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1. Introduction 

The widespread use of computers has initiated a fast development also 
in the analysis of shell structures. Approximation by trigonometric equations 
"written for a fe"w points, hardly manageable by desk calculators, has been 
replaced by the late fifties by applying the finite difference method on fine 
meshes, and by the finite element method. 

In this paper the differential equations of orthotropic shallow shells are 
derived and deflection-load as well as stress function-load relationships 
are established by means of eighth-order differential equations. The eighth­
order differential equations have been solved by a method based on the spectral 
decomposition of the second-order difference-operator matrix suggested by 
EGERV .. .\RY [1] and applied by SZABO and co-workers on a "wide range of prob­
lems. The advantages of the algorithm will be discussed later. 

2. Differential equations of the orthotropic shallow shell 

In addition to the basic assumptions usual in the theory of thin shells 
(homogeneous, ideally elastic material, small displacements etc.) a further 
assumption usual for shallow shells, is that the second powers and the products 
of the first derivatives of the mid-surface z = z(x,y) ,~ith respect to x and y 
can be neglected: 

8z 8z 
~ 0; 

8x 8y ( 
8z )2 - ~O. 
8y 

(1) 

Considering an elementary part of the shell (Fig. 1) the internal forces and 
their projections on the axes x,y,z (denoted by asterisks) can be related as 

(1* .l 

* Abridged text of the Doctor's Thesis by the author. 
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Q; ?0 N x tg cp + N xy tg V' + Qx 
M; ?0 Mx 
l1f~y?0 Mxy 

where 
8z 

and tg 1p tg cp 
ox 

oz 
8y 

(2) 

The equilibrium equations of the shell element (omitting loads in x and y 
directions) are: 

oNx oNxy 0 (3a) 
ox oy 

oNxy ...L oNy = 0 (3b) 
ox 

I 

ay 
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8Qy , 8 ("T . I "T ) I --, - l'x tg q;, hxytg1p , 
8y 8x 

(3c) 

8 '" . '" ) p + - (hi xy tg er -+- h\, tg rp, + 
3y . 

o 

8111xy _ Q. = 0 
8y x 

(3d) 

8~Ixy + 81vly _ Q'., = O. 
oX 8y -

(3e) 

Replacing the tangents in Eq. (3c) by the corresponding derivatives and 
deriving, after the necessary substitutions, the equilibrium conditions of 
shallow shells can be reduced into a single equation: 

82 Z, 82 Z _ 
--1'1;( + 2--1"lIx" 
8x2 - 8x 8y . 0 

The geometrical equations for shanow shells are: 

8u 82 z 
E.?0--'---W 

x 8x 8x2 
(5a) 

8v 82 Z 
Ev?0-- W 
. 8y 8y 2 

(5b) 

8u 8v 82 Z 
('XV~- +---2--w. 

. 8y 8x 8x8y 
(5c) 

After the appropriate derivations and reductions, the compatibility equations 
of shallow shells are: 

82 
Ex I 82 

EO' 82 ?'xy --,------
8y 2 8x2 8x 8y 

(6) 

For the case of orthogonal orthotropy and two-dimensional domain, the 
generalized Hooke's law can be written as: 

[
UX 1 = [Ex El 0] [EX] 

a = De, that is uy El Ey 0 ~Y 

LX)' 0 0 G Yxy 

(7) 
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and the corresponding inverse relationship 

€ = D-1a, where D-l=[A x 

A' 
o 

(8) 

where 

Ax = 
Ey 

1 ExEy - E'2 

A y = 
Ex I 

ExEy - E'2 I A.' = 
-E' 

ExEy - E'2 

(9) 

Let the moments be expressed in the form usual in the theory of orthotropic 
plates: 

Mx= - D x--
( 

82W 

. . 8x2 
D' 8

2 

W) 1 
8y2 

where 

D = Ex h
3 

• D\, = Ey h
3 

; 

x 12'· 12 
E' h3 Gh3 

D' - --' Dxy = 1~ . - 12 ' .:. 

