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1. Introduction

At a difference to the usual structural form of suspension highway
bridges, industrial steel structures are often designed with cables arranged in
non-vertical planes. Thereby the horizontal stiffness to wind loads of the whole
suspension gitdsr is increased by the cables in inclined plane helping the
stiffening bee « .o carry the horizontal loads. Due to the geometry of the
bridge section, however, the stiffening beam gets twisted and the response
of the structure is different from that of the ordinary suspension girders.

A general approximate analysis will be here preseated for suspension
bridges with cables in inclined planes subject to vertical and horizontal static
loads. The method is primarily suitable for narrow suspension tube bridges
under uniformly distributed static loads. This assumption is satisfactery for
the analysis of horizontal loading due mostly to wind loads. Nevertheless, the
method may be generalized to involve other cases of loading as well.

The approximate analysis is based on the energy method and on the
deflection theory, considering that I°° order theory cannot be applied to sus-
pension structures. A single restriction is made concerning the cross section
of the stiffening beam, namely it is supposed to have one axis of symmetry
coincident with that of the bridge. Otherwise the cross-sectional form is option-
al: opened or closed; thin-walled or conventional.

The assumptions for the whole girder system are the same as customary
in design: structures of simply supported stiffening beams suspended on two
cables of identical geometry.

2. Approximate analysis of vertically loaded suspension
structures with inclined cable planes

According to the energy theorem, in case of equilibrium, the potential
energy of the system is stationary. The potential energy of an elastic system
can be written as ‘

II= _(LK — Ly) (1)
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where L is the work done by the external load with the elastic deflection,
L, is the deformation energy of the whole structure. The deformation energy
of the system is obtained by summing the deformation energies of the cables
and the beam:
Loy=L,+ L, )
The deformation energy of the cable is composed of the work of the initial
cable tension H, along the deformation due to the imposed load [1]:

4
L,=—Hpi | v(2)ds. (3)

cg
0

and of the work done by the cable tension increment Hp:

I l !

s 1 ~ ' 1 R
= — % Hp yive ds — —;J Hyvpv,ds — . [H;, vl w, dz. (4)

L,

0 0 0
The deformation energy of the stiffening beam is:

l

~

1 .
L'§ = TEJJ v” (:) ds. (5)
B 0
For practical purposes the ordinates y, and v, in the cable-plane can be
replaced by corresponding vertical values.
According to Fig. 1:

and:
v,(2) == v(z) cosx

Thus, the total deformation energy can be written as:

1 ! 1
Vi 1 nr " 1 a " ”
L,=—H,y fv(:) ds— 7Hp ¥ J v(z) dz— —'D_Hp cos?z s v"(2) v(z) dz —
0 - 0 - 0 (6)
[ !
1 2 i ” : 1 i "y
_—:)—chos*oc] v"(5) v(z) d= TT;EJXJ v"*(z) d=.
- 0 - 9

The other part of the potential energy is the work done by the external
load, composed of the dead load and a uniform vertical imposed load p;:

I
Ly = (g +py) § v(z)d= M

0
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Thus the potential energy of the elastic system is

1 1 !
II=—H,y" | v(z)ds — %Hp y”J v(z) dz— —})—Hp coszy.j‘v"(z) v(z) dz —
0 B 0 B 0 (8)
) a L !
> H,cos? ZJ v"(z) v(s) dz- 5 EJ_\.J v"%(5) dz— (g——f~pl)J.1(:) 5

- 0 - 0 0
! b |
L |

Fig. 1

The expression simplifies, namely:

and after Kioeper—Lik [2] H, | v"v - dz~~ 0, the tensile emergy H, is
0
starting from the initial cable co-ordinates, thus it can be assumed that

¥y A2 yi. Hence:
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! ! !
1 ¢ r
v rds - j?-EJI v"?dz — py vdz. (9)

o 0 0 0

Applying the Ritz method, the function of deflection is approximated by the
first term in the trigonometrical series

