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1. Introduction 

At a difference to the usual structural form of suspension highway 
bridges. industrial steel structures are often designf'd with cables arranged in 
non-vertical planes. Thcreby the horizontal stiffness to wind loads of the whole 
suspension gil r1"T is increased by the cables in inclined plane helping the 
stiffening be" .. 0 carry the horizontal loach. Due to the geometry of the 
bridge section, however, the stiffening beam gets twisted and the response 
of the structure is different from that of the ordinary suspcnsion girders. 

A general approximate analysis 'will be here pre:::ented for suspension 
bridges with cables in inclined planes subject to vertical and horizontal static 
loads. The method is primarily suitable for narrow suspension tube hridges 
under uniformly distrihuted static loads. This assumption is satisfactcry for 
the analysis of horizontal loading due mostly to wind loads. Nevertheless, the 
method may he generalized to involve other cases of loading as well. 

The approximate analysis is based on the energy method and on the 
deflection theory, considering that 1st order theory cannot be applied to sus­
pension structures. A single restriction is made concerning the cross section 
of the stiffening beam, namely it is supposed to have one axis of symmetry 
coincident with that of the hridge. Otherwise the cross-sectional form is option­
al: opened or closed; thin-walled or conventional. 

The assumptions for the whole girder system are the same as customary 
in design: structures of simply supported stiffening heams suspended on two 
cahles of identical geometry. 

2. Approximate analysis of vertically loaded suspension 
structures '\\'ith inclined cahle planes 

According to the energy theorem, in case of equilihrium, the potential 
energy of the system is stationary. The potential energy of an elastic system 
can he written as 

(I) 
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where L K is the work done by the external load with the elastic deflection, 
La is the deformation energy of the 'whole structure. The deformation energy 
of the system is obtained by summing the deformation energies of the cables 
and the beam: 

(2) 

The deformation energy of the cable is composed of the work of the initial 
cable tension Hg along the deformation due to the imposed load [1]: 

I 

Lea = -HaY;' \' v,.(z)dz, 
~ ;::,- f. 0 ,. (3) 

and of the work done by the cable tension increment Hp: 

I I 

L 1 J"H "d 1 J'H 'I d cp = - D 'VI·' v,. Z - - P VI' e,.. z 2" . J. " 2 ,. .. (4) 

o 

The deformation energy of the stiffening heam iE: 

I 

- Jy l' (z z. lE J~"')d 2 .. (5) 

For practical purposes the ordinates y" and V" in the cable-plane can be 
replaced by corresponding vertical values. 

According to Fig. 1: 

cos x 
and: 

Thus, the total deformation energy can be written as: 

I I I 

o '). ') 
La = -HaY"Sv(z) dz- ~Hp Y"J~v(z) dz- ~ Hp cos'!. X l~v"(z) v(z) dz 

o - 0 - 0 (6) 
[ I 

- ~ HgCOS2Xfv"(z)v(z)dz -+- ~ EJxJV"2(z)dz. 

o 0 

The other part of the potential energy is the work done by the external 
load, composed of the dead load and a uniform vertical imposed load PI: 

[ 

LK = (g + PI) j' v(z)dz. (7) 
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Thus the potential energy of the elastic system is 

I I I 

II = -H,,:y" J~v(z)dz - 1 Hrl'j"v(Z) dz-~. HpCos2xJv"(z) 1'(z) dz-
" ,,2 2 

o 0 0 (8) 
I I I 

~ Hg~OS2X r,,,(Z) v(z) dz-:'" ~ El"J V"2(Z) dz-(g+ PI) f V(z) dz, 

I 
I' a-. 

