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1. Introduction

In this country, research has been dealt since vears with matrix equations
of bar structures, to apply them for the case of great displacements and for the

stability analysis of the complete structure [1, 2,

3. 4]. Based on, and joining
previous results, in this paper the generalized eigenvalue problem of the
stability analysis of systems with finite numbers of freedom will be discussed.

The structure may consist either of bars or other models of finite elements.
Tts material is supposed to be ideally elastic. Displacements are generally
large, that is, not infinitesimal. Responses are due to loads, displacements
(initial strains e.g. change of temperature) or their combination.

The processus needs iterated application of equations of the second-
order theory, hence the second-order theory should be discussed first.

2. The second-order theory; equations and solutions
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References discuss the second-order theory in detail, so i
outlined for sake of understanding.

Some modifications have been made in the discussion method of our
references, as necessitated by the present problem.

A structure previously subjected to stresses has been investigated.
Their vector is s.

If the load on the structure changes by vector Aq and its thermal strain
system by vector At, the change of state is expressed by the equilibrium
equation

Ddu + G* ds - Aq = 0 1)
and the compatibility equation

Gdu - Fds — At = 0 (2)
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where Au and Ads are changes of the nodal displacement vector and of the
characteristic stress vector, respectively.

In the first equation G¥s is the equilibrium force produced by the
change of internal forces with respect to the original network, DA4u being due
to the stresses already developed, because of the change of network.

Measure of this latter effect is the second-order stiffness matrix

] = [Dij] H

D
— ¥
Dz’j = ‘/Q Lijk S

in terms of the three-index tensor

its symbol :
D=2¢8s. (3)

The elements of € can be approximated by taking into account the square
expressions of elongation, based on energy aspects, according to the principles
of the finite element method [5].

The changes of state of the structure characterized by vectors du and As
can be calculated either by the force method or by the displacement method
using Egs (1) and (2).

Superposition being justified, the vectors take the form:

duo = du, + du,

(4)
ds = As, + s;.

3. The two-parameter problem of the stability analysis

In case of great displacements the stability analysis can be carried out
by iteration. Namely the problem is linearized assuming that the structure
attained the nearly critical state, therefore the change resulting in the critical
state can be determined by the second-order (although linear) theory. Cor-
rectness of this supposition can be checked ulteriorly. In the negative case the
computation has to be continued.

The effect on the structure is of the form

’ -

q9 = /4

o= ut
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where qis the basic load, and t the basic thermal strains. These are completely
fixed, scalar parameters being 4 and u, respectively. Parameter value changing
from one instant to the other determines the actual load. In the former, pre-
critical state of the structure let /,q, ut, u, and s, be vectors of loads, initial
strains, nodal displacements and stresses, respectively, all being known to us.

Critical state may occur by a small step, the four quantities changing by

diq, Adwpt, du, s

respectively. In this state, however, the structure has further — infinitesimally

near — equilibrium forms, described, with respect to the former ones, by
load and initial strain differential 0
displacement differential du, and
stress differential ds (Fig. 1).

unloaded form

u{small or targe
. displacement
form previous to g )

stability loss 4u
critical form ~ Jdu
= ) 3
— .
= : S
l"buck[ed“ form >§

Thus, the infinitesimal change in the critical state is characterized by the
fact that stress changes entraining differential displacements constitute a self-
equilibrating force system.

The internal forces s constitute a balancing force G¥s on the network
of geometry matrix G, therefore in critical state

A6 )y = G, ds -+ A6} 5, = 0. 5)
However

Gi ds = G ds + AG* ds ,
therefore

Grds + AG* ds - dGE s, = 0. (6)

The first term stands for those balancing effects which could be developed
by the differentials of internal forces in the pre-critical form. These are ex-
) p
pressed by the stiffness matrix assigned to the appropriate form:

Gtds = —K, du. (7)
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The second two terms represent the forces due to network changes, so
both can be written by means of the tensor of the second-order stiffness matrix:

AG* ds = €,ds - Ju = 8, [du - ds ; (8)
similarly

dGfi s, = €., 8, - do = 8,5, - du. (9)