. . Tz . dmz
v{z) # vy SN — < v, sIin -
] 2

T e

so that the definite integrals in (9) can be solved. The value of cable tension,

written in converted form:

o &l . 8f

{, = and V' = —
[ hd [2
i

[

which follows from the original form of the cable, and:

!
E.F, ' —
H, = ZEk g i vdz F uTJTI,T]
‘ L,"»; - il
0
deduced from the well-known compatibility equation [3] (considering the

temperature change, too) substituted into (9) yield:

{ 2 272
o BR[IBLE W, )

- 1
a1 al

+ (10)

For practical purposes the following geometrical and stiffness characteristics

may be introduced:

—I;zi.zgizn; II;i:—j-‘;i—:—“f‘—- ! (11}
I L L, l. cosz
T F. 2 2

K = E.Fy niil= E. F, 'L“ 1 - (12)
L, BB cos’xz I

B, = EJ; . (13)
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The value of potential energy can be written as follows:

. 128 _ 8 ’
IT=K cos? v T sp AT Lyvy |+
N .
> Jmn,
D) N
g7 7B, 2p, 1
+ —E——cosx - v} + X — P1 vy
32n, 2 4 7
The criterion of equilibrium is:
ell
=0
. Gl
aecordingly
., | 128 _ . ’ g1? .
Keos® 2| ——2p, =+ - — oty AT« Ly -+ —=———cosx- 2v; -+
a? g, M 32n, 7
1 9
- T B.\: 21}1 — “‘pll
4 7T
and from this
pil=Keos* o —op- AT Ly
n,
vy = — L g
! =B, 128 . . g7
e b K €087 2 - - — COS %
4 7 32n, 4

Factoring out from the expression (17) the approximate deflection

4 pl

= = - of the simply supported girder:
N 4 B2
14— g AT - Ly - cos® 2
o — 4 pl n,p -4 — g
% Sl =77 = = Vplly-
5 512 K . g Cos 2
B 1 ——cos*x + =
nt B, 8n,/i7n* B,

99

(14)

UU =

(18)

Consequently, the deflection of the suspension structure with cables in skew
planes is obtained by multiplying the deflection of a simply supported stiffen-
ing girder by a factor 7,. which contains the stiffness coefficients and geometri-
cal characteristics of both the beam and the cable and the value of dead load

as well.
Knowing the deflection function of the girder, the
and the shear forces can be obtained in the usual way:

M(z) = —EJ.v" ~ v, il‘— EJ,sin

bending moments

(19)
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7
Mpax = oy 7 P2

where

The maximum shear force at the support:

a3 4 Pl
T = vy 7 e EJ o= ——p, Iy, 7o L3
max Uoy M I EJ. s Pq l’/g 547

These values are in good agreement with those delivered by the trans-
formed form of the well-known Melan differential equation for suspension
girders. Using approximate analysis instead of the time-consuming exact
solution of the differential equation, good results can be obtained from simpler
relationships.

3. Approximate analysis of horizontally loaded suspension
structures with cables in inclined planes

The knowledge of the behaviour of suspension structures with cables in
skew planes exposed to horizontal load is of importance especially where —
e. g. for tube bridges — the beam is too narrow to have a horizontal stiffness
to resist horizontal loads. The numerical value of the horizontal stiffening
effect of the cable has also to be known so that the excess load due to the hori-
zontal loads in the cables and the internal forces in the stiffening beam can he
computed.

The basic assumptions of the approximate analysis based on the energy
method — in addition to the usual ones for suspension girders already referred
to — are:

a) The girder is subject to a single horizontal uniform load p, acting
on the stiffening beam at arbitrary depth;

b) in the state previous to horizontal loading only the dead load is
acting, and exclusively on the cables;

¢) the planes of the hangers and the cables coincide both before and
after horizontal loading:
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d) the deformation of the suspension girder due to horizontal load
consists of horizontal displacement u(z) and of twist ¢(s) of the beam cross
section (see Fig. 3):

e) the twist causes the suspension points of the beam cross section to
be vertically displaced by equal values, but in opposite directions;
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f) the stiffening beam is a simply supported girder of counstant cross
section, supplied at the points of support by a so-called “*fork™ grip to permit
twisting.

