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1. Stability analysis in the plastic range

There exist two different theories for determining the critical load of a
column buckling in the plastic range: the Engesser — Kdrméan and the Engesser - -
Shanley theories. Both express the flexural stiffness, the moment-curvature
relationship similarly to that for the elastic range, taking the variation of the
stress-strain diagram ¢-¢ in the range of proportional limit ¢, to static yield
point ¢ to obtain the buckling load.

Figs 1a and b show the 6—¢ and c—/7 diagrams of aluminium alloy,
a material having no sharply defined vield point.

For structural steels, having a sharply defined yield point, Figs lc and
d show the 0—¢ diagram and the g, — /7 relationship, respectively [1]; at the
static vield stress ¢, the tangent modulus E; is reduced steadily to become
zero at the vield point, i. e. where the g, —/ diagram intersects yield strength
at M. Along the s—¢ diagram for ¢ within the strain-hardening range, critical
stresses beyond the yield point may be obtained to result in the branch M —P—
N of the column curve.

Fig. 1d shows results of continuously loaded specimens of structural
steel (e. g. K&{ruix [2]). For short, stocky columns (A = Ifi ~ 30) the
buckling strength ¢, is far above the vield strength ¢, and test curves o,—
M—N are of the form according to the dashed line, rather than of the form
M—P—N.

This deviation between test results and theory does not appear in prac-
tice, since columns of slenderness 2 = 30 are exceptional.

This deviation becomes a problem when examining the lateral torsional
plastic buckling of beams under uniform moment.

Taking the lateral torsional buckling of beams under uniform moment
as the buckling of compression flange (the web does not restrain the flange of
the beam section from buckling) after the complete yield of the compression
flanges according to the previously mentioned theories the beam will buckle
laterally — irrespective of length —, thus, in fact, beams under uniform mo-
ment will buckle with the development of plastic moment M;, independent of
the beam length.
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This condition has not been verified experimentally (Fig. 2); but expe-
rience has shown that for “long™ beams the range of plastic rotation where
the plastic moment M; [3] is supported is less than for “short” beams.
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Thus a physical model was required likely to give the relationship g,—2
corresponding to the dashed line in Fig. 1d. The model has been established
according to the statement of F. BreicH (p. 22) [1]: “The explanation may be
that, owing to variations in the homogeneity of the material, vielding does not
occur simultaneously over the entire cross section and that, in one region
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strain hardening already has taken place while in other regions yielding begins.
In this way it is possible that bending, which should start at the yield point,
is more or less delayed, and buckling takes place at average stresses above
the vyield point stress.”

2. Yielded stzel hehaviour

At yield point, characteristic, regular line systems appear on the surface
of steel specimens indicating that plastic strain is not uniform at yield, but is
concentrated in thin bands, their traces on the surface being referred to as
“Liiders—Hartmann lines”. These bands appear abruptly at the yield point,
they densify and broaden with increasing load.

In his famous book [4] NApar summarized assumptions and test results
for the yield of steel.

Ex~DRE REUss has also dealt with the Liiders— Hartmann lines developed
in a twisted, round bar.

The L—H lines on the surface of steel specimens indicate that on the
yield plateau the material is inhomogeneous, having discontinuous charac-
teristies.

There is a finite jump in strain from the yvield (or slip) strain to the strain-
hardening (or resistance) strain.

Beepre, L. 8. and Tarr, L. [6] examined the problem whether the
stress to create a slip plane is higher than the siress to maintain it. At a strain
rate near zero (1.0 u - sec—?) the ratio of “dynamic™ to “static” vield stress
was found to be close to i = 1.05.

3. Discontinuous stress-sirain laws

The idealized elasto-plastic stress-strain diagram (Fig. 3) of steel is well
known. (The continuous line indicates the post-elastic strains occurring above
the proportional limit ¢, whilst the dashed line shows the idealized elasto-
plastic stress-strain condition.)
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The discontinuous stress-strain laws — after Nadai — are shown in
Fig. 4. The stress-strain diagram allows for the discontinuity of yield by averag-
ing strains ¢ in the range & to & = s + ¢, rather than taking actual ¢ values.