This approximation is necessary to keep the problem linear. Replacing
terms (7), (8) and (9) into Eq. (6):

—~ K. do+ 8 du-ds + ¢

cdu = 0. (109)

To write the eigenvalue problem in the usual form, the second two terms
of the equation are also written in form corresponding to K du.
Taking into account that

i’
f
g
i
i,
w

S o = s, (L1)
further, according to the compatibility equation of the second-order theory
ds = —F-16%du. (12)

Besides, according to relationships (4), in case of effects characterized by
scalar parameters

(13)

where

;]/j» = Mgy — e

u, and s,; u; and s; are displacement and internal force vectors calculable
from the basic load and from the basic initial strain, respectively, delivered
either by the force method, by the displacement method or by their combi-
nation, while the network corresponds to the pre-critical state of index e,
rather than to the unloaded condtion.

Substituting (11), (12) and (1i3) into (10), and arranging, the following
two-parameter eigenvalue problem results:

(A_ — /“:'{7‘ B - Hpr C)du. = )

here
B=¢uF16" —¢&,s,
C=8,u, F16*¥ — &, s (14)
A=K +8 s +-7,B+ulC.
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In practice, the problem can only be solved by fixing first one, and then
the other parameter, Solutions of the one-parameter problems yield sets of
eigenvalues and eigenvectors.

4. One- and mulii-parameter problems
If the structure is subjected to loads alone, then the eigenvalue problem is
(A—7,B)du=0 where A=-K +8s, - 4iB. (15)
If only initial strain load ccecurs:
(A — 1, C)da=10 where A = —K,+-8s, +4,C. (16)

Applying the standard displacement method to compute u,, s, u; and s,

1

and indicating the solution of the equation by the inverse of the coefficient
matrix, the response due to loads in view of the stability:

du= AWK — D);iq ds= —K, G, du

(K, . and K, being the hvpermatrix assembled of the stiffness matrices of the
structural elements, and the stiffness matrix of the complete structure in the
pre-critical state, resp.) thus:

B—¢(K—D)lq K,.6 + 2K, GK—D);lq. (17)

The introductory references deduce the eigenvalue problem by means of
the above computing method. In fact, (15) and (17) occur in them. Response
due to initial strain in view of stability loss:

du= —Au(K — D);* G K, ,t ds = —K,,G, Ju — AuK ¢
and

B= —'ge Ks,e GL(K - D)e_l q; — So’e K‘s,e t— S‘O’e(K - D)e—l q; - Ks,e G (18)

where
q: = “_G: Ks,etv
the nodal force system due to initial strain appearing in the equilibrium
equation, called thermal load.
If there is stability loss even in case of small displacements, the formulae
feature
2e=0 and y,=0 and s,=0.

8 Per. Pol. Civil 18/1-2
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The eritical values 2, and p, representing the solution of the one-param-
eter problem depend on the parameter of the selected pre-critical state:

Jie = f2e) and  uy, = glu) .
For a correct solution, the difference between the two states is negligible,

Pir = ke and  py, = U, .
The graph of the resulting non-linear equation is shown in Fig. 2. For a
correct solution the computation has to be repeated at least twice, except for

small displacements where an immediate result is obtained, because 7, = 0.

f(Ae)

The eigenvalue problem can easily be generalized for the case of an
arbitrary number of effect parameters, i.e. for loads consisting of the complex
of a multi-parameter load system and a multi-parameter initial strain system,

characterized by vectors X A,q; and 3 ut;, respectively. The one- or multi-
i J
parameter character of the load occurred in the deduction only when determin-

ing vectors Au and /s, these being, however, given by the linear theory.
Therefore the principle of superposition is valid, and so the eigenvaiue problem
for the general case can be written directly, without repeating the deduction:

H

where (19)

=K, + S5, + 3 4, B+ 3, C
i J

(A - 2 }"i,kr Bi - Z i r Ci)dll =0
J

formulae for B; and C; being interpreted according to item 3.

Of course, this case can also be analyzed by a set of one-parameter
problems. '
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5. Outlines of computerization

Based on this theory, algorithm and program of the general stability
analysis of bar structures have been developed at the Department of Civil
Engineering Mechanics of the Technical University, Budapest, for an ODRA-
1204 computer.