By means of the vertical load, the value of potential energy can be
written. In the expression for cable deformation energy — according to assump-
tion e) — the energy of the constant load in both cables is equal, but of opposite
sign, hence: '

Again, according to the assumption e) the energy of the cable tension increment
is equal in both cables and so the joint deformation energy of the two cables is

! ! !
Lo=L,=— S H,yiv.ds — { Hyvjv, dz — g H, viv. dz. 21

0 0 [

The deformation energy of the beam now consists of three parts: energies
of horizontal bending moment M,, of pure torsion moment M, and of the
warping moment W

where EJ,, GJ, and EJ, are bending, torsional and warping stiffnesses,
respectively.

Since
M, = —EJ, (u" + y,¢") (see Fig. 2) (23)
My = GJr¢'(s) and W= —EJ, ¢"(3) B
the totzl deformation energy of the beam is:
E ! ! . !
Ly = ")]y J udz+ v, EJ_\,J u’ " ds - -——-;I"’ vilgPds +
T . L (24)
GJr [ EJ, [ .
-+ 02 dz - 21" ds.
ki K
0 0

(3]

The energy of the external load is, according to Fig.

N !
[ udz+e | qu} . (25)

0 )]
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- !

Now, with the same neglect H | v"v dzs = 0 as for the vertical load, the
0

potential energy of the system can be written as:

! 1 l 1

= —y} }AH_D vy ds — JHg viv,dz -+ EJy Ju"g dz + v, EJ_\,JAI,L” " dz -+
; ) T 0 (26)
i . : :
-+ G;]TJ ¢'? dz — LEEJ\—?——I?-JL l r,l"'z dz — pQJ wdz — ep, l pds.
0 0 0 0

The function of deflection for the cable plane v,(z) can be expressed by that
in vertical plane u(z), the twist of the beam and the function of horizontal
displacement according to Fig. 3:

v (z) = ulz) sinz — o(z) cosx =D
and
v(z) = T ole)

so that only two unknown functions u(z) and ¢(z) occur in the formula of po-
tential energy.

These are substituted for trigonometric series, satisfying the boundary
conditions

x=10 x=10 ,
.:l}u:O, x:l}q,:z(),(f_o
m :
u(z) 22 Nusin—— (i =1,3,5 ... m)
= !
1 2 2kmz .
qp(z)gTquk(l-—-cos ka (E=1.3,5...n). (28)
= k=1

The expression of potential energy can be converted by solving the definite
integral in the expression of potential energy with these substituting functions,
replacing

=S
© 8f.cosx
!
F(8f [
Hp e ._E‘__L _84—1 LI‘(:) d: : A __ITLT
L, I; )

0

and introducing stiffness characteristics and stiffness ratios:
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B\ posemmy _-E_’_t!_‘\._ ._‘.Z—(_ == ;{v
& B, :
EJ\' CT -
5= B,
- ) (29)
L, L costa I B,
Cr = GL.IT
a*l
C— 4= EJ,
* @l
and two geometry ratios:
Yo e
Yoy L= (30)
a a

The potential energy is expressed by:

IT =64 K

(2 moy. a 7 2

= i N e

—sin g >— -+ —cosx >¢,| F
Pl b A = -

72 =1 I 4 =1

. 8K, (2, oy, oa L
+= }-cc_T.LITLTi—sm:z St —cosu ng:kl -+
n, /. i = 1 4 o B
fig asin®a M . mon o gkl ;o LN
+ 2 Situf —4dasing N N Pr LT 2eos 2 SE2 AR
8n,. AB, | 2 cosx T =i 17— 4E° =1 )

