by enabling designers to optimize resilience, iden-
tify vulnerabilities (e.g., soft stories), and develop efficient
structures. Although some records produced very low
drift responses, the use of absolute error metrics ensured
stable evaluation, and additional checks confirmed that
model performance and ranking were not affected by the
presence of low-intensity cases.

[9] Hashmi, A. K., Singh, H. K., Jameel, M., Patil L. G. "Performance-
based efficient seismic design of reinforced concrete frames with
vertical irregularities", Asian Journal of Civil Engineering, 23(3),
pp. 375-389, 2022.
https://doi.org/10.1007/s42107-022-00429-9

[10] Moghaddam, H., Hajirasouliha, 1., Hosseini Gelekolai, S. M.
"Performance-based seismic design of moment resisting steel
frames: Adaptive optimisation framework and optimum design
load pattern", Structures, 33, pp. 1690-1704, 2021.
https://doi.org/10.1016/j.istruc.2021.05.014

[11] Cheng, S., Han, J., Shang, J. "Optimal repair decision and seismic
resilience analysis of seismic-damaged RC structures considering
rebar corrosion", Journal of Building Engineering, 112, 113749, 2025.
https://doi.org/10.1016/j.jobe.2025.113749

[12] Demir, A., Sahin E. K., Demir, S. "Advanced tree-based machine
learning methods for predicting the seismic response of regular
and irregular RC frames", Structures, 64, 106524, 2024.
https://doi.org/10.1016/j.istruc.2024.106524

[13] Luo, H., Paal, S. G. "Artificial intelligence-enhanced seismic
response prediction of reinforced concrete frames", Advances in
Engineering Informtics, 52, 101568, 2022.
https://doi.org/10.1016/j.ae1.2022.101568

[14] Bhatta, S., Kang, X., Dang, J. "Machine learning prediction mod-
els for ground motion parameters and seismic damage assessment
of buildings at a regional scale", Resilient Cities and Structures,
3(1), pp. 84-102, 2024.
https://doi.org/10.1016/j.rcns.2024.03.001

[15] Aloisio, A., Santis, Y. D., Irti, F., Pasca, D. P., Scimia, L., Fragiacomo,
M. "Machine learning predictions of code-based seismic vulnerabil-
ity for reinforced concrete and masonry buildings: Insights from a
300-building database", Engineering Structures, 301, 117295, 2024.
https://doi.org/10.1016/j.engstruct.2023.117295

[16] Nica, G.-B., Pavel, F., Hojda, G. "A fast nonlinear dynamic anal-
ysis automated approach to produce fragility curves for 3D RC
frames", Engineering Structures, 281, 115695, 2023.
https://doi.org/10.1016/j.engstruct.2023.115695

[17] Pak, H., Paal, S. G. "A real-time structural seismic response pre-
diction framework based on transfer learning and unsupervised
learning", Engineering Structures, 323, 119227, 2025.
https://doi.org/10.1016/j.engstruct.2024.119227


https://doi.org/10.1016/j.istruc.2022.05.067
https://doi.org/10.1007/s42107-025-01298-8
https://doi.org/10.1007/s11069-024-06859-9
https://doi.org/10.1016/j.engappai.2024.109007
https://doi.org/10.1016/j.jclepro.2020.120623
https://doi.org/10.1016/j.jobe.2024.108871
https://doi.org/10.1007/s10518-020-00931-y
https://doi.org/10.1016/j.soildyn.2024.108504
https://doi.org/10.1007/s42107-022-00429-9
https://doi.org/10.1016/j.istruc.2021.05.014
https://doi.org/10.1016/j.jobe.2025.113749
https://doi.org/10.1016/j.istruc.2024.106524
https://doi.org/10.1016/j.aei.2022.101568
https://doi.org/10.1016/j.rcns.2024.03.001
https://doi.org/10.1016/j.engstruct.2023.117295
https://doi.org/10.1016/j.engstruct.2023.115695
https://doi.org/10.1016/j.engstruct.2024.119227

18

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Kaveh et al.
Period. Polytech. Civ. Eng.