The expression simplifies, namely: 

I 

~[ ;' +n. 
y 

Fig,l 

g=O 

and after KLOPPEL-LIE [2] Hp J v"1' . dZ?8 0, the tensile energy Hp is 
o 

starting from the initial cable co-ordinates, thus it can be assumed that 

:Y;;1 ~ :y;;. Hence: 
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I I I 

[J = -- ~ H v" l'vdz 
') p" 
~ , 

1 H 0 j'" 7 I - IJ COS-X r r [!~ -:-
') , 
~ .-

1 /' ~ 

2 ElxJ V"2 dz - Pl J V dz. (9) 

o o 0 

Applying the Ritz method, the function of deflection is approximated by the 
fin;t term in the trigonometrical series 

. ::r::; 
i'l S111-

I 

37TZ , 

so that the definite integrals in (9) can bc soh-cd. The yalue of cablc tension, 
"'.uitten in conYertf'd form: 

H(!= 
8f 

and " v 

',dlich follows from the original form of thc cable, and: 

I E,.FI·l "I' 1 - iTI 1 -"-" y ) vc::; ""I XT.:..! 0T 

L k • J 
o 

deduced from thc well-known compatibility equation [3] (considering the 
t"mpcrature ehange, too) substituted into (9) yield: 

(10) 

32fl 
cos2 X· l'f 

For practical purposes the following geometrical and stiffness characteristics 
may be introduced: 

[2 '0 f 
--~-'--n' 
If:-''l~- , 

B = El" 
x p' 

j;, f 1 
11,.=-=---

.. lie lk cos X 

1 F 
[ 2 

le 

(11) 

(12) 

(13) 
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The value of potential energy can be written as follows: 

II I- 0 [128 0 - 8 JT L J = .l\.. cos- 7. .) Vi -;--, 7.T·· - T VI + 
:-;;- I.:-;;nk 

The criterion of equilibrium is: 

accordingly 

.) 

t· 1 

g:r-
--"--- cos 7. . 2l'1 

32 nl; i. 

.IE ') I _ :..<- x 9,. _ ""PI 
-'1-

-1 :r 

and from this 

VI = 
---''---- cos 7. 
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(14) 

(15) 

(16) 

(1 -," ) 

F actol'ing out from the expression (17) the approximate deflection Vu 

4 I 

Bc 
of the simply supported girder: 

4·K 
-- 7.7' JT . LT' cos2 X 

l· i. -
--------c;~'-=-'"=-------- -----.- = V01),.. 

cos 7. 
1 -- -- cos2 7. ...L _.oc _____ _ 

:-;;6 Ex 

(18) 

Consequently, the deflection of the suspension structure with cables in skew 
plancs is obtained by multiplying the deflection of a simply supported stiffen­
ing girder by a factor ll,., which contains the stiffness coefficients and geometri­
cal characteristics of both the beam and the cable and the value of dead load 
as well. 

Knowing the deflection function of the girder, the bending moments 
and the shear forces can be obtained in the usual way: 

.) 

'I( ) EJ" :-;;- EJ . :r:; -y :; = - x v"'''' l'1 - x SIn - F - l 
(19) 



100 J. nSO.'TAI 

d ;[3 ::rZ 
T(z) = -NI(z)?, 1'1 EJxcos-. 

dz P' I 

The maXllllUm moment at the mid-span: 

where 

The maXimum ~hear force at the support: 

PI I 
-- 'I '>r,' t .... ., 

(20) 

(20a) 

These yalues are in good agreemf::nt with those delivered by the trans­
formed form of the well-known ::\lelan differential equation for suspension 
girders. Using approximate analysis instead of the time-consuming exact 
solution of the differential equation, good results can be obtained from simpler 
relationships. 

3. Approximate analysis of horizontally loaded suspension 
structures with cables in inclined planes 

The knowledge of the behayiour of suspension structures with cablcs in 
skew plancs exposed to horizontal load is of importance especially where -
e. g. for tube hridges the heam is too narrow to haye a horizontal stiffness 
to resist horizontal loads. The numerical value of the horizontal stiffening 
effect of the cable has also to he known so that the excess load due to the hori­
zontalloads in the cahles and the internal forces in the stiffening beam can he 
computed. 