(31)

a2 g2 n 2 a? n
[ 5 ' 12 2 M o -4
- T o Ti T ~ Vg ‘;: k ¥

4 k== 4 =1
n 9 TR l n
4,2 S R S I X
+aty, Sk png——-aB—pQZZ%‘--
L1 aby, fe=l “b, fre=1

According to the Ritz-theorem, in case of equilibrium of the elastic
system, free parameters u; and ¢; must be of such values as to minimize to-

gether the potential energy.
This minimum condition is expressed by a linear equation system with

(m -+ n) unknowns:
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S _y (j=1.3.5...m)

Olli (32)
i _ (j=1,3,5...n)

Sgpj-

resulting in the functions of displacement u(z) and ¢(z) sought for.
For practical purposes a more favourable form is obtained by convert-
ing the equation system so as to include the unknowns in dimensionless form.

. 4p.,1 .
The unknowns divided by the approximate value u, = _P__ of the horizontal
I :—[a
Y
mid-span displacement of the simply supported beam results in new dimen-

sionless unknowns forming an unknown displacement vector

Q=ru -
113
115
—i;f?Z
7r
7s
%5

- q"fl .

where

i — a
u; = —— and g =-— —— .
Uy, 2

Eq. (32) can written in matrix form:
G-Q=R (34)

where the elements of the quadratic matrix G of size (m -~ n) include the stiff-
ness data of the suspension girder, and R is the load vector. It is reasonable
to partition the matrices by separating the components of the horizontal
displacement vector and of the torsion vector. Then a matrix equation with
#wo unknowns is obtained which can be written in the following form:

AU-B®=A,
B*U - D = A,,

where i
G =[A B], = [U and R =T[4,
B*D | D A,
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Taking from the function series for the horizontal displacement and for the
torsion m and n members, resp., into consideration, then U and @ will be vee-

tors of dimension m and n, resp. Now A is a quadratic matrix o
sion, D one of n

The hypermatrix G is symmetrical and so its fourth element B* is the trans-

posed of B,

The matrix elements can be expressed as:

fm-

A= Fa,; a, ag...a, |
Aoy Qyy By e v - Uy
Ugp Uy gz .. gy
_ Q1 Ay Qg o v Oy
1024 H -
a; = : - %, sin® x +
W @)
g sin® =z
6| (20 — 1)t ° 21 — 1)2
l/{( ) 47*> B, n,. /A cos « ( )J
(=1.2.3 m) 0;;=0, for i==]
(j=1.2,3 m) 0 =1, for i =
B= by b, by...b, "
by by byy. .. by,
by by, by ... by
b
_bml bm? bm:}w M bm.n_
2 27 —1)3(2k—1)3
bj’\.z 1 8 ‘1 “X\,Siﬂ21~'1—6— '(J )( ) "/—"
n Zj—-1 - 7 (2] — 1) —4(2k —1)?
_ 2gsinz (2j—1) (2k—1)2
a*n, /2B, (27 —1)> — 4 (2k—1)?
j=123...m
kE=1,2.3 n

(3

n dimen-
- n dimension, nevertheless B will be an oblong matrix m - n.

s
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dy dz; dog v v dz: n
dy dyy dg...d3
d ke

dnl dn‘.‘ dr:S R dnn_l

djy = T ycosE T ?[(2]-1)" 0, (2] —1)2 9] + 16(2j—1)* 2} 0+
g Ccos o .
2 (27 —1)26,,
4o n, ;B\ ( J ) Jjk
=1,2,3...n 51»;{:0 for j=k
E=1,23...n 03 =1 for j==F%
(38)
The solution of the equation system:
U=XA - VA,
i (39)
D =YA +ZA,
where
X=(A—BD-1B*-!
Y= —D-1B*(A—-BD-!B*)-!
V=—-A'B(D-B*A-1B)~!
Z = (D—-B*A-1B)!
since

o _[XV
Y Z|

Vectors U and @ give the parameters of the unknowns u; and ¢, respectively,
yielding the displacement functions:

m Fied
u(z) = N u; sin i (t=1,3,5 m)
= I
277z
1—cos J7

n I . )
§D(z):z¢j'_—2—(]=1,3,‘o..‘n).