In case of a single yield line, strain & of column of length L is shown
in Fig. 5. Be the length in yield state @®L, that in elastic condition (1—®)L,
then
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The over-all strain:
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L
hence:
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If the load is increased above igp, the relationship between deformations and
stress increase is expressed by the strain-hardening modulus E.

4. Flexural stiffness of members in discontinuous yield state
for the eases of bending during and after axial deformation

For the subsequent theoretical and experimental studies, only the flexural
stiffness affected by axial load and moment will be considered. As mentioned
before, to the lateral torsional buckling of heam in the plastic range, upon the



STEEL MEMBERS 11

average strain e(e > &) in the compression flange a strain due to the virtual
lateral disturbance moment is superposed.

Now, an “over-all modulus™ will be sought for, describing the flexural
stiffness of idealized discontinuous elasto-strain-hardening materials under-
going strain ¢ > ¢ due to combined axial load and disturbance moment,
considering that the disturbance moment may increase the effect of the axial
load.

To this aim, response of the member in compression or tension on the
yield plateau to small disturbance moments will be studied.

Stress

Strain

after betore
disturbance —» =— disturbance

Fig. 6

The ““over-all modulus™ will be defined from the differential behaviour
of the two parts of steel after vield, namely those characterized by strain at
onset of strain-hardening and yield strain, respectively. Again, it will be exam-
ined, how “blending™. i. e. distribution along the length of specimen affects
flexural stiffness.

Consider an axially loaded column of rectangular cross section. The
average strain ¢ of the column is that understood between the ends of the
member.

a) The behaviour of the parts, in which the yield strain is developed
(Fig. 6):

If no stresses >>io are produced by disturbance moment anywhere then
no new yield lines appear and the parts will be in the elastic range, thus, for
these parts the moment-curvature is:

M=E-J.,.=x (4)
The maximum disturbance moment satisfying this condition:

M < (i—1)M, (

Ut
-
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b) The behaviour of strain-hardening parts (yield lines) is developed
in which strain-hardening strain £ = sep.

The axial load and the disturbance moment may be taken about the
N-—N axis (Fig. 7). Assuming the disturbance moment not to increase the
axial load, a relationship similar to the moment-curvature valid in the elastic
range is obtained, the elastic modulus E being replaced by the “reduced elastic
modulus™ T

M=T-J, -x. (6)

Stress S 4

The above considerations seem to be similar to the Engesser—Karman
theory, the latter, however, assumes the material of the column to be homo-
geneous, though behaving differently during loading than unloading; the
present theorem is valid only to the yield lines indicating strain-hardening.

The ratio of reduced to elastic modulus for a rectangle cross section:

AE-E

My = —— = =
E

()

E

In view of the discontinuous stress-strain laws, at first it seems as if
only the previous solution could be used for determining the moment-curvature
of the yield lines, since it is preassumed of the physical model that in the yield
lines a strain hardening strain £ has developed, without any further axial strain
in their plane until the entire region under yield stress ¢ has reached the
strain-hardening strain Z. .
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Nevertheless stresses (i—1)o, inserted between the preexisting yield
lines (planes) leading to ever more yield lines produce additional strains:

(i—1)op

E

de = = (i—1)h-ex. (8)

These strain excesses enable the disturbance moment to permit no
unloading in the cross section belonging to the yield line, thus, all the yield
planes in their cross section undergo an increase of stress (Fig. 8). Thus, the
moment-curvature relationship:

M=E-J, - x. 9)

b . before .
 ——] Strain L Tt
’ ’ disturbance

b
disturbance

Fig. 8

This consideration, allowing for the possibility of axial load increase in
the yield line cross section, is similar to the Engesser—Shanley theory, it
should be emphasized, however, that this kind of flexural stiffness holds only
for the yield lines. This is the so-called “tangent modulus” solution.