The hasic assumptions of the approximate analysis hased on the energy 
method - in addition to the usual ones for suspension girders already referred 
to are: 

a) The girder is suhject to a single horizontal uniform load pz acting 
on the stiffening heam at arhitrary depth; 

h) in the state previous to horizontal loading only the dead load is 
acting, and exclusiyely on the cables: 

c) thc planes of the hangers and the cahles coincide hoth hefore and 
after horizontal loading; 
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d) the deformation of the suspension girder due to horizontal load 
consists of horizontal displacement u(z) and of twist rr(z) of the beam cross 
section (see Fig. 3); 

e) the twist causes the suspension points of the beam cross section to 
be ycrtically displaced by equal yalues, but in opposite directions; 
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f) the stiffening beam is a simply supported girder of constant cross 
section, supplied at the points of support by a so-called "fork" grip to permit 
twisting. 

By means of the yertical load, the yalue of potential energy can be 
written. In the expression for cable deformation energy - according to assump­
tion e) - the energy of the constant load in both cables is equal, but of opposite 
sign, hence: 

Again, according to the assumption e) the energy of the cable tension increment 
is equal in both cables and so the joint deformation energy of the two cables is 

I 
- \. H" ,< i',. d::; . ~ t. ., 

iJ 

I 

\' Hp t:% i\ cl::; 
I 

.\' Hg 1';; Vi: dz. 
o 

(21) 

The deformation energy of the beam nu\\" consists of three parts: energif'~ 

of horizontal bending moment iVIy, of pure torsion moment JJT and of the 
warping moment If': 

I I 
1 

L g = 
~ 2 

1 1" :t,rZ dz 1 J'rr:,z dz iu T-- -- IY--

2, ClT 2. El" 
(22) 

o 0 

where Ely, Cl}, and El.) are bending, torsional and warping stiffnesse;;. 
respectively. 

Since 

lVIy = ,-Ely (u" + Y",'7;") (see Fig. 2) 
(23) 

MT = ClTrp'(z) and W = -El."p"(::;) 

the tot,,] deformation energy of the beam is: 

I ! I 

El y J~ "2 d.,...L • El J' " If d.,. u .~ I )" V u rr ~ 2 . 
o 

El\' "\' ItO 1 ' --,- y- (r - I '" ~ 2 -" W ... , ¥.;,; t 

o (24) 
I 

El" J' 119 d --rp-z. 
2 

o 

The energy of the external load is, according to Fig. 2: 

I [. I I] 
pz J IIp dz = pz J udz+e .r (r dz . 

o 0 0 

(25) 
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I 

]'if ow, -with the same neglect H \" v" to dz = 0 as fm- the ,-erticc11 load, the 
- P .' o 

potential energy of the system can be writtE'Il as: 

I I I 

II - yZJHpvl:dz 

I 

JH2 v/:v ,:dz .. 1' lL"~ d:; 
2 .. 

.. r" EJ"Ju" rp" dz-

o 

1 [ 

eJT J'~ Iq 1 '. ~EJ<) I' ,,2 1 J'~ d -- er" ( :; - '::'-'-~--- .. cIF C Z - p.) u :; 2 . 2 .. 

[ 

epzJI((/:;. 

o 

(26) 

The function of deflection for the cable plane VIJ:;) can hE' exprE'ssecl by that 
in vertical plane v(z), the twist of thE' hcam and the fUllction of horizontal 
displacement according to Fig. 3: 

vJz) = u(z) sinx t·(:;) cosx (:27) 
and 

a 
r (:;) = 2 IT(z) 

so that only two unknown functions u(z) and q-(z) occur in the formula of pu­
tential energy. 

These are substituted for trigonometric series, satisfying the boundary 
conditions 

x = O} u = 0: x = [ . 
x=O} 0 I 0 q- = : q = 
x l 

l1l • 

( ) 
.... .., . L7Z (. 1 3 - ) 

ll':; ~ /~ U i SIn -- I = , ,;)... m 
~I I 

I((z)r-....-- Yrp" l--cos-- (k= 1,3,5 ... n). 1 11 ( 2k:-rz) 
2 /;:1 1" 

(2S) 

The expression of potential energy can be converted by solYing the definite 
integral in the expression of potential energy with these substituting functions, 
replacing 

[ 

H = E"F" (' Sf" J'v .(:;) dz 
P L [2 I. 