With these, the internal forces of the stiffening beam of the suspension girder
can be written:
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M(z) = — EJ,u'(s) = —EJ, > u;~—— sin—= (40)
=1 -
d mo St inz
T(s) = — M (s) =EJ, > u~——cos ; (41)
- = 3

and the horizontal projection of the cable tension can also be obtained {rom

8K [2sinz 7 u; coso M K
S - [ c T NF = / 45
H,=uj— | ¥t o e N T ——— o ATLy (42)
4 P .‘) -y )
/ny. T [=1 1 F4 je=1 A=y,
where
_4p,l
Uy = —

B,

leading to a very simple form for the mid-span moment of the stiffening beam:

Mypax = EJ, S ——— (i = 1.3.5 ... m) (43)
or

M, as = ifi,__ (W, — 9y 2500 . . ) 2 My it (44)
where :

M T — | omT
il = u, — 9u,-25u; . ..

in a form similar to (20a).

The results can be simplified by omitting anv but the first terms of the
unknown functions replacing the trigonometrical series. Though this is at the
expence of accuracy, according to our investigations the approximation close-
ness requirements are more than met, since in all cases the error is within
4+129%,. In this case m = n = 1, and the equation simplifies intc an algebraic
equation with two unknowns:

ay uy -+~ b7 = ay,

- - (45)
by uy + dyygy = by
where
24
a;; =1+ }—%T% K, sin*z
2 1
by = ! 8 K, sin2x« —f—~—6-;f
as 3
64 4 gecoso

dy=—K, eos2ox — — (9 -0, + 169> =
P 7> r ) 47*n, 2B,
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=10 8K sina 2y ATL~
p?fk ~
byy= LA BaKcosz o2y ATL,
2 2p, fi 7
vielding:

T dyy a1y — byy by

17 5

ayy dyy — b1
B = ayy blO — by ay,

2
ay dyy — by

Carrying out the operations, the twisting and the horizontal mid-span
displacement of the stiffening beam are obtained in simple form as:

Uy = Uy Ty (46)
2 - -
71= el = To 'l (47)
a
where
5 . o,
di, (cos® x — esin 2 o) —+ e b+
= e 5= :
1024 56 256
P2 -—3~U’ 4 . 8in? y————?—— v sindo 4 4, 4+ — 19- > 2|
42 ot ' 32
4 >
~§e/ (4esin?x — sin 22) -+ 77 :Z—E‘ —
_— a* 4
s = 1024 . 236 . 256 =
; 2 v sin 2o 4o, 4+ —
3a% ’ : ;
(49)
For stiffening box beams where y = ¢ = 0, the expressions simplify
further:
4K, cos® 2 + —E; )
N, = 53¢ .;,, — (48a)
G — -i)K 1n*1—;~4[§\,—;~«—~29
L md ’ 4
and
64 . .
— K, sin2x
— ?
T 256 a* (492)

———-29 4 K, sin?a + 4K, + —79
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According to the presented approximate structural analysis, displace-
ment and internal forces of the suspension structures can be obtained in closed
form in the case of horizontal loads, too, namely introducing the factors 7,
and 7, reduce them to the corresponding values of a simply supported beam
like those for vertical loads. Our subsequent investigations. are concerned
with the determination of the optimum skewness of the cable planes to provide
adequate stiffness to both vertical and horizontal loads.

Summary

An approximate analysis for the current problem of narrow structures suspended on
cables in skew planes — such as tube bridges — is presented. The analysis is based on the
energy method and involves the usual simplifying assumptions. Accuracy is within - 1297,
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