Feng, D.-C., Chen, S.-Z., Taciroglu, E. "Deep learning-enhanced
efficient seismic analysis of structures with multi-fidelity mod-
eling strategies", Computer Methods in Applied Mechanics and
Engineering, 421, 116775, 2024.
https://doi.org/10.1016/j.cma.2024.116775

Azarhoosh, Z., Ilchi Ghazaan, M. "A review of recent advances
in surrogate models for uncertainty quantification of high-dimen-
sional engineering applications", Computer Methods in Applied
Mechanics and Engineering, 433, 117508, 2025.
https://doi.org/10.1016/j.cma.2024.117508

Gondaliya, K. M., Vasanwala, S. A., Desai, A. K., Amin, J. A.,
Bhaiya, V. "Machine learning-based approach for assessing the
seismic vulnerability of reinforced concrete frame buildings",
Journal of Building Engineering, 97, 110785, 2024.
https://doi.org/10.1016/j.jobe.2024.110785

Hwang, S.-H., Mangalathu, S., Shin, J., Jeon, J.-S. "Machine
learning-based approaches for seismic demand and collapse of
ductile reinforced concrete building frames", Journal of Building
Engineering, 34, 101905, 2021.
https://doi.org/10.1016/j.jobe.2020.101905

Habib, A., Junaid, M. T., Dirar, S., Barakat, S., Al-Sadoon, Z. A.
"Machine Learning-Based Estimation of Reinforced Concrete
Columns Stiffness Modifiers for Improved Accuracy in Linear
Response History Analysis", Journal of Earthquake Engineering,
29(1), pp. 130155, 2025.
https://doi.org/10.1080/13632469.2024.2409865

Jagruthi, N., Sharathchandran, K., Pandikkadavath, M. S.,
Mangalathu, S., Reddy, K. M., Nair, A., Sahoo, D. R. "Machine
Learning-Based Seismic Drift Response Estimation of Buckling-
Restrained Braced Frames", In: Proceedings of 17th Symposium
on Earthquake Engineering (Vol. 2), Roorkee, India, 2023,
pp. 837-848. ISBN 978-981-99-1603-0
https://doi.org/10.1007/978-981-99-1604-7_63

Kaveh, A. "Applications of Artificial Neural Networks and
Machine Learning in Civil 2024.
ISBN 978-3-031-66050-4
https://doi.org/10.1007/978-3-031-66051-1

Zhang, T., Xu, W., Wang, S., Du, D., Tang, J. "Seismic response

Engineering", Springer,

prediction of a damped structure based on data-driven machine
learning methods", Engineering Structures, 301, 117264, 2024.
https://doi.org/10.1016/j.engstruct.2023.117264

Bhatta, S., Dang, J. "Seismic damage prediction of RC buildings
using machine learning", Earthquake Engineering & Structural
Dynamics, 52(11), pp. 3504-3527, 2023.
https://doi.org/10.1002/eqe.3907

Xu, Y., Li, Y., Zheng, X., Zheng, X., Zhang, Q. "Computer-Vision
and Machine-Learning-Based Seismic Damage Assessment of
Reinforced Concrete Structures, Buildings, 13(5), 1258, 2023.
https://doi.org/10.3390/buildings13051258

Shafaie, V., Movahedi Rad, M. "Dem-driven investigation and
AutoML-Enhanced prediction of Macroscopic behavior in cemen-
titious composites with Variable frictional parameters", Materials
& Design, 254, 114069, 2025.
https://doi.org/10.1016/j.matdes.2025.114069

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Ahmed, B., Mangalathu, S., Jeon J.-S. "Seismic damage state pre-
dictions of reinforced concrete structures using stacked long short-
term memory neural networks", Journal of Building Engineering,
46, 103737, 2022.

https://doi.org/10.1016/j.jobe.2021.103737

Lazaridis, P. C., Kavvadias, 1. E., Demertzis, K., Iliadis, L.,
Vasiliadis, L. K. "Interpretable machine learning for assessing
the cumulative damage of a reinforced concrete frame induced by
seismic sequences", [preprint] Preprints.org, 10 May 2023. Available
at: https://www.preprints.org/manuscript/202305.0737/v1

