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1. Introduction 

The strain of freely extendiug wires loaded by tension F = const. may 
become steady with time, hence no rupture occurs; or the strain increases and 
finally the 'wire fails at a finite or infinite time (curves a and b, resp., in Fig. 1) 
[11 ]. 

Applying an initial stress Go to the wire to extend it by i.o and keeping 
the extension at a constant value, the stress will decrease and tend to a limit 
value in infinity. These phenomena are termed creep or yield, and relaxation, 
respectively. Fig. 2 is a diagram of the percentage relaxation function 

-G 
R = --'--- . 100. The quoted phenomena still need to be explained from metal-

0'0 

lography aspects, hence they cannot be exactly formulated so as to fit any case. 
Probably, however, both phenomena have identical or rather similar physical 
bases. Creep process of the form b in Fig. 1 occurs generally at higher temper­
ature or upon a rather high tensile load. Process a is rather similar in form to 
the relaxation curve. In the construction practice, knowledge of the creep form 
a and of the relax:1tion process in Fig. 2 are of importance, to be analysed in 
the following. 

The initial marked rise of the curves upon loading may be explained by 
the action of dislocation foci within the material, easy to initiate. Deformations 
cause the initial dislocation density to increase, dislocation displacements are 
impeded (e.g. by dispersed carbides), crossed and blocked - all being effects 
causing the material to strain harden; s-:rain and relaxation rates to decrease. 
Normal concrete curing temperature being below that of steel recrystalliza­
tion, no recovery process occurs, deformation rate decreases, both strain and 
relaxation tend to a finite limit value. (Cold-drawn prestressing wires are 
exposed to still lower tempcratures to avoid risk of annealing.) 

In designing prestressed concrete units it is advisable to know relaxation 
values, however inaccessible to direct measurement they are because of too 
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long intervals, therefore results of short or long-term tests have to be extra­
polated intermediating theoretical considerations. 

2. Rheological models and functions 

The simplest model yielding finite KH and RH values (see definitions in 
Figs 1 and 2) is the Hooke-lVIaxwell one involving three parameters and 
parallel connection. (See e.g. Fig. 2; a in [1] in this iS3ue.) 

Its behaviour is described by 

(1) 

. 171 
where t = tIme: T1 = - a constant of time unit in svstem "lVI," the so-called , kI ,J < 

relaxation time. Time axis being of log t scale, the function is "S"-shaped. 
Some authors state to be experimentally demonstrable that for prestress­

ing wires exposed to rather high initial stresses 0'0 and high temperatures T, 
the "S" curv~ section about and after the inflection point can be measured, 
while for high-grade wires exposed to lower 0'0 and T values, only the first, 
concave (parabolic) section of the "S" curve can be measured for a short time 
[2]. 
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In general, rheological behaviour of real materials is attempted to be 
simulated by means of Max.well and Kelvin-Voigt units connected in series 
(Fig. 3). 

Model ex.tension being: 

17i 
where r· =-

C k. 
I 

. F I F 
J.=-,_·t 

ko 170 

(i = 1, 2, . ._, n). 

Fig. 3 

(2) 

Because of the second term describing the viscous £Io·w, for t -+- co, i . ......er =, 
contradictory to both observations and preassessments in civil engineering. 
Omitting, however, the dashpot of viscosity 1)0' the system had no permanent 
deformation. This contradiction can be lifted by an increasing function I) = 

= 17(t) corresponding to a time-thickening material as referred to hy REli'<ER 

[14]. 
Possible simpler forms of the second term are 

• ·V I T; 
1 .. ,=--, J' 
~ b t 

(b > 0, t ' 0), (3) 

or 

(4) 
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Both haye /.2 -+ V for t -+ =. Expressing the flow of increasing yiscosity in 
Eq. (2) according to (4) (omitting the first term for elastic strain), creep or 
relaxation can he written as the sum of at least two functions type (1 - e _X) 
- or more ones to hetter approach real materials. 