Here a
E
my = E = (10)

is the ratio of tangent (strain-hardening) to elastic modulus.

Let us see now how the distribution, the “blending” of elastic parts
and yield lines along the length of the column affects the moment-curvature
relationship valid throughout the column length.

From experiments it has long been known that vield lines begin to devel-
op in tensile specimens at the ends, whilst for compression specimens the first
yield lines develop at mid-length. Thus, the moment-curvature differs be-
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tween compression and tensile members. Nevertheless the assumption usual
for steel materials, namely that steel behaves alike in compression and in
tension is reasonable also to apply now, possible by assuming the distribution
of the vield lines along the length of the column.

Thus, the curvature of the entire column, similarly to the average strain ¢:

Havg = (1-'@) - ey + D - Zpt- (11)
Two solutions have been developed for strain-hardening parts (yield

lines):
1. Applying the “reduced modulus™

iV _ﬂ/ ~ _"TV
,_ﬂ_z(lﬁ@)_f.+ o M 12)
EoxJx EJ. Ey-J.
Be
Eqx
Mg = g (13)
T T 11 TR | (14)
= +Vh)
R
2. Applying the “tangent modulus”
M N
EOTJx EJ\ ET'J.\:
Be
£,
Moy = l‘; (16)
1
T S a1y 17
T T T e(h—1) (17)

For @ = 0 (the steel material is elastic) My = Moy = 1; for & =1
(the steel material is in full vield) my, = my and myr = my. In the range
0 <@ < 1, my is zevo, if my = my = 0, consequently h = o<, i. e, the strain-
hardening modulus is zero (idealized elasto-plastic material).

Making use of experimental results (b = 32.2: s = 12.7; ¢, = 0.00115)
Fig. 9 shows the form of Eq. (17).

Applying Eqs. (14) or (17) a relationship ¢,—7Z can be written for the
compression coclumn, which describes the condition marked with dashed line
in Fig. 1d.

Consequently, a yield condition does not a prieri imply that a buckling
condition also exists.



STEEL MEMBERS 15

5. Tests to determine the flexural stiffness of strain-hardening steel
members under axial load and disturbance moment

In order to verify the relationships in item 4, tensile tests were made
applying axial loads to prevent stability problems from even indirectly aris-
ing.

The axial tension caused in the column an average strain ¢ > ¢.. Subse-
quently, moments were introduced at both ends applying a disturbance and
the effect of bending moment permitted to conclude on the flexural stiffness
of the member in yield.
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5.1. The testing device

To this aim a tensile testing machine has been constructed, for applying
bending moments on the ends of columns in various strain conditions.

Both the tensile load and the bending moment were applied by taking
the elastic response of the load system into consideration and thus, after 15 mins
of rest left for the static yield stress ¢, to develop, the disturbance bending
moment could be introduced at a predefined strain.

The specimens cut out from structural steel have been taken from nearly
the same place to provide as homogeneous material properties as possible.

The ends of the specimens were supplied with wedges of steel K 1 to
transmit the tension (phase I) as shown in Fig. 10: load-transmiiting wedges
are on the lower shafts of two rigid T members; by rotating the horizontal
shafts of T around point C, the tension was applied. At the predetermined
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plastic strain value, bending moment was applied at both ends of the column
(phase II; Fig. 11).
The loading apparatus is shown in Figs 12z and b.
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5.2. Test method

The tension H has been determined with electric resistance strain-gauges
type Huggenberger BP 2/120 p. mounted on spring steel plates R (Fig. 10).

The extension AL = L’—L in the specimen due to tension H has been
determined from the horizontal displacement of the lower shafts of T at points
D and E using two inductive transmitters W 10.

The value of the bending moment has been obtained by means of electric
resistance strain gauges type Huggenberger BP 2/120 p.