Kaveh, A., Ilchi Ghazaan, M. "Optimum seismic design of 3D
irregular steel frames using recently developed metaheuristic
algorithms", Journal of Computing in Civil Engineering, 32(3),
04018015, 2018.
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000760

Zhang, H., Cheng, X., Li, Y., He, D., Du, X. "Rapid seismic dam-
age state assessment of RC frames using machine learning meth-
ods", Journal of Building Engineering, 65, 105797, 2023.
https://doi.org/10.1016/j.jobe.2022.105797

Shafaie, V., Ghodousian, O., Ghodousian, A., Homayounfar,
M., Movahedi Rad, M. "Slant shear tests and fuzzy logic inte-
gration for evaluating shear bond strength in SCC and FRSCC
repair applications", Case Studies in Construction Materials, 22,
e04176, 2025.

https://doi.org/10.1016/j.cscm.2024.e04176

Shafaie, V., Movahedi Rad, M. "Multi-objective genetic algorithm
calibration of colored self-compacting concrete using DEM: An
integrated parallel approach", Scientific Reports, 14(1), 4126, 2024.
https://doi.org/10.1038/541598-024-54715-4

Samadian, D., Muhit, I. B., Occhipinti, A., Dawood, N. "Meta
databases of steel frame buildings for surrogate modelling and
machine learning-based feature importance analysis", Resilient
Cities and Structures, 3(1), pp. 20—43, 2024.
https://doi.org/10.1016/j.rcns.2023.12.001

CSI "ETABS V16.1.1, Integrated software for structural analysis
and design", [computer program] Computers and Structures Inc.,
Walnut Creek, CA, USA, 2016.

McKenna, F., Scott, M. H., Fenves, G. L. "Nonlinear finite-element
analysis software architecture using object composition", Journal
of Computing in Civil Engineering, 24(1), pp. 95-107, 2010.
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000002

ASCE "ASCE/SEI 7-16 Minimum design loads and associated cri-
teria for buildings and other structures", American Society of Civil
Engineers, Reston, VA, USA, 2017.
https://doi.org/10.1061/9780784414248

ACI Committee 318 "318-14: Building Code Requirements for
Structural Concrete and Commentary", American Concrete
Institute, 2014.

https://doi.org/10.14359/51688187

ASCE "ASCE/SEI 41-17 Seismic Evaluation and Retrofit of
Existing Buildings", American Society of Civil Engineers, Reston,
VA, USA, 2017.

https://doi.org/10.1061/9780784414859


https://doi.org/10.1016/j.cma.2024.116775
https://doi.org/10.1016/j.cma.2024.117508
https://doi.org/10.1016/j.jobe.2024.110785
https://doi.org/10.1016/j.jobe.2020.101905
https://doi.org/10.1080/13632469.2024.2409865
https://doi.org/10.1007/978-981-99-1604-7_63
https://doi.org/10.1007/978-3-031-66051-1
https://doi.org/10.1016/j.engstruct.2023.117264
https://doi.org/10.1002/eqe.3907
https://doi.org/10.3390/buildings13051258
https://doi.org/10.1016/j.matdes.2025.114069
https://doi.org/10.1016/j.jobe.2021.103737
https://www.preprints.org/manuscript/202305.0737/v1
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000760
https://doi.org/10.1016/j.jobe.2022.105797
https://doi.org/10.1016/j.cscm.2024.e04176
https://doi.org/10.1038/s41598-024-54715-4
https://doi.org/10.1016/j.rcns.2023.12.001
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000002
https://doi.org/10.1061/9780784414248
https://doi.org/10.14359/51688187
https://doi.org/10.1061/9780784414859

[41]

[42]

[43]

[44]

(45]

[46]

(47]

Sen, A., Cook, D., Liel, A., Basnet, T., Creagh, A., ..., Smith, R.
"ASCE/SEI 41 assessment of reinforced concrete buildings:
Benchmarking linear procedures and FEMA P-2018 with
empirical damage observations", Earthquake Spectra, 39(3),
pp. 1658-1682, 2023.