For 1) / const., it is justified to have T; = ?Ji(t)/ki not only in the second 
term of (2), i.e. in the Maxwel1 system connected in series hut in all consecutive 
Keh-in-Voigt units J(V1, J(V2, ••• , KVn • The increasing viscosity slows down 
the creep and relaxation process. This deceleration can he illustrated by replac­

lllg 

In the exponent of (2) e.g. hy 

fi(t) = -ate (0 < c < 1), (5) 
or 

h (t) = -a log t (6) 

(In this latter case the exponential function hecomes of course a hyperholic 
one.) Therehy the form (1 - e -VI) proposed hy PALOT_.\.S [3] for the concrete 
creep functions becomes phenomenologically justified. Logarithm base has 
intentionally heen left undefined for the log t function, it heing irrelevant he­
cause of the constant chosen arbitrarily. 

In creep or relaxation tests on real materials, a non-negligible part of 
creep and relaxation takes part up to starting the test at time to, or better, 
already during the load application, a proportion depending on the initial 
stress (J 0' the loading rate and the temperature. This fact should he considered 
in writing the equations, to avoid important distortions especially oyer room 
temperature. 

3. Functions for extrapolating stress relaxation 

Functions possibly harmonizing with rheology models, fitting measure­
ment points in the measuring range, permitting extrapolation and easily com­
puterized are sought for. This last specification means that the equation system 
defining the indefinite constants of the approximating function - according 
to e.g. the Gaussian principle of the sum of least squares of deviation - is 
possibly a linear algebraic equation system. 

3.1. Utilized and suggested functions 

The following functions have heen tested for extrapolahility: 

R = a o . .. , (7) 
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log R = a o a 1 log t + a2 log2 t + ... ; 

V R being the relaxation rate; 

R = RH [1 - exp (.3E aixi)l; 
1=0 ,.J 

R = RH [1 - exp (af(t) + c)], 

possible forms of time functionf(t) being e.g.: 

f(t) = tb, (0 < b < 1), 

f(t) = log t. 
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(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

Approximate functions of forms (7), (8), (9) have often bcen published (e.g. 
[4], [5], [6], [7], [8], [10]). Their common deficiency is to have no limit value 
and to describe only the first, so-called parabolic section of the quoted "S"­
shaped functions, at an about satisfactory accuracy. 

They suit approximation, hence extrapolation in the measuring range, but 
no reliable result may be expected of an extrapolation if not after long-term 
Iueasurements. 

The higher the degree number of the approximating polynomial has been 
chosen for (7) and (8), the better the approximation 'within the measuring range. 
The suitable number of polynomial degree can only be found by trial, with 
due care to have the function monotonously increasing e.g. in the range 
o < t < 107 h. Our tests showed the degree number to be 3 -;-- 4 as a maximum. 
Omitting all but the first two terms in (8), this 'will be a simple parabolic approx­
imation to linear scale, namely the coefficient al is always greater than zero. 

Function of form (9) approximating the relaxation rate supposes a hyper­
holic rate function, relation al < 0 being always valid. In this case, for al < -1 
tbe relaxation has a limit value, nevertheless the usual measurement periods 

exhibited -1 < a 1 < O. 
Developing first differences of the obtained relaxation values and divid­

ing them by the time interval delivers an approximate value for the difference 
quotients, equal to the derivative at a given point of the given interval. As a 
first approximation, this difference quotient can be assigned to the mid-point 
of the interval, and to the obtained point set, an approximate function- approx­
imate relaxation rate function - may be fitted. In its knowledge another 
assignment point can be chosen, yielding a closer determination of the rate 
function. This procedure may be continued to the desired accuracy, the relax­
ation function will then be obtained after integrating the rate function, by 
causing the relaxation function to pass through a selected point of the recorded 
relaxation point set. 
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In using functions of forms (7), (8) and (9), from computer technique 
aspects it is rather useful to obtain unknown coefficients ai by solving a linear, 
inhomogeneous algebraic equation system. 