" " o 

and introducing stiffness characteristics and stiffness ratios: 
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Elx 
[3 

B = Ely 
Y f3 
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K= E"F;. F _1_ F 
Lie n cos~:z n 

CT 
GlT 

a~l 

C 
4:t:~ El", 
-- --

F a~l 

and two geometry ratios: 

e 
?; --- == c. 

a a 

The potential energy is expressed by: 

IT 
( 

.) m 

64 K -=- sin x ~ 
:t: i=1 

. m ll· a n I 
sIn x;;;; -.' - -:- cos:z ~ g;,1: -

i=1 1. 4 k=l 

:rg 

'"' m ll. I Tl 

j J., I >' -' - --po I >' if!' 
B - -==' ')B - ~ , 

:t:" i=! i - Y k=1 

(29) 

(30) 

(31 ) 

According to the Ritz~theorem, in case of equilibrium of the elastic 
system, free parameters lli and V j must be of such values as to minimize to­
gether the potential energy. 

This minimum condition is expressed by a linear equation system with 
(m n) unknowns: 
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=0 
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(j 1,3,5 ... m) 

(j= 1,3,5 ... 11) 

resulting in the functions of displacement lie:) and r((z) sought for. 
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(32) 

For practical purposes a more favourable form is obtained by convert­
ing the equation system so as to include the unknowns in dimensionless form. 

I .Jp.,! f I I . The unknowns divided by the approximate va ue U o --=- 0 t le lOrIzontal 
;roB" 

mid-span displacement of the simply supported beam resl.{lts in new dim en­
sionless unknowns forming an unknown displacement vector 

.Q r III -I 

u3 

lis 

lIn; 

ij\ 
rh 
(P; 

Lrf"..J 
\\-here 

-
and 

a ((i 
lli - ?,. 

lit) :2 lIo 

Eq. (3:2) can written in matrix form: 

(34) 

where the elements of the quadratic matrix G of size (m 11) include the stiff­
ness data of the suspension girder, and R is the load vector. It is reasonable 
to partition the matrices by separating the components of the horizontal 
displacement vector and of the torsion vector. Then a matrix equation with 
two unknowns is obtained which can be written in the following form: 

AU Bcp 
(35) 

B*U -'- D cp = A~, 
where 

and 
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Taking fTom the function series for the horizontal displacement and for thc 
torsion ill and II mcmbcrs, rcsp., into consideration, then U and (fj will bc vec­
tors of dimension ill and n, Tesp. Now A is a quadratic matrix of In . n dimen­
sion, D one of n . n dimension, nevertheless B will be an oblong matrix In . n. 

The hypermatrix G is symmetrical and so its fourth element B* is the trans­
posed of B. 

The matrix elements can be expressed as: 

(i= 

(j= 

A = ,'(in 
(i~l 

a;ll 

G:!3' .. a;!.m 

10~4 
, 
1 . t') 

6 ;r 
%v Slll- X -

(2i--1)(2j-1) -

- . i Q'Sln-x . l 
. 0 

o (2z - 1)-· -'- -- v . --- (2z 
IJ lOB' 

·1;r- y 11 1:1. cos X 

1,2,3 111) bij = 0, for i ] 

1,2,3 m) bij 1, for i =J 

B - 'bn bu b\3 • b1•n 

bZ1 b 22 b2;l • b2•rz 

b~l b:lZ b33 • b3•n 

b _ 128 1 . . ') 
jlc - --.- --.-- %" SIn ~ x 

n' 2J-1 -

16 (2j 1)3 (2k-1)2 
y­

n (2j _1)2 -4(2k _1)2 

2g sin x 

;r3 11 ;),By 

j = 1,2,3 ... In 

k = 1, 2, 3 ... n 

(2j-1) (2k-1f 

(2j 1)2--4(2k-1)2 

(36) 

(37) 
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D = dll dl2 dl3 ·•• dl. 11' 

d21 d22 d23 ••• d2,,, 

d31 d32 rl33 ••• d3, n 

I dr:3 ••• dT1 ,,-.J 

107 

{ :2 [(2j_l)'1 8",+(2j-l)2 8es ] 

gCOS7. (2j-l)2b
j

/: 

4:-r2 nl; I.By 

16(2]' _1)01 V 2 } b'o-L 
I JI<.! 