The rotation @ has been determined from the vertical displacement of
lever arm e; and tensile force P using an inductive transmitter W 10.

The extension AL of the specimen versus tensile load H was recorded by
a XY -recorder type EFKI.

The rotation of end eross section @ versus bending moment M = P - e
was recorded by a Honeywell XYY’ recorder.
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b
Figs. 12a and 12b

5.3. Experimental

After having precisely measured the specimen, it was placed into the
testing machine and after having carefully balanced the instruments, the
tension H was applied by lifting the beam TG —1 by means of a spindle screw.

2 Periodica Polytechnica Civil 17/1—2
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At the predesigned strain (¢ > ¢r) a rest of 15 mins has been left for strain
recovery and then the bending moment was applied in small increments,
always with an interval of 15 mins between.
The applied maximum bending moment, still not producing a new yield-
line:
ML (E—-1)YMp = (i-1) —%%£ e . (18)

The test results on specimens marked B7 and B19 are shown in Fig. 13.
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5.4. Discussion of test results

The rotations due to the disturbance moment M/O in end cross sections
of specimens subject to a given tension and axial extension are shown in Fig.
14 as a function of strain e.

The stresses and displacements of the specimens are given in Fig. 13.
The bending moment and the rotation of the end cross section are related by
the so-called *‘stiffness stability functions® [7] taking the axial load into con-
sideration; in case of tension these functions contain hyperbolic functions

“since the applied moments at points D and E are equal, thus

@D @F ! l
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equation used to evaluate the test results, where E* = m, + E is an “over-all
modulus® belonging to a given strain &; S’ has been determined as a function

of p

P
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The M/O ratio obtained on the specimen in strain condition & was intended
to determine the effective value of my: since, however, m, occurs also in the
stability function §’, it is difficult to directly determine, so the test results
have been processed by simple iteration in a desk-computer. The obtained m,
values are shown in Fig. 16 as a function of ¢/e.. Test data and test results
are compiled in Tables 1 and 2. (Specimens A and B were used for determining
the material properties, and the bending moment, respectively.)

3*
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1
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6. Conclusions

From the observation of Figs 14 and 16 and Tables 1 and 2 it can be
stated that the experiments verified the assumption of uniformly yielding
steel members for the case of tension. The discontinuous vield concept is applied
for inelastic stability problems [8] concerning the lateral buckling of beams
under uniform moment and under moment gradient as well as the inelastic
local buckling.

Table I
et L b a oF ep= ”g z s=;; E h=.§—
No. H
mm mm mm Mpfem® - - - | Mplem® . —

Al 200.05  5.04 . 3.03 2.461 0.00117 0.0151 12.9 68.4 30.7
A2 200.02 | 5.03  2.98 2.290 0.00109 0.0138 12.7 63.2 33.2
A3 199,98 | 498  3.01 2.397 0.00114 0.0144 12.6 70.1 30.0
A4 200.01 . 5.02  3.04 @ 2.385 0.00113 0.0140 12.3 67.3 31.2
A5 200.03  4.99 2,97 2.490 0.00119 0.0152 12.8 59.2 35.5
A6 199.97  5.05  3.05 2.450 0.00116 0.0150 13.0 64.9 32.4