Rheology characteristics are better met by a function type (10). By in­
creasing the degree number of the polynomial in the exponent of the natural 
logarithm base, the approximation may be improved. However, difficulties 
mentioned for (7) and (8) subsist; in particular, if e.g. in the range 0 < t < 107 h 
the exponent polynomial is no monotonous function, then it is unfit for extra­
polation. For k > 2, this problem almost certainly occurs. Increase of the 
degree number and extrapolability are thus contradictory requirements. 

Further computing difficulties are due to the non-linearity of the equa­
tion system defining constants RH and ai' Conveniently choosing RH' this 
problem may, however, be linearized, and making the minimum sum of square 
deviations in the measuring range a requirement, the RH value may be deter­
mined by iteration. Appropriately choosing k = 1, monotony can be provided 
for, then, ho"wever, there is a rather poor approximation, and thus, practically, 
no extrapolation is possible 'with this function type. 

To now, best results have been achieved with functions type (11) and (12). 
Although in defining the constant k, RH and b make the problem a non-linear 
one, this function has the advantages quoted in item 2. RH lends a limit value 
to the function, b accounts for deceleration and c for delay - at a little error. 

Function types (11) and (13), in fact hyperbolic due to a < 0, have similar 
properties. Function log t in the argument of the exponential function is also 
here for deceleration. 

To illustrate suitability of functions type (7), (8) and (11), Table 1 pre­
sents recorded and calculated percentages in a relaxation test of 35,000 h. 
[12]. The wire 0 7 mm was tested as delivered, at 20 == 1 QC and at an initial 
stress u 0 ?'S 0.65 U B' 

Equation system defining unknown constants of functions type (11) 
and (13) may be linearized by appropriately choosing RH and b, requiring the 
specific minimum of the sum of squares of deviation interpreted by the rela­
tionship: 

where n is the number of records, Rm and Rc are the recorded and calcul­
ated relaxations, resp. Choosing tabulated values for RH and b, the value of 
function (j)spec = (j)spec(R H , b, a, c) is near the optimum (minimum), of course, 
hO'wever, the accuracy could still be improved by iteration. The fair agreement 
between recorded and calculated values proves this function type to yield a 
good phenomenological description of relaxation. 
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Table 1 

Functions fitted to a data set of 
35,000 hours [12] 

Relaxation R ~~ 

Time 
Calculated Rc 

h Recorded 
(11)-(1:;) Rm (8) 
RH = 12 k=~ 

b = 0.314 

Ht 2.53 2.53 2.50 

100 3.85 3.85 3.81 3.96 

1000 6.03 6.03 6.09 6.01 

8760 8.67 8.68 8.78 8.67 8.54 

10,000 8.81 8.85 8.90 8.83 8.71 

15,000 9.39 9.34 9.30 9.32 9.26 

17,520 9.48 9.52 9.45 9.50 9.47 

20,000 9.71 9.67 9.58 9.66 9.66 

25,000 9.89 9.92 9.79 9.92 9.98 

26.280 10.00 9.97 9.84 0.98 10.05 

35,050 10.25 10.27 10.12 10.31 10.47 

100,000 11.16 11.12 11.46 12.09 

300,000 11.71 12.16 12.52 13.91 

1,000,000 11.94 13.28 13.42 16.03 

<Pspec 0.000864 0.001792 0.010 798 

In the second column of calculated values, approximation results by the 
functions type (ll) and (13) have been compiled. Though less than the former 
one, this function type can also be stated to suit extrapolation. For increased 
RH values, <Pspec decreased gradually. The table shows calculated values belong­
ing to an - if not optimum but physically still meaningful - RH = 100 value. 

Next two columns show approximations by functions (7)-lin-Iog and (8)­
log-log. In order to improve the approximation, the degree number k of poly­
nomials has been raised as long as monotony could still be maintained - in the 
range often referred to. In the records range, the calculated and <Pspec 

values sho'w a close approximation but yield rather deviating extrapolated 
results, in spite of the long test period. Choosing k = 1 for function (8) accord­
ing to the FIP recommendation [6], 1,000,000 h (about 114 years) would exhibit 
a relaxation of 19.17%, a rather overestimated value. It is interesting to note 
that the Skandinavian formula for loss prediction [15] yields a final relaxation 
RH = 12.5%, near to the extrapolated values by functions (11)-(12), (11)-(13) 
and (7), resp. 