Introducing the stress function: 

82 F 
lVxy =---

. 8x8y 

(10) 

(11 ) 

Substituting (10) and (11) into Eq. (4) delivers the first differential equation 
{)f orthotropic shallow shells: 

(
D. 84W 

x 8x4 

(12a) 
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Substituting Hooke's law into Eq. (6) the second equilibrium equation of ortho­
tropic shallow shells is: 

1 ( 84 F 84 F 8 4 F ) - A --...L2A ...L A -- ...L 
h y 8:0 I 8x28y2 I x 8y 4 I 

(12h) 

+ (8
2

Z 8
2

w -2~~+ 82
z 8

2Wj = 0 
8y 2 8x2 8x 8y 8x 8y 8x2 8y 2 

where 

H = 2(D' - 2Dxy) and A A ' I 1 = 1-' 
G 

To formulate the prohlem in terms of differential operators, let us have: 

82 Z 82 82 Z 82 

Llp =-----2----
82 Z 82 ("Pucher"s operator) 

8y 2 8x2 8x 8y 8x 8y 8x2 8y 2 (l3a) 

84 84 

2A---...LA --
I x 8y4 

("plate" operator) 

(13h) 

("membrane" operator) 

(l3c) 

("Laplace" 's operator) 

(13d) 

Thus, the differential equations of an orthotropic shallow shell are: 

(14) 

The same for the case of isotropic shallow shells (Wlassow-Marguerre equa­
tions): 

Llp F - DLlLlw = -p 

LlLlF + EhLlp w = 0 
(15) 
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3. Direct expressions for the stress function and the deflection 

Since the operators defined by Eqs (13) are linear, their successive 
application permits the order of succession to be interchanged. 

Letting LIp and L11 operate on Eqs (14a) and (14b), respectively, dividing 
the latter by h, and then reducing: 

(16a) 

i.e. the eighth-order differential equation of the orthotropic shallow shell in 
terms of the stress function. Applying the operators L12 and LIp to Eqs (14a) 
and (14b), respectively, after subtraction we obtain: 

(16b) 

i.e. the eighth-order differential equation of the orthotropic shallow shell in 
terms of the deflections. For the special case of isotropy the equations become: 

(17a) 

DLlLlLlLlw L1L1P. (17b) 

4. The solution of the differential equation 

The procedure applied here is a special case of the finite difference method 
(restricted to rectangular domain and homogeneous' boundary condition) and 
based on the fact that the spectral decomposition of the second-order partial 
difference-operator matrix (Fig. 2) 

-- ~C =-
[ 

82 ] 1 
8x2 m a2 

is known in a closed form. 

1 2 

1 r -2 1 
2 1-2 

mL 

1 

m 
-. 

1 -2--.1 

(18) 

(19) 
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(20) 

(21) 

For the sake of comprehensibility, the further derivations will be restricted 
to the case of elliptic-paraboloidal isotropic shells. Let us take e.g. Eq. (17a): 

D 
- LlLlLlLlF= -Ll P. 
Eh P 

00 f ,2 n+! 

1 -<:I: 
~ ", 

j : ~ 
I, 

><: 
i ',;i 

1 i i i : i 
-T-

m 

tlC (n+f)a l 
1 

x 
Fig. 2 

Operators in full form are: 

82 z 82 
_ ') 82 

Z ~.l 82 z 82 
X)' (82 

Z 82 F _ 
8X2 8y 2 - 8x 8y 8x 8y I 8y 2 8X2 ,8x2 8y 2 

82 
Z 82 F 82 

Z 82 F) D l' 8
2 

2 8x 8y 8x 8y + 8y 2 8x2 + Eh 8x2 + 
(22) 

one gets for the elliptic-paraboloid (Fig. 3) 

(23) 

(24) 
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Expanding (22): 

k~ a,1F) + ~ (a8F 4 
a8F ...L. 

- ayI Eh ax8 ax6 ay2 I 

(25) 
(
k2 84F + 2k ko~ 

1 . .4 1 - 48',,..1 8x- 8x J 

-- - - k1--
a8 F) (a2P 
ay8 8x2 

k.,--a2P) 
- ay2 

// ... -~-- .... 1-/ ...... --_. __ ... ---;---/ 

1z 
Fig. 3. 

(
X x

2 
) ( )' )'2 ) Z=4f" ---. +4fy ---. Ix /X- ly ly-

Let matrices F and P include discreet nodal values of the stress function, 
(m,n) (m,n) 

and the load values in the same nodal points, resp., and approximating 
the differential operators by the matrix form of the corresponding difference 
operators: 

~ (_1_ 0 F...L. 
Eh . as m I 

...L._4_C3 FC ...L. _6_ C2 FCZ 
I aB b2 m n I a4 b4 m n 

(26) 

l'~ C p...L. k2 PC) . 
a2 m I b2 n 
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Substituting the spectral form of Cm and Cn: 

( 
ki U V U F -L 2kl k~ U L U F U L U -L k~. F U VU) I , m m m I 9b9 m m m n n n I b,1 n n n T 
a" a- - -