https://doi.org/10.1177/87552930231173454

Lazaridis, P. C., Kavvadias, I. E., Demertzis, K., Iliadis, L.,
Vasiliadis, L. K. "Structural damage prediction of a reinforced con-
crete frame under single and multiple seismic events using machine
learning algorithms", Applied Sciences, 12(8), 3845, 2022.
https://doi.org/10.3390/app12083845

Shehzad, A., Xiu-Xin, W., Xing-Huai, H., Ullah, K., Mohammad,
A., Althobaiti, A., Flah, A. "Al-driven seismic optimization of out-
rigger systems in high-rise buildings: A machine learning frame-
work for enhanced performance in earthquake-prone regions",
Journal of Building Engineering, 112, 113864, 2025.
https://doi.org/10.1016/j.jobe.2025.113864

Enginler, S. O., Kiiciikdeniz, T., Dal, G. E., Yildirim, F., Cilasun,
G. E.,

through machine learning-driven prediction for canine mammary

..., Karakus, S. "Enhancing electrochemical detection

tumor biomarker with green silver nanoparticles", Analytical and
Bioanalytical Chemistry, 416(23), pp. 5071-5088, 2024.
https://doi.org/10.1007/s00216-024-05444-0

Demirtas, B., Tirker, T., Yanik, Y., Dede, T. "Frequency-Based
Damage Detection with ANN and Seismic Behaviour Assessment
of a Historical Masonry Tower", Iranian Journal of Science and
Technology, Transactions of Civil Engineering, 2025.
https://doi.org/10.1007/s40996-025-01816-3

Deniz, E. "Evaluating the effectiveness of machine learning mod-
els in predicting student academic achievement", ADBA Computer
Science, 1(1), pp. 8-13, 2024.
https://doi.org/10.69882/adba.cs.2024072

Das, A., Asieb Hasan, K. M. "Leveraging meteorological data and
machine learning for improved rainfall forecasting in Australia",
In: 2024 IEEE International Conference on Internet of Things and
Intelligence Systems (IoTalS), Bali, Indonesia, 2024, pp. 265-269.
ISBN 979-8-3315-2122-6
https://doi.org/10.1109/10TalS64014.2024.10799343

Appendix

Results of error for the considered frames are provided in
Tables A1-A4.

(49]

(51]

(52]

(53]

(54]

Kaveh et al. | /I 9
Period. Polytech. Civ. Eng.

Galveias, A., Antunes, C., Costa, A. R., Fraga, H. "Pollen- and
Weather-Based Machine Learning Models for Estimating Regional
Olive Production", Horticulturae, 10(6), 584, 2024.
https://doi.org/10.3390/horticulturae10060584

Suenaga, D., Takase, Y., Abe, T., Orita, G., Ando, S. "Prediction
accuracy of Random Forest, XGBoost, LightGBM, and artificial
neural network for shear resistance of post-installed anchors",
Structures, 50, pp. 1252—1263, 2023.
https://doi.org/10.1016/j.istruc.2023.02.066

Tang, Q., Cui, Y., Jia, J. "Machine learning-based surrogate
resilience modeling for preliminary seismic design", Journal of
Building Engineering, 98, 111226, 2024.
https://doi.org/10.1016/j.jobe.2024.111226

Chitkeshwar, A.