5 Periodica Polytechnica Civil 17/3-4 



176 

Time 
h 

120 

1000 

8760 

17,520 

26,280 

35,040 

43,800 

52,560 

61,320 

70,080 

78,840 

83,593 

87,600 

100,000 

300,000 
! 

1,000,000 
! 

<1>spec 
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Table 2 

Functions fitted to a data set of 
70,000 h [13] 

Relaxation R kgf/mm2 

Calculated Rc 

Recorded I (11)-(12) ! Rm (7) 
Rn= 30.5 k=4 
b = 0.272 

13.61 13.66 13.62 

16.00 15.89 15.96 

19.00 19.24· 19.25 

20.85 20.52 20.50 

21.30 21.31 21:.28 

21.82 21.88 21.85 

22.18 22.33 22.31 

22.58 22.70 22.69 

23.05 23.01 23.02 

23.40 23.28 23.31 

23.57 23.51 23.57 

23.68 23.63 23.70 

23.77 23.73 23.80 

23.99 24.10 

- 26.11 26.72 

- 28.07 29.92 

I 
0.02349 0.022 61 

(8) 
k=4 

ii 13.62 

15.97 

19.25 

20.50 

21.28 

21.85 

22.31 

22.69 

23.02 

23.31 

23.57 

23.70 

23.81 

24.10 

26.72 

29.89 

0.02260 

Table 2 offers a further possibility of comparison. DUYIAS pre-stretched 
a wire of nominal 150 kgf;mm 2 tensile strength by applying roughly the same 
stress of 150 kgf;mm2, unloaded it, then measured relaxation under the same 
initial prestress during 10 years at 20 cC (wire No. 10, p. 14 in [13]). 

Our calculations for all three types were made by fitting functions to the 
measured points only to 70,080 h, and the other values have been extrapolated. 
It is interesting to see functions type (7) and (8) to deliver almost the same result, 
at an approximation somewhat better than for (11) and (12), although the 
accuracy of these latter functions could still be improved by iteration, as already 
mentioned. The startling accuracy of results of functions type (7) and (8) may 
be attributed to the rather prolonged measurement, obviously, the log. scale 
of the abscissa axis "densifies" long-time values. 
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This table supports our statement that "lin-log" and "log-log" functions 
(7) and (8) proved for prolonged measurements, while being normally useless 
for extrapolation from short-term measurements. 

3.2. Other applicable functions 

There are still other functions likely to truly describe the quoted rheologi­
cal properties of the prestressing steel, and suitable to extrapolation. 

Statements on function type (11) in item 3.1 concluded it to well fit 
records - especially using function f(t) type (12) - and to deliver reliable 

. assessment values. Another possible choice of function f(t) takes time-dependent 
Increase of viscosity into consideration: 

f(t)=---
19 (t + m) 

where m is an aptly chosen constant. 

(14) 

The relaxation curve can be approximated by a hyperbola such as: 

R R (1 a) = H - (t + by . (15) 

For a >0 and c > 0, the function tends to a limit value of RH for t -+ =. 
This function may be considered in fact an improved variety of (11) to (13). 

Still, actual computations are needed to decide utility of functions type 
(11) to (14) and (15). Computing "difficulties" are also present here, without 
causing serious trouble. 

Summary 

Fitness of approximation and extrapolation functions of the form usual in publications 
011 the prediction of prestressing steel relaxation (linear or simple polynomial in lin-Iog or 
log-log scale .to express relaxation or relaxation rate) has been compared to that of a function 
type (l-e- x) based on a rheological model with limit values. Unavoidable modifications of 
this exponential function. justified from rheological and metrological aspects, have been 
determined. Practical use of this kind of function has been verified by fitting to measurement 
data sets of several thousand hours. 
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