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Introduction

An essential problem of the finite elements displacement method applied
in structural analysis is the selection of the stiffness matrix. Calculation
accuracy may be improved theoretically at will by using finer mesh, but prac-
tically, the abrupt growth of storage and running time needs (in general,
however, according to the third power of nodes) limits the mesh fineness.
The good selection of the elementary stiffness matrix, (with other words, of
the displacement function) is of utmost importance, likely to much improve
the accuracy for the same number of nodes. Methods are known for deter-
mining the elementary stiffness matrix in case of a displacement function
containing as many free parameters as the degrees of freedom of the element.
P1aN has described the method of “condensing” the stiffness matrix [6] where
the number of free parameters in the displacement function is greater than
the degrees of freedom of the element (f >>s), a method contained already
in recent manuals [7]. In what follows, a method will be presented for establish-
ing the stiffness matrix in case of incomplete displacement functions i.e.
containing less free parameters than the degrees of freedom of the element.
This method will be applied for rectangular plane stress elements, and the
obtained result will be compared to those from calculations applying other
displacement functions. (Definitions will be given at the end of this paper.)

1. Methods of establishing the elementary stiffness matrix

Referring to the literature [7, 9, 10], a concise description will be given
of the establishment of the elementary stiffness matrix in each of the three
possible cases:

A) the displacement function has less free parameters than the degrees
of freedom of the element:

£ s,
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B) the displacement function has as many free parameters as the degrees
of freedom of the element:
f=s,

C) the displacement function has more free parameters than the degrees
of freedom of the element:

f>s.

To simplify the presentaticn, only elastic deformations and nodal loads
will be taken into consideration.
First, let us assume the displacement function in the form

u = N o (1)
(m. )y (m.f) (f 1)

where

u  is the displacement vector of an arbitrary point of the element:

m  displacement degree of freedom of a point of the element:

No matrix form of the displacement function, where N is the matrix con-
taining the combinations of the node co-ordinates, « being the vector
of unknown coefficients.

The displacement function has to be estublished in dependence of nodal
displacements. Let matrix € be defined as:

(s.f)
. e,
e, ¢,
e = = € «u « (2)

L€y Cn

€ is seen to be a hypervector of as many blocks ¢; as there are nodes in
the element, all blocks ¢; correspond to matrix N, replaced by actual co-
(m.f)
ordinates of the i-th node. Vector e contains nodal displacements of the element.
A) TFor f< s, matrix equation e = Cu« contains more scalar equations
than unknowns. In this case the general inverse (corresponding to the least
squares method) will be applied:

T e (3)
(fh (f.5) (s.1)
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where
C-1 = (C* ¢~ ¢* (4)
(f5) (f:s) () (f*9)

Expressing deformations by the proper derivatives ot the displacement
function:

e =Ba=BC'e. (5)

The stress field of the element can be determined from the physical

equations of elasticity:

6 = De = DBT-'s. (6)

where D is the matrix of material properties.
Potential energy of the element:

IT=12{e*adl” — e*q. (7)
o)

the first term heing the potential energy of internal forces. Substituting:

1 =12e*C-1* (B*DBdV C-le — c*q. (8)

()

To find the minimum potential vs. nodal displacements, the minimum con-

dition 1s:

GLLY ()
Je;
Derivation leads finally to:
Ke —g=0 (10)
with the elementary stiffness matrix
K=C-"|B*DBdVC-". (11)

(s,8) (V)

B) For f=s. i.e. there are as many free parameters as the degrees

of freedom of the element, and C is a non-singular matrix:

@ = C-! e (12)
(s.1) (s8) (s.1) °

Producing the element potential as usual:

I1 =12 e*C-1* {B*DB dV C-le — e*q. (13)

()
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To find the minimum potential energy vs. nodal displacements:

8y,
aei
leading to the stiffness matrix:
K = C-* {B*DB dI" C-1. (14)

C) For f > s, i.e. there are more free parameters than the degrees of
freedom of the element. matrices € and o will be partitioned:

e = [C.. Gl (15)
C(,f-, i
expressing o,:
e = C,o, — Cincts,
and assuming C, to be non-singular
-1
o, = €, (e — G, ab> (16)

vields for a,:

o= | e

€ 17

Accordingly, the displacement function will be of the form:
u= NWe. (18)

Potential energy of the element:

Il = 1/26*W | B*BD dIV W& — &%, (19)
%

with: q = [((ﬂ .

Now, the potential energy minimum has to be sought for with respect

to all elements of vector & hence: .
3
_]Z—_——O i:].,?_,...,S ]
aei '
o Il (20)
=0 j=s-+1....f
So;

/
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The elementary stiffness matrix is of the form:

K=WB* (B BdJd/W (21)
() (EOEER)) EBE) Gf) ()

k being the number of deformation components involved within the element.
Partitioning the equation K & 4+ § = 0:

(£ (LD (AD

Kan Kaf‘ I € —l I q 7
(s.8) (s.f ~ 5) (s.1)
S S [ — 0 (22)
I&g,q KDD v & 0
(Ff=s)  (f=s.f=s) || (f=s.D) (f—s.1)
Expanding:
K:.’z} e - I{‘df?af) -+ § = ] :
Kpe - Koy = 0. (23)

Expressing o, from the latter equation and resubstituting:
- - 15 o .
(huc — Rab I&bb Bbu) e -—q= 0 (24)
leading to the modified elementarv stiffness matrix:

K!n = (Eﬁa - Kab Ka—ol K?U} (25)

(555) (5',5) (SEf-S) (f_s f——S)) f—‘S,S)

2. Comparison of stiffness matrices of a rectangular
- plane stress element

In 1973, Miss Gy. HorvirH, graduating student in civil engineering,
presented in her diploma work actual computations to establish various
s element [3].

owm

elementary stiffness matrices for a rectangular plane stre

Tested displacement functions:
Tou, = oy + a,% + 2,y + 248y

3.