In its actual form, the program suits for planar bar structures with a
general lay-out consisting of straight bars of constant cross-section. Nodes
may be either rigid or hinged. They may be subject to arbitrary forces or
couples of any direction. The bars may be subject to four different effects:

. concentrated force perpendicular to the bhar axis;
.linearly varying distributed load perpendicular to the bar axis;
. even temperature change;

ot

= 02 o

. uneven temperature change.
Structure of the program is seen on the flow chart of the main stages of
computation.

6. Examples

The framework seen in Fig. 3 is subject to two concentrated forces. Stiffness data of
the bars are identical (E4A = 3.6 - 10° Mp, EJ = 4.8 - 10° m*Mp).

Determining matrices in (15) at parameter 4, = 0" and solving the eigenvalue problem,
we obtain Ay, == 116.98. The eigenvector yielding the affin presentation of the buckling mode is:

du = jdu;, ] = [0.68776
duyy 0.00143
do, 0.02893
duay 0.68903
du,, 0.06307
dgs 0.21773

Temperature of the unloaded structure in Fig. 4 is 20°C. Let us test the structure at
an inside temperature decreased to 5°C.

X ¢3Mp

y! ! o2 1

=

B
|

8*
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[

Lm

Fig. 4

The bars are of T cross section (EA = 1.8 - 10* Mp, EJ = 1.2 - 10° m*Mp). The effect
of the change of temperature is composed of two parts. The structure is cooled to the tempera-
ture of the neutral axis, on the other hand it is subjected to a temperature gradient of 15°C
(Fig. 5).

Solving the eigenvalue problem starting {from p, = 0 a value gy, = 119.09 is obtained,
the eigenvector being:

da = 0.40452
0.01263

0.22569

0.44088
—0.42780

! —0.638066

In the presented examples actually no expressed critical load occurs, the
structure fails by gradual but immense deformation. In such a case the function
f(3,) in Fig. 2 does not intersect the straight 7, = 4,, but approaches it
asymptotically. Thus, the obtained critical parameters are only informative.
The obtained buckling mode shows where it is most economical to strengthen

he structure if necessary.

LQce

i0 |
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INPUT
Topolozy, nodal co-ordinates, strength charac-

teristics

bar according

fructure and [itt

stiffness matrix of the structure

i

Nodal displace:

band mairix

‘equation system

@ Cvcle ior bars:

‘ Internal second-order theoxy‘

Nodal displacemen to second-order theor:

Internal

according to second-order theory

'

Summary

Generalized eigenvalue problem of the stability analysis of systems with several degrees
of freedom is described. The system iz assumed to be perfectly elastic and capable of either
small or great displacements. Deformations are small. Responses may be due either to loads
or to thermal stresses. This theory has been applied to develop a program written in ALGOL

for an ODRA—1204 computer. Flow chart of the program and short numerical examples
are presented. ’
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GENERAL FLOW CHART
THIRD-ORDER THEORY

INPUT
Topology, actual nodal co-ordinates, sitrength

characteristics

lodal loads

Actual internal forces

Permissible error of third-order theory compu

ation /

in second-order theory

procedure"

=, vector of the
of load error

OUTPUT
In the first case nod nt vector
corresponding to nodal loads, then nodal dis-
placement vector correspondinz to the load
error vector

ves

second-~order theory

o nodal

Modify nodal co-ordinates
displacement

o3
0.
@
3
<

{ Lo

no

Nodal displacements according ito third-
order theory

internal to third-order theory

Modified




STABILITY ANALYSIS 119

GENERAL FLOW CHART OF STABILITY
ANALYS3IS

/ INPUT 7
Topology, nodal co-ordinates, strength characteristics
Loads of the bars, nodal loads
Load parameter interval, ultimate value

i

Reduction of bar loads to bar ends and fitting into

e nodal load vector

T
v
Cycle for load parameter

u Use of "third-order 'theory" procedure u
|
v

I Matrices A and B defining the stability problem ]

!

l Eigenvalue problem solved {

! T
¥

/ OUTPUT /
Value of & point on graph f(/?e)

Buckling mode
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