I 6 U L2U FUL2U 14 UL UFUL3U I T -- m m m n n n 1-- m m m n n nl 
a4 b4 a2bfi 

(27) 

Multiplying the equation by Um from the left and by Un from the right, 
Um and Un being considered orthonormal: 

(
'kiVU FU-L2 klk2L U FU L -L k§ U FU V)-L 
a4 m m n I a2b2 m m n n I b4 m n n I 

+ ~ (~Lm4 UmF Un -+ _4_ Lm3 UmF UnLn 
Eh as a6 b2 • , 

+_4_Lm UmF Un L~ + ~ UmF Un L~) = 
a2bfi bS • 

= - (~L U PU -L k2 U P U L). 
0.2 m m n J b2 m n n 

Introducing the symbol A of logic multiplication defined as: 

then 

This multiplied again by Um and Un gives the result 

where 

}.j being the j-th eigenvalue of matrix Cm; and 
}.k the k-th eigenvalue of matrix Cn' 

(28) 

(29) 

(30) 

(31) 
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Solving Eq. (17b), in a similar way: 

(32) 
where 

(33) 
Eh 

Solutions to the differential equations (16) of the orthotropic shell are similar 
in form, only the elements of matrices M and Ll are more complicated to express. 
Theoretically it can be proved that any problem describable by partial dif­
ferential equations of arbitrary even order has its solution in the same form, 
except that the components of the matrix of modification will change. [5, 3] 

5. Appreciation of the method and its resnlts 

t'"\2Z 
Thc outlined method is directly valid to shallow shells where _0_ = 0, 

. ax6y 
but with certain smaller modifications it can also be used for the case of 
hypar shells. 

82z a2z a2z _ . . 
(Namely here --=-- 0 and = constant.) Usmg agam the 

ax2 ay2 ax2ay2 

Pucher's operator, LlpLlp = 4k2 ~4 , which means again the application 
ax -ay2 

of a difference operator of even order. Two computer programs have 
been tested on actual problems, the first for elliptic paraboloid shells 
and their varieties (elliptic vault), the other for hypar shells. The results were 
checked by re-substituting into the basic equations and by comparing them 
with published examples. 

The advantages of the algorithm are: 
the equation system with 2 X m X n unknowns is practically decomposed 
into 2 X m X n one-unknown equations; 
the storage space needed is very small, about four times the number of 
the points (an array each of the matrices, P, W, F and Urn' Un for diagonals 
Lrn and Ln); 
many operations are repeated, e. g. three multiplication by Urn' Un' thus 
the program is a relatively short one; 
it is enough to calculate Urn P Un only once and here the program can be 
branched to calculate F and W. 

For information it has to be mentioned that with the small-category 
second-generation computer ODRA-1204 and a program written in ALGOL-
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1204, using only the mam storage unit, solution can be obtained for about 
1600 points. 

There are some problems to be mentioned. The homogeneous boundary 
condition has a physical meaning for the simultaneous equations of fourth 

a2w 
order, since for the deflections W = 0: -- = kIn = 0 and for the stress , an2 

function: 

F 0; o 

thus the homogeneous boundary condition corresponds to the problem of the 
simply supported shell with no lateral pressure. For the differential equations 
of eighth order, there are four additional boundary conditions - referring to the 
fourth and sixth normal derivatives of the deflection and the stress function -
lacking physical interpretation so far. Nevertheless the result obtained by 
solving the differential equations of eighth order agrees with that of the 
simply supported shell with no lateral pressure. 

The developed method permits to analyze any arbitrary translational 
shell by iteration. 

For inhomogeneous boundary conditions or a shell over a non-rectangular 
domain the method of singular solutions seems to be effective. 

6. Further research trends 

The research may be continued in two directions. The one is to insert 
arbitrary boundary conditions into the program so that the effect of the free 
edge or of the elastic edge beam can be analyzed also for elliptic-paraboloid 
shells. The other direction is the investigation of geometric non-linearity 
effects on elliptic paraboloid shells. In this connection there are already some 
results available, to be published shortly. 

Summary 

Differential equations of orthotropic shallow shells are derived and reduced into eighth­
order partial differential equations to express deflection and stress function, both as a function 
of vertical load. 

A yersion of the finite difference method, based on the known spectral decomposition 
of the second-order difference-operator matrix is suggested for solying the differential equation, 
a rather economic method for the computer analysis of the deflections and stress functions 
of elliptic paraboloid shells oyer rectangular domain. in case of homogeneous boundary COll­

ditions. 
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