] - 1,2,3 n bjk = 0 for J 
k 1,2,3 n bp{ 1 for ] 

The i3olution of the equation system: 

where 

SInce 

U = XA1 -;- V A2 

<p Y Al Z A2 

X (A-B D -1 B*)-l 

Y = D-1 B*(A-B D-l B*)-l 

V= _A-IB(D-B*A-IB)-l 

Z = (D-B*A -1 B)-l 

k 

(38) 

(39) 

Vectors U and <p give the parameters of the unknowns ll; and erj' respectively, 
yielding the displacement functions: 

( ) 
;::, . i:-rz (. 

II Z = "U 0 SIn -- ~ 
.... I 1 
;=1 

1,3,5 .. 0 m) 

11 1 cos 

cp( z) = .:E rp j 0_--=:--- (j 
;=1 2 

1,3,5 ... n). 

With these, the internal forces of the stiffening heam of the suspension girder 
can be written: 
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M (z) = - y 

n2 .'):) 

EJ "(-) - -EJ ..... L-"-_~. \" H ~ - \. /" HI ~ln . . ;:i [2 

l::rZ 
( 40) 

(4.1 ) 

and the horizontal projection of the cable tem:ion can also he obtained from 

m .... 
~l i 

cos X 

2 

K 
(42) 

"'.) ., 
/.- Il,{ 

where 

,,5 R. 

leading to a yery simpli' form for the mid-span moment of the stiffening beam: 

L3,5 ... m) (-13) 

or 

JJy,max (44) 

where 

III a form similar to (20a). 
The ref'ults can be simplified by omitting any but the first tf'rms of the 

lUlknown fUllctions replacing the trigonometrieal series. Though this if' a1 the 
expence of accuracy, according to our inyestigations the approximation close­
ness requirements are more than met, since in all cases the error is 'within 
-'-12%. In this case In = n = 1, and the equation simplifies into an algebraic 
equation with two 11nknowns: 

(45) 

where 
1024 

1 -- Ky sin:! x 
:TU 

d 64 "Co 0 4 (0 0) 
11 = -.l\.\, cos- x -:- --;- T -- " 

".! . ,,~ 

cos X 16)J2...;... _0" ___ _ 

4::r"' n k I.By 



b 
:-r 

10 = 
:2 

yielding: 
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3:-rK COS Y. 
e -'- -')-----1'-'-- Y.T J T LT 

"-pz J I: I. 

a 11 alO bn blO 

all all bIl 

~l blo..... __ b1.l~ 
an an - bIl 
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Carrying out the operations, the twistillg and the horizontal mid-span 
displacement of the stifff'ning hE'am are obtainE'cL in simple form as: 

(46) 

lio '70 = er o/)o (47) 
a 

where 

( -18) 

8 ,,)-
3 I_ 

(49) 

For stiffening box beams where )' = e = 0, the expressions simplify 
further: 

(48a) 17u = -r-=')-=--:6---\ ---------:-r-:2 -

---;)- 8-4) Kv sin2 Y. 4Ky - 8 
, :-r-1 ,- 4 

and 

(49a) 
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According to the presented approximate structural analysis, displace­
ment and internal forces of th.; suspension structures can be obtained in closed 
form in the case of horizontal loads, too, namely introducing the factors 1/" 
and 177 reduce them to the corresponding values of a simply supported heam 
like those for vertical loads. Our subsequent investigations are concerned 
with the determination of the optimum skewness of the cahle planes to provide 
adequate stiffness to hoth vertical and horizontal loads. 

Summary 

An approximate analysis for the current problem of narrow structures suspended on 
cables in ske\\' planes - such as tuhe bridges is presented. The analysis is based on the 
energy method and involves the usual simplifying assumptions. Accuracy is within I:!"". 
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