= Loyl omy oy
Wy = %5 7 %g¥ - %) T Kty

—_— L - I ar L~ po_t 1 rT o }7

IT wy =2 4 2,0+ %3 v -+ 2 xy 4 o, sin sin
b
xT ya

J— i ] P ! 3 - 17y e
lLy—Ols—Q-OCGxTO(?} T %g XY -1 %y SIn— SN b
a
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i v ‘ , x 2 v 2
I u, =2 + % x + oy -+ 2yxy + %y [—— — ——| + %o [ — =
a a’ | b b*
. AR ) AN
, . . . [ x x- Y y- l
U, = s -+ 25 x + % ¥ -+ 2gxy + % e — e
v 577 [ i A ERam 11 12 E
‘ a? b b?
IV wgos= a2 wox - 2y - oy b oogx? - oo y?
Uy = oy gk — %Y ~E gAY o %y X - xy,07

Voouy, =2y — o,x o o,y

Uy == oLy + LsX — LY .

I is the simplest displacement function corresponding to the linear
displacement field. In the cases of II, III and IV, f > s: IT and II1 meet
boundary conditions (the excess term being a so-called disturbing function),
while displacement function IV is a complete second-order polynomial.
IIT is known (7) to be a displacement function corresponding to linear stress
field. In case of displacement function V. f -7 s.

Computations showed the elementary stiffness mairvix with either of
the four displacement functions (II, IT1, IV, V) deviating from the fundamental
case, to differ from the elementary stiffncss matrix by a mairix of identical
structure:

K,=K, - M {26)

where:

x, ¥ and z values for each displacement function are tabulated as:
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Type ® ¥ z
I +1 32E(1-+-1)0
23— g=(1—7) 7(1—7)
O Eb
ITT L T P 12(1—32)
] spr . (A=m Eb
; hn Ay 2281
I3 1 3 ] 1 12(1_1,2)
- t 1—» D e l__), EU
v e =8 AT T 5 20—

5 being the element thickness, and § = b/a the side ratio.

The identical structure of the excess term of stiffness matrices related
to different shape functions can also theoretically be verified. Namely, it can
be proved that for any rectangular plane element, all clements of the stiffness
matrix can be produced as a function of the upper left block elements, and in
case of plane stress state, as a function of elements &, and k,, [8].

Although a general method is known for comparing different displace-
ment functions [4], it seemed simpler to compare actual problem outcomes.
The selected structure is shown in Fig. 1. The vertical displacement of point
. taking shear effect into consideration, amounts to e = 0.0512 m.

. 20Mp
Z my
c ¥ y
A=im
mx
- B=20m )
5|

v,
Fig. 1. Thickness 8 = 0.1 [m}; cross-section area F' = 0,4 [m*]; moment of inertia I, = 0,1 - 4%
12 [m’]: shape factor’gp == 1,2; Poisson’s ratio » = 0: Young’s modulus E == 106 [Mp/m?];

shear modulus G = 5 - 105 [Mp/m?]

[

Outcomes with different mesh finenesses are shown in Fig.

The results have led to the following conclusions:

— in the tested problem, the result obtained with the *“‘incomplete”
displacement function is converging to the theoretical value, although “*from
above’;

— in plane stress element problems, the best approximation is obtained
with the displacement function assuming linear stress distribution. in spite
of the lack of continuity along the edges of such an element;

— selection of the displacement function fundamentally affects the
accuracy, hence it merits to be considered.

4 Periodica Polytechnica 18/3
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The incomplete displacement function meets but partly the usual
convergence requirements, among them the conditions for rigid-body motions
and for the elementary stress fields (it corresponds to a constant stress field)
but fails in nodal boundary conditions. Remind, however, that the quoted
convergence conditions have been established empirically rather than theo-
retically, and they are ounly known to generally bring about convergence in
case of fine mesh. Among recent research reports [1] some present displace-
ment functions not perfectly meeting boundary conditions for shells,
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Tt is felt advisable to continue the research and to examine the suitability

of elementary stiffness matrices derived from incomplete displacement funec-

tions for other element types.

Summary

Establishment of the elementary stiffness matrix in case of displacement functions

containing as many free parameters as, less than, and more than, the element’s degrees of
freedom. respectively. Stiffness matrices of a rectangular plane stress element, established
with five different displacement functions are compared. together with the resulting conver-
gence. Calculations showed the incomplete displacement function to vield results also converg-
ing to the thecretical value. although “from above™.

ot
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