{ 2,412 0.00115 0.0146 12.7 65.5 32.2
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Table II
Test L b | d GF ep= O——; 3 -% ‘ (l ) my
No. !
mm mm mm Mp/em? - - - - -
1 20002 5.05 3.02 | 2437 | 0.00116 | 0.00133  1.146 112430 | 0.860
2 200.05  5.02  3.05 2416  0.00115 | 0.00116  1.010 | 1197.00 | 0.940
3 199.97 504 3.01 | 2461 | 0.00117 | 0.00119 @ 1.018 | 1070.05 | 0.801
420001  5.01 298  2.391  0.00114 | 0.00131  1.148 | 1036.40 | 0.758
520005 499  3.03 2473  0.00118 | 0.00124 | 1.050 907.20 | 0.613
6 200.02 | 5.03 | 3.01 2424  0.00116 | 0.00172 = 1.483 878.00 | 0.584
7 200.04 | 5.01 3.00 2416  0.00115 | 0.00195 | 1.695 746.90 | 0.450
§ 200,05  5.02  2.99 2454  0.00117  0.00221  1.890 530.10 | 0.250
9 199.96 @ 5.03  2.98  2.380  0.00113 = 0.00288 = 2.350 583.38 | 0.295
10 | 199.98  5.04 | 3.02 ! i
11 20007  5.01 | 3.02 2560  0.00119 | 0.00432  3.630 403.20  0.154
200.04 | 4.99  3.01 = 2.422  0.00115 | 0.00489 | 4.250 349.30 | 0.119

i
W

200.01  4.98  3.00
199.99 | 497 | 3.03
200.02 | 5.02  3.03

ok
M

394 0.00114  0.00656 5.760 291.60 | 0.085
513 0.00119 | 0.00715 6.010 250.60 | 0.064
3
4

a—
wr

P DRSSO RIS DN R D
—
|3

2.

2
16 | 199.98 | 501 3.01 = 2.433  0.00116 | 0.00849 ~ 7.320 | 268.00 @ 0.073
17 200.01  5.03 3.01 2408 000115 | 0.00938 = 8.160 | 236.60 | 0.058
18 | 200.02 | 5.02 298 2436 000116 | 0.01020 = 8.780 | 270.50  0.074
19| 199.97 502 3.04 2417  0.00115 | 0.01067  9.270 | 219.90  0.051
20 20002 | 5.04  2.99 , , ‘
21 20001 502 3.01 2384 000113 | 0.01289 11400 | 21170 0.047
22 20001 501 801 2415  0.00115 | 0.01400 12170 | 188.90 | 0.038
23 20002 | 499 302 2.4

416 0.00115 l 0.01480  12.890 17470 0.032

Acknowledgement

This study is a part of research program done to the commission of the Hungarian
Academy of Sciences: “*Plastic Design of Steel Structures®. The experiments took place in
the laboratory of the Department of Steel Structures, Technical University, Budapest. We
are indebted to the managers and the colleagues at the laboratory for their valuable assist-
ance, especially to Mr. Dezs8 Nagy, mechanical engineer, who constructed the testing appa-
ratus.

Notation
The following symbols have been adopted for use in this paper:
— width of an element:

d
E  — Young's modulus:
E  — strain-hardening modulus;
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Eyg — “over-all” modulus (reduced modulus);
or — ‘‘over-all” modulus (tangent modulus);

E* — “over-all” modulus for a given strain ¢;

h — ratio of elastic to strain-hardening modulus;

Jy — moment of inertia; ,

i — ratio of stress to create a slip plane to op;

L  — specimen length;

Il =L+ AL = L1 + &)

M — moment;

M; - plastic moment; .

m  — ratio of flexural stiffness at vield to elastic flexural stiffness;
myg — m corresponding to “reduced modulus™ conditions;
mp — expected m;

my — m corresponding to ‘“‘tangent modulus” conditions;
S = S(1 + C) — stiffness stability function [7]:

s — ratio of strain-hardening strain to yield strain-

T — reduced modulus:

£ ~— strain;

ep — vield strain;

& =s-¢p — strain at onset of strain-hardening;

4 — curvature.

#q -~ elastic curvature;

#p — vield curvature;

Hayg — average curvature:
— rotation of the specimen;

4 — slenderness ratio;

O — stress;

0q — proportional limit;
Op ~— static yield stress.

Summary

The effect of strain-hardening of structural steel has been studied both experimentally
and theoretically. Comparison between test results and theoretical studies on the effect of
strain-hardening proved a good agreement.
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