Applications of Machine Learning for Enhanced Performance

"Revolutionizing Structural Engineering:
and Safety", Archives of Computational Methods in Engineering,
31(8), pp. 4617-4632, 2024.
https://doi.org/10.1007/s11831-024-10117-3

Gong, C., Liu, J., Dai, S., Hao, H., Liu, H. "Machine learning assisted
prediction of the phonon cutoff frequency of ABO, perovskite mate-
rials", Computational Material Sciences, 239, 112943, 2024.
https://doi.org/10.1016/j.commatsci.2024.112943

Hathal, M. S., Saeed, B. M., Abdulgader, D. A., Mustafa, F. M.
"Attack and anomaly prediction in networks-on-chip of multi-
processor system-on-chip-based IoT utilizing machine learning
approaches”, Service Oriented Computing and Applications, 18(3),
pp. 209-223, 2024.
https://doi.org/10.1007/s11761-024-00393-z
Kazemi, F., Asgarkhani, N., Jankowski, R.

ing-based seismic response and performance assessment of rein-

"Machine learn-

forced concrete buildings", Archives of Civil and Mechanical
Engineering, 23(2), 94, 2023.
https://doi.org/10.1007/s43452-023-00631-9

Table A1 Result of error indicator for the ID distribution of 4 story RC frame assuming mean method

ML algorithm R-squared MSE MAE MARE MSRE RMSRE
RF 0.9289 3.93E-08 4.96E-05 0.0733 0.019259 0.138776
XGBoost 0.8711 1.94E-09 2.62E-05 0.3204 0.136383 0.3693
ETR 0.9388 1.44E-10 4.61E-06 0.0429 0.004654 0.068219
GBR 0.9226 1.55E-09 1.18E-05 0.0498 0.00873 0.093436
HGBR 0.9149 1.53E-10 5.23E-06 0.0484 0.005877 0.076664
LightGBM 0.9189 1.30E-09 1.28E-05 0.0599 0.010546 0.102695
Stacked ML 0.9886 1.24E-08 4.69E-06 0.03985022 0.00428232 0.06543943
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Table A2 Result of error indicator for the ID distribution of 4 story RC frame assuming median method

ML algorithm R-squared MSE MAE MARE MSRE RMSRE
RF 0.9273 2.04E-10 5.26E-06 0.0452 0.006131 0.078302
XGBoost 0.8926 1.84E-09 3.07E-05 0.2333 0.077612 0.278588
ETR 0.9375 1.36E-09 1.15E-05 0.0498 0.008627 0.092883
GBR 0.9268 1.52E-10 4.74E-06 0.0424 0.004514 0.067184
HGBR 0.9018 4.88E-08 7.59E-05 0.1704 0.064793 0.254545
LightGBM 0.9174 3.86E-08 6.46E-05 0.1594 0.054907 0.234323
Stacked ML 0.9862 2.57E-08 1.2E-05 0.04890834 0.00903359 0.09504522
Table A3 Result of error indicator for the ID distribution of 8 story RC frame assuming mean method
ML algorithm R-squared MSE MAE MARE MSRE RMSRE
RF 0.9781 6.91E-08 8.05E-05 0.1247 0.964757 0.98222
XGBoost 0.9656 7.67E-08 1.32E-04 0.4964 0.446023 0.667849
ETR 0.9833 1.86E-08 4.89E-05 0.0512 0.010188 0.100934
GBR 0.9787 3.56E-08 8.97E-05 0.3722 0.012101 0.110005
HGBR 0.9082 5.09E-09 2.52E-05 0.1076 0.025987 0.161206
LightGBM 0.9145 7.40E-09 3.82E-05 0.1038 0.030515 0.174685
Stacked ML 0.9994 1.86E-08 4.89E-05 0.0512 0.010188 0.100934
Table A4 Result of error indicator for the ID distribution of 8 story RC frame assuming median method
ML algorithm R-squared MSE MAE MARE MSRE RMSRE
RF 0.9775 3.57E-09 1.86E-05 0.0615 0.012053 0.109786
XGBoost 0.9652 1.02E-08 6.38E-05 0.2821 0.112163 0.334908
ETR 0.9827 6.30E-09 1.74E-05 0.0496 0.00758 0.087062
GBR 0.9799 2.27E-09 2.58E-05 0.0779 0.013295 0.115305
HGBR 0.9025 5.35E-09 3.38E-05 0.1291 0.042073 0.205118
LightGBM 0.9137 9.95E-09 4.62E-05 0.1246 0.039459 0.198643
Stacked ML 0.9992 6.30E-09 1.74E-05 0.0496 0.00758 